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(Received December 20, 1979) 

The properties of an exciton system with the high concentration are investigated on the basis of 
microscopical equations for the density matrix of the type of BBGKY hierarchy. A new recipe 
for decoupling a chain of equations is proposed, which takes into account the effect of three- 
particle collisions on the definition of a two-particle distribution function of an exciton sub- 
system. Using this decoupling procedure and making no assumption about the smallness of the 
quadratic concentration effects the set of equations for density matrix reduced to the known 
phenomenological equation describing exciton annihilation under steady-state excitation. 

The kinetic equations applicable to an essentially larger concentration region are also derived 
taking into account high concentration effects. There use for the case of excitons with a great 
dipusion length permits us to predict a new effect of additional luminescence quenching at high 
excitation levels. This effect turns to he very appreciable in two-, and particularly, in one- 
dimensional systems and may manifest itself in the kinetics of nonlinear luminescence quenching. 
A qualitatively new-behaviour of the quantum yield dependence on excitation intensity is 
predicted, which gives reasonable explanation of recent experimental results. 

The limits on concentration and intensity values where the present theory is good are pointed 
out. 

The results of the paper may be applied to other quantum many-particle systems where the 
coordinates of a quasi-particle are good quantum numbers, and also to chemical reaction theory, 
to coagulation and the related problems. 

I INTRODUCTION 

Experimental and theoretical research concerning the exciton annihilation 
and the related problems is central in the field of organic compound physics. 
It is enhanced by numerous possibilities to get original information about 
the characteristics of exciton motion and interaction. Thus, it is possible 
to predict many properties of molecular crystals in the excited state which 
are primarily concerned with the excitons. 

t This work was firstly reported at the school on the spectroscopy of molecules and crystals 
held in Chernovtsv (USSR) Mav. 1979. The results close to this uaDer were obtained in a sliehtlv 
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214 Yu. B. GAIDIDEI AND A. I. ONIPKO 

The annihilation (or fusion) is a nonradiative disappearance of a pair of 
excitions caused by their interaction. The well-known equation implying 
that this reaction proceeds pair-wise 

BC 

at 
- =  - p c - y c 2 + 1  

is usually used in the phenomenological description of phenomena explained 
in terms of the annihilation. In Eq. (1) c is the relative exciton concentra- 
tion, I is the external excitation intensity relative to the total molecular 
number in a system, p is the inverse life time of an exciton noninteracting 
with the others, y is the constant determining the rate of exciton decay due to 
annihi1ation.t 

In the case of coherent excitons y is calculated as the transition probability 
from a two-excjton state to another excited state without initial e x c i t o n ~ . ' ~  
For an incoherent and intermediate type of excitons the definition of y is 
based on the solution of a diffusion or more specifically, an 
equation describing the random walk motion of quasi-particles.*-" 

In the papers mentioned it was supposed that each of the pairs is annihila- 
ted independently. As a result the many-particle aspect of the problem was 
omitted. Moreover, in the framework of the above approach it is impossible 
to determine concentration limits where Eq. (1) gives a satisfactory annihila- 
tion description. At the same time it appears to be really an important 
problem, because the fast motion and strong interaction of excitons may 
result in a dominant annihilation effect already at relatively small concentra- 
tions. The possibility of this situation in many molecular crystals immediately 
follows from the great values of y measured in experiment. In this case the 
usual condition of low concentration, c G 1, is not enough and the question 
arises as to the importance of multiple collisions, i.e. whether it is necessary 
to include into (1) additional terms proportional to higher powers of c or 
not. 

The many-particle approach to describe exciton annihilation was first 
discussed by Suna.' In particular, he has shown that the exact set of exciton 
density matrix equations in steady-state conditions reduces to Eq. (1) if the 
annihilation term is small compared to the monomolecular decay term 

YC G B (2) 
Here to calculate y, the equation for a binary distribution function may be 
used and the interaction of an exciton pair with other excitons may be 
neglected. 

t The present definition of y differs from the experimentally measured annihilation rate 
constant ycxp by the dimensional factor : ycxp = vy,  where v is the average volume per molecule. 
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KINETIC THEORY OF EXCTTON ANNIHILATION 215 

So far Suna's theory is the only microscopically substantiated approach to 
the problem under consideration,' ' but its application is essentially restricted 
by (2). This condition assumes the nonlinear concentration effects to be 
small perturbations. The inequality (2) may, in fact, be satisfied, for example, 
when the delay fluorescence1' or the magnetic field effect on prompt and 
delay fluorescence is studied.' 3-' But in experiments on nonlinear fluoresc- 
ence quenching16-' * where the main effect is caused by the annihilation 
process Suna's condition is violated and the validity of (1) (still widely used) 
is very much doubtful. 

An attempt to clarify the problem is made in the present paper. An exciton 
annihilation theory applicable to high concentrations is developed. It may 
be constructed only on the basis of many-particle approach. Keeping this in 
mind the model Hamiltonian and the set of interacting exciton density 
matrix equations that follows from it are accepted as a starting point of our 
consideration (Section 11). In Section I11 a new recipe for the equation chain 
decoupling procedure is proposed, leading to (l), but the condition (2) 
was not used, as distinct from Ref. 8. The aim of Section IV is to extend the 
theory to the case of high exciton concentrations. This is done for excitons 
with large diffusion length. We obtained an equation analogous to (l), but 
with the annihilation rate constant replaced by a certain function ?(I). 
This implies an inclusion into (1) of high concentration effects. In Section V 
we apply our approach to the theory of nonlinear luminescence quenching 
under a stationary high-intensity excitation in one-, two- and three-dimen- 
sional molecular systems. The model numerical calculations of Section VI 
illustrate the qualitative results of the previous sections. At last Section VII 
summarises the main conclusions of our investigation stressing the possi- 
bilities of its application. 

For the sake of simplicity our discussion is for crystals with simple cubic 
lattice. The theory may be straightforwardly extended on any crystal 
structure. 

II MICROSCOPIC DESCRIPTION OF AN EXCITON SUBSYSTEM 

Let us write the molecular crystal Hamiltonian in the form 

H = Hex + HT + V ,  + V,,, (3) 
where the first term represents the Hamiltonian of an exciton excitation 
branch 
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216 Yu. B. GAIDIDEI AND A. I. ONIPKO 

E is the molecular excitation energy, M ,  are the matrix elements of the 
energy of the resonance excitation transfer between molecules with coordin- 
ates n and m, B;,B, are Pauli operators which create and destroy an ex- 
citation on the nth molecule. 

The second term corresponds to the thermostat Hamiltonian operator 
describing all other crystal excitation branches (electron excitation, phonon 
excitation, etc.) which are not included into (4). 

The interaction operator conserving the exciton number is 

K = C ~ u . 4  exp(iqn)B:Bn(b:q + bu, -q)> ( 5 )  
n, u, q 

where bz, ,  bu,q are the Bose creation and annihilation operators of phonons 
of o-branch with a wate vector q, xu,, is the exciton-phonon coupling con- 
stant determining the motion character of excitons which would be estab- 
lished as a result of their interaction with the thermostat. 

The operator not conserving the total number of excitons 

n n, m 

describes transitions between the states of subsystems with the Hamil- 
tonian H e ,  and HT. The exciton-external field interaction is also defined by 
(4) in the linear approximation (it is supposed that the Hamiltonian of a 
noninteracting electromagnetic field is included in HT).  The A:, K A  
operators commute with B:, Bn and do not commute with the operators 

The exciton subsystem evolution in a time-scale exceeding thermostat 
correlation time zT ( T ~  is of order 10- l4 s for molecular crystals) is described 

Of H T .  

by 

PI("1, nz, 0 = S P { P ( O ~ , : ~ r n h  

pZ(nl,nz,n3,n4, t )  E Sp{p(t)B,:B,:Bn,Bn,},..., (7) 

where p(t) is the nonequilibrium density matrix of the system with the 
Hamiltonian (3). 

In the second order of the perturbation theory in the interaction operators 
(3, (6) one can find equations defining the density matrix of an exciton 
subsystem using the methods of nonequilibrium statistical operator theory. 
For the diagonal matrix elements we have 
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KINETIC THEORY OF EXCITON ANNIHILATION 217 

- c (mm, + wrn,)p,(n, "1, %I? .  . . 9  (9) 
where n 

pl(nl,t) p1("17 n 1 7  t ) ,  PZ("1, "2, P2(n1, n 2 ,  " 1 7  n2 ,  t), 

In deriving these equations? we suppose that the transverse relaxation 
time z is much shorter than the other characteristic times of an exciton sub- 
system. In the model under consideration z-'  - z;' x ~ ~ , ~ 1 ~ / h ~ ~ ~ , ~ ) ,  
where o , , ~  is the phonon frequency. This time defines the decay of non- 
diagonal parts of the exciton density matrix. Consequently, our considera- 
tion is restricted to the case of a completely incoherent exciton motion 
which is relevant for narrow exciton bands and a strong exciton-phonon 
interaction, 

In Eqs. (8), (9) In is the per second probability of an excitation of nth 
molecule (this quantity corresponds to Z in (1)). W,,,, is the exciton hopping 
rate at the distance I n1 - o2 1, o,,,, is the bimolecular annihilation prob- 
ability of excitons occupying molecules nl and n,. 

The generation of excitons by the two-particle mechanism is supposed to 
be negligible. The terms connected with the dynamical exciton-exciton 
interaction are also omitted. The effects caused by this interaction were 
discussed previously." 

The chain of Eqs. (8), (9), ..., is a quantum mechanical analog to the 
BBGKY hierarchy for standard many-particle systems. pl(n, t )  gives the 
probability of finding an exciton on the nth molecule at time t ,  pz(n,, n,, t )  
defines the same probability for a pair of excitons, etc. These equations as in 
the case of classical systems have very clear physical meaning and can be 
easily derived by the probability arguments, the only exception being terms 
21,p1(n, t), 2(In1 + Zn2)p2(nl, n2, t )  and the terms proportional to the 6- 
symbol. They result from the fact that the initial exciton operators are 
Pauli. The inclusion of these terms is important sometimes. For example, 
in the case of noninteracting excitons in steady-state conditions we have 
pl(n) = 0.5 when I, goes to infinity. This result means that only half mole- 
cules may be excited. Thus, it is necessary to take into consideration the 
above terms in the case of a very intense pumping or long-lived excitations. 

t A detailed derivation of equations analogous to (8), (9) is given in Ref.'. 
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218 Yu. B. GAIDIDEI AND A. I. ONIPKO 

Ill DECOUPLING PROCEDURE WITHOUT SUNA'S 
RESTRICTION. THE STATIONARY AND UNIFORM SOLUTION 

The set of equations (8), (9), . . . , is valid for any exciton concentration in the 
general case of a nonstationary and nonuniform excitation. But the problem 
of finding exact solutions to this set of equations, however, is unrealizable. 
Therefore, we wish to find a simpler approach to describe an interacting 
exciton system similar to (1) and formulate criteria for the validity of our 
approximation. 

To simplify comparison with the previous theory,' let us consider the 
case of uniform and stationary pumping: I ,  = I ,  pl(n, t )  = c, p2(n,, n,, t )  = 
pz(nl - n,) = pr. The terms 21c in (8) and 41p, in (9) were not taken into 
account in' and we put them equal to zero (the role of these terms will be 
discussed later on). Neglecting terms with p3 we get a set of equations 
completely coinciding with that used by Suna 

r 

2Ppr + 2 C K r O r  - pr,) + (mr - 2K)pr = 2 1 ~ .  (1 1) 
r' 

This decoupling procedure is correct only in the case when steady-state 
conditions are achieved mainly due to the monomolecular decay of excitons 
and when the exciton collision effects are small 

Then, following,8 in zeroth approximation we have 

c = 1p-1, (13) 

and the equation for the two-particle density matrix reduces to 

Ppr + 1 KApr - pi,) + (401 - wr)pr = Bc2. (14) 
r' 

In the nearest-neighbour approximation justified in the case of incoherent 
excitons one can write its solution in the form 
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KINETIC THEORY OF EXCITON ANNIHILATION 219 

where 

2d is the number of nearest neighbours, N d  is the total number of molecules, 
a is the lattice constant, the summation over A henceforward covers only 
distances between neighbours. 

The correction to (13) calculated with the help of (15) is equal to 

(18) 2 1 wrpr = YC > 
r 

where the annihilation rate constant is defined by 

The substitution of (18) into (10) leads to (1) rewritten for steady-state 
conditions. 

It is obvious that (12) (or equivalently (2)) used in this approach imposes a 
rigid enough restriction on the exciton concentration. It is also to be noted 
that the correct asymptotic behaviour of the two-particle density matrix: 
limr+m pr= c2 which results from (15), may be obtained only in a zeroth 
approximation in concentration. 

To avoid the difficulties of the theory presented it is necessary to take into 
account the terms in (9) describing three-particle exciton collisions. We will 
make it approximately putting in (9) 

C (mnn, + wnnJp3(n, '1, nz) = 2~ C arpr. (20) 

Substituting this relation into (9) and excluding in it Cr w,pr with the help 
of (10) we again get (14). Thus the decoupling procedure used conserves the 
above equations for c and y, but their validity is now determined by (20). In 
this case three- (and more) particle collisions are approximately included 
into the definition of a two-particle density matrix. We can therefore hope 
that Eq. (1) will find a wider range of application than it is implied by (12), 
at least in some special cases. To prove this we shall continue our discussion 
using a more correct form for p 3  in the next section. But to conclude the 
present one we briefly discuss the case of small values of p. 

n r 

D
ow

nl
oa

de
d 

by
 [

N
an

ya
ng

 T
ec

hn
ol

og
ic

al
 U

ni
ve

rs
ity

] 
at

 1
8:

36
 1

1 
Ju

ne
 2

01
6 



220 Yu. B. GAIDIDEI AND A. I. ONIPKO 

It was not considered in Ref. 8, because the inequality (12) does not permit 
us to use (1) for long-lived excitations. For example, in the case of one- 
dimensional excitons the expression for y takes the form 

y = 2w w ( w p - ' ) ' / '  + 1 , 
L W  I-' 

if Wp- ' %- 1. Consequently, when /? -, 0 we have a meaningless result y = 0. 
The above passage to the limit, however, cannot be made neglecting the 
terms in (8), (9) which involve the occupation of a molecule by an excitation. 
They can easily be formally introduced in all formulas by changing /? to 
/? + 21. The resulting dependence of y on 1 may seem to be surprising, but 
it will be shown in the next section that the dependence of y(1) in (1) is quite 
natural and it manifests itself in some cases even at p 3 1 (the last inequality 
is henceforward supposed to be met). 

IV KIRKWOOD'S SUPERPOSITION APPROXIMATION FOR THE 
THREE PARTICLE DENSITY MATRIX 

We have taken advantage of the fact that the three-particle density matrix 
should satisfy certain asymptotic requirements. At great distances between 
quasi-particles their motion is not correlated. Therefore, in this case p3 
has to be equal to c3. Accordingly, if the distance between only two of these 
particles is small, for example, between molecules on sites n and n,, then the 
behaviour has to follow that of the function cp,(n, n,), etc. The decoupling 
used in (13) is exact only in the sense of the first of the demands on the 
asymptotic behaviour. To improve it let us take the three-particle density 
matrix in the form 

pdn, n,, n2) = c3g(n, n,)g(n, n,)g(n,, n21, 

d n , ,  n2) = c-2P,(n,? n3). 

(22) 

(23) 

where 

As is known, the approximation (22) is good in the statistical theory of dense 
gases in a wide range of concentrations.'l 

Using (22), (23) for (9) we get a set of nonlinear integral equations. Passing 
then to dimensionless parameters we have 

(24) 

(25) 

1 + c Cnrgr = a, 

g r  + C Mrr,(gr - gr,) + ( 9 r  - Mrhr + cgr C Q r , g r , g r - r ,  = a, 

r 

r' r' 
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KINETIC THEORY OF EXCITON ANNIHILATION 22 1 

where 

gr = g(n, - n2), o! = j c - ’ ,  j = I,!-’, 
R, = fqp-1 ,  M ,  = w,,!-’. 

In the nearest-neighbour approximation the set of equations for g, may 
be considerably simplified. With the help of (24) it is reduced to a set quad- 
ratic in gr. For the sake of convenience we also introduce a new quantity 
v, = 1 - g,(v, -, 0, when r -, 00). As a result we get, 

where 

Using the Green’s function satisfying equations 

(a + 2dM)Gr,,, - C G r - A , , ,  = 6,r,, 
A 

we may write the formal solution of (26) 

where 
exp[iK(r - r’)] 

o! + 2dM - f i g K ‘  
Gr,,, = N - d  1 

It is implicit in (27) that v , = ~  = 1, i.e. prz0 = 0. This condition implies 
that two excitations may not happen to be on the same molecule simul- 
taneously. Taking into account the kinematic repulsion through the use of a 
known formal procedurez0 we may write instead of (27) 

1 a - 1  + ~ vr’vr , -A 9 (29) 
2 6 A  

where the condition v,=* = 1 is met automatically. 
One can see from Eqs. (28), (29) that the last of them becomes linear and 

equivalent to (14) when o! = 1. It is just the case treated by Suna. When o! # 1 
we solve (29) by the successive approximation method using the solution of 
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222 Yu. B. GAIDIDEI AND A. I .  ONIPKO 

a linearized equation as a zeroth approximation 

where the quantity 

c , ;  + 1 - 2a 

defines the probability of finding a pair of excitons at neighbouring molecules. 
In the first approximation we find the correction to vbo) by substituting 

(30)  into the quadratic terms of (29) 

x (1 - a)(a + 2 d M )  c:, 
P (1  - v p >  r = O - .  (32)  1 2dM G, 0 

vb” = 1 + [ 
It may be shown that the solution v, = vIp) + vbl) is valid (vb’) < v‘:)) 

whenever, the condition a 4 M holds. Then the expression for the quantity 
analogous to the annihilation rate constant in Section 111: 7 = 2do( 1 - v,),? 
turns to be dependent on I ,  and instead of (1) we have 

pc + ?(I)c2 = 1. (33)  
Thus, the linearized equations (29) already involve high-concentration 

corrections. Within the phenomenological approach to a description of 
interacting excitons this corresponds to taking into account collisions whose 
frequency is proportional to concentration degrees higher than c2. 

V INTENSE NONLINEAR LUMINESCENCE QUENCHING FOR 
EXCITONS WITH A GREAT DIFFUSION LENGTH 

Let us now consider the special but practically important case of strong non- 
linear quenching when the monomolecular decay term in (33)  is negligible 
compared to the nonlinear decay term, a 9 1 .  (This is just the opposite 
condition to that treated by Suna.) In addition, the inequality a G M must 
hold when the solution of the problem found in the previous section is 
correct. Both of them may be satisfied for excitons with a great diffusion 
length and under a sufficiently intense excitation. 

t It seems more appropriate henceforward to call 
rate constant is now its limiting value: Iim,,oi(l) = y. 

the annihilation rate. The annihilation 
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KINETIC THEORY OF EXCITON ANNIHILATION 223 

Under conditions mentioned above the solution of (29) for nearest 
neighbours may be approximately written in the form 

- 1  

vb0) = 1 - {& [.' In(:) - 1 1  + 1} , d = 2, (34) I 
Corrections to the solution defined by 

are small and may be neglected. 
From the analysis of formulas given it follows that an upper limit on the 

exciton concentration when the use of the solutions (34) is justified depends 
on the dimensionality of the system and the ratio between characteristic 
exciton parameters. This limit turns out to be most rigorous for three- 
dimensional excitons and corresponds to the inequality c -4 [6 ln(M/6cR)] - ' 
if R < M. In realistic situations this concentration will be much greater than 
that satisfying (2). In all other cases the validity of (34) is guaranteed by the 
conditions 

1 -4a  -4 M , c  < 1. (36) 
Supposing the above conditions to be met we get the following expressions 

for the annihilation rate in three-, two- and one-dimensional systems I;(-&+ l ) , d = 3 ,  

and the dependence of the concentration on the exciton intensity is given by 
the equation 

j(Z)C' = I. (38) 
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224 Yu. B. GAIDIDEI AND A. I. ONIPKO 

In the following we discuss separately the case of a diffusion-controlled 
annihilation and the case when the annihilation process practically does not 
depend on the exciton motion (kinetic regime). Note that only for three- 
dimensional motion the annihilation is controlled by diffusion when w/W @ 1 
(this is usually implied). But this condition reduces to w/W 2 1 in two-, and 
to w/W% (p/W)''2 in one-dimensional cases. The latter may be satisfied 
even at w/W < 1 when the exciton diffusion length is sufficiently large. At 
high concentrations the first two conditions are not considerably violated 
but the third one is to be changed to o /W % ( I / W C ) ' / ~ .  

In the case of a diffusion-controlled annihilation the steady-state con- 
ditions for the exciton concentration are achieved mainly due to the annihila- 
tion process if 

for one-, two-, and three-dimensional excitons, respectively. 
As it follows from (39), for the annihilation effect to be dominant it is 

necessary to create the densest exciton gas in the case of one-dimensional 
excitons. The same effect of nonlinear quenching in a three-dimensional 
exciton gas may be observed at essentially lower concentrations at the same 
values of all the other parameters. In this sense a two-dimensional exciton 
gas belongs to an intermediate case. 

The quantitative difference in conditions under which an intense non- 
linear quenching effect occurs for excitons executing a random walk in three, 
two and one dimensions arises from the fact that this type of motion has 
quite different properties in various dimensions (see, for example,22 and 
also Ref. 8). 

The dependence of the stationary concentration value on the excitation 
intensity is also different for excitons moving in various dimensions. From 
(37), (38) we have 

I = 24Wc2, d = 3, (40) 

I = 8xW In __ - x-' c 2 , d  = 2, [ (,Y) ]-I  

I = 32Wc3, d = 1. (42) 
Thus, it varies from c - 11/' (what is usually expected) to c - if the 
exciton motion is close to one dimension. 

It is worth mentioning that in addition to the deviation from a root-like 
dependence of the quantum yield, which is not described by (33) involving 
the standard definition of the annihilation rate constant, application of (33)  
with y instead of Y ( I )  as a tool for studying the exciton diffusivity under 
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KINETIC THEORY OF EXCITON ANNIHILATION 225 

intense excitation would lead to an under-estimated diffusion coefficient 
for excitons undergoing nearly two-, and especially, one-dimensional 
motion. 

From the comparison of formulas (41), (42) and (38) one can see that an 
increase in the excitation intensity manifests itself as an increase in the 
annihilation rate measured experimentally. This is equivalent to a stronger 
nonlinear quenching effect at higher I than at low I ,  which is not connected 
with the concentration difference. An effect of this kind has recently been 
observed in anthracene.” To explain it the occurrence of new annihilation 
centers was supposed. A quite different explanation of the strengthening of 
the fluorescence quenching at high excitation intensities may be given 
within our approach if two-dimensional exciton motion is relevant to the 
case. In the framework of this hypothesis an additional quenching effect 
may be connected with an increase in the annihilation probability of each 
excitation as a result of its interaction with many others while it travels. 
Thus, the annihilation process becomes not a pairwise, but many-particle 
reaction at high concentrations. This is effectively manifested in increasing 

Now we turn to the case of the kinetic regime of the annihilation process. 
Because of fast diffusion the peculiarities of incoherent exciton motion in 
different dimensions are no longer important (the binary exciton distribution 
function slightly deviates from cz at any distances between excitons). Instead 
of (39), we now have a single condition c 9 gw-’ guaranteeing that the 
exciton annihilation channel is dominant irrespective of the dimensionality 
of exciton motion. The concentration dependence on the pumping intensity 
is also the same, c - 11/’, for one-, two- and three-dimensional excitons. 

Thus in the case of intense nonlinear quenching the root-like dependence 
of c on I may be observed when the exciton band is almost isotropic, but 
when the exciton motion is nearly two- or one-dimensional c - I*/’ only 
in the kinetic regime of annihilation. 

Let us now estimate the singlet exciton concentration region where our 
consideration may be applied to nonlinear fluoresence quenching in anthra- 
cene and naphthalene crystals. The basic inequalities (36) of the present 
theory expressed in terms of experimentally measured quantities may be 
written in the form 

30. 

vfi < cyeXp < aD, (43) 
where D is the average exciton diffusion coefficient. 

Using experimental data,” we put a = 5 A, = lo9 s-l, D, = lo-’ 
cm’/s, yexp = lo-* cm3/s for singlet excitons in crystalline anthracene and 
/3 = lo7 s-l ,  D, = cm’/s, yexp = lo-” cm3/s in naphthalene. Taking 
into account that the diffusivity in the ab crystal plane must be at least an 
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226 Yu. B. GAIDIDEI AND A. 1. ONIPKO 

order of magnitude higher than the value of D,, we get, according to (43), 
low4 4 c 4 lo-'  for naphthalene and 4 c 4 lo-' for anthracene 
crystals. 

The upper allowed concentration limit is considerably higher than that 
defined by Suna's condition (2). Its attainment in experiment is unlikely. 

Inequalties analogous to (43) for the excitation intensity reduce to 

vjY2 e l y e ,  4 D2a- I.  (44) 

Substituting into it the experimental values from" we get the following 
intensity limits lo3 s-' < I 4 10" s-' and lo4 s - l  4 I < 1013 s - l  for 
naphthalene and anthracene crystals respectively. They give us the intensity 
region where the results of this section are valid. 

VI NUMERICAL RESULTS 

The discussion made in the previous section was concerned with the case 
of intense nonlinear quenching. The opposite case is described by Suna's 
theory. When both channels of exciton decay are comparable the concentra- 
tion dependence on the intensity is defined by (33) involving the annihilation 
rate 

d R - a + l  2 W - 0  -' 
G;,-, - 2a + 1 + 2 w  1 '  ?(I)  = 2 d o  

where 

Go,o = [4M(2a - l)]-li2, d = 1 ; 

Go,o - = (47cM)-' In ('"a"),, __ = 2;  

(45) 

with the condition a Q M taken into account. 
To clarify this result the model calculations of quantities Yo'), ccj), d j )  = 

j -  'c( j ) ,  were performed. The last of these quantities corresponds to the 
luminsecence quantum yield in steady-state conditions. 

In our calculations some of the typical exciton parameter values for triplet 
and singlet excitons in molecular crystals have been used. The calculated 
results may therefore be employed as guide-lines of observing the effects 
predicted in various crystals. 

To decrease the number of the unknown parameters the dimensional 
quantities are given in units p. Thus, there are only two free parameters M 
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3- 

0 5 /U 

FIGURE 1 One-dimensional excitons. M = lo7, o / W  = 10. a) curves 1.2, 3 correspond to 
~.5.104;~~~-1.10-4;(p~10, respective1y;b)curves 1,2, 3correspondto ~ . l O ~ ; j . p - ’ . l O - ~ ;  
c p .  10, respectively. Dashed lines correspond to c and cp calculated for y’(0) = y = I ,26. lo“ .P. 
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to 

5 

/ 

J 

I ' I '  I 

0 5 10 d 
FIGURE 2 a) curves I ,  2 ,3  correspond to 
".5. 104;y.p-'.2,5. 10-4;'p. lO,respectiveIy;b)curvesl,2,3,correspondto ( ' .  l O " . y . p - ' .  

'p . 10, respectively. Dashed lines correspond to c '  and 'p calculated for y(0) = 7 = 

One-dimensional excitons. M = lo', w/W = 

1 . 1 2 .  lo4. p. 
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KINETIC THEORY OF EXCITON ANNIHILATION 229 

and w/W. Calculations were carried out for j 4 1 which corresponds to 
j = I /p .  

Figures from 1 to 3 correspond to one-dimensional case. The curves for 
the same of the parameter values, but in different intensity regions: (a) 
0 c j  I 10-3(1 I a 5 7) and (b) 0 Ij < 10-2(1 I a 5 30) are presented 
in Figure 1. The equality M = lo7, for example, corresponds to the hopping 
rate 10" s - '  and to the decay time s which are typical for triplet ex- 
citons. For the ratio w/W = 10 taken the dimensionless annihilation rate 
v(0) = y is equal to 1.26. lo4. For this value of y the concentration and 
quantum yield dependence correspond to dashed lines. It is easily seen that 
the high concentration effects influence appreciably these dependencies 
(solid lines) even at relatively small values of a. When a changes from 1 to 7 
the ;i, (dashed-dotted line) increases approximately 4 times. This is reflected 
in a considerable decrease in the corresponding values of the concentration 
and the quantum yield. When the excitation intensity starting from those 
values of j where the nonlinear quenching effect is noticeable, increases 

10 

5 

f 
/ 

/ 
/ 

I I I I I I 1 I I '  
0 5 10 0 5 

R 
AIG 

FIGURE 3 One-dimensional excitons. M = lo3, m/W = I .  Curves 1 ,  2, 3 correspond to 
c .  5 .  10'; 7 .  p - '  . lo-'; cp 10, respectively. Dashed lines correspond to  I' and cp calculated for 
j ( 0 )  = ) J  = 1.21 ' 10' ' p. 
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230 Yu. B. GAIDIDEI AND A. I. ONIPKO 

about two orders of magnitude, the quenching is enhanced 3 times (quench- 
ing enhancement is proportional to (jj(;)/jj(O)’” for c1 % 1). 

It is interesting to note that for the given M the deviation of the c(j) 
and cpu) dependences from the values when jj(0) = y is used is essential in 
a wide range of the values of the parameter o/W. For example, at w/W = 
10- (Figures 2(a), (b)) the quenching effect is enhanced approximately 2.4 
times when c1 changes from I to 25. This is caused by the fact that the annihila- 
tion process is strongly dependent on the exciton diffusion even at those ratios 
between the annihilation probability and the hopping rate when in two- and 
three-dimensional cases this dependence is negligible. This may be con- 
sidered as an argument that the dependence ?(I )  arises, because the increase 
in concentration influences the exciton motion. 

The dependences just considered above are represented in Figure 3 
for a much lower value of M ,  M = lo3, (u/W = 1). As it is readily seen from 
(45), (46) the dependence F(Z) is less pronounced and will manifest itself at 

C- -  

- * - . - -  

‘2 

- 
- 

I 1 I I I I 1 I 
5 ro 

FIGURE4 Two-dimensionalexcitons. M = lO’,u/W = 10.Curves 1,2correspond t oc .  10*; 
i, . p- ’ ’ 5 .  10- ’, respectively. The dashed line corresponds to c calculated for T(0) = y = 
1.53.10’ .b. 
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much higher concentration values. This is connected with the smallness of 
the value v(0). 

We choose the last example for the calculation keeping in mind the 
properties of the 1,4-dibromonaphthalene crystal (DBN) known to be a 
quasi-one-dimensional crystal for triplet e x c i t o n ~ . ~ ~ - ~ ~  It is made of stacks 
of molecules piled up along the c-axis. Interstack (Knter) and intrastack 
(Win,,,) hopping rates differ by several orders of m a g n i t ~ d e . ~ ~ - ~ ~  If we make 
an assumption that only intrastack annihilation is important, then to take 
into account the interstack exciton motion it is enough to replace by 
Knler when the condition yntra 9 Winter holds.' Putting W,,,,,lWinter = lo3 
and o = Win,,, we get the results represented in Figure 3. Thus the presented 
calculations are the simplest model for a real quasi-one-dimensional system. 
But it is still too rough to compare with experiment. In particular, recent 
 investigation^'^ show that there is an appreciable interstack annihilation 
between triplets belonging to different, neighbouring, molecular stacks. 
Therefore to predict correctly the y(j), c(j),  cpG) dependences for DBN 
crystals a more realistic model is to be considered. 

5 

-I 0 / 

,- * - 

I I I I * 
5 0 0 Y 5 

-r* 2 

I -r) 
10 

FIGURE 5 
c . 5 .  lo3: 3 .b-' . 

Two-dimensional excitons. M = lo", w/W = 10. Curves I ,  2 correspond to 
respectively. The dashed line corresponds to c calculated for j~(0) = y = 

2.65.1O4.P. 
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i I I I I I I 

All calculations performed show that the additional quenching effect 
(increasing j j  with I) rises monotonously with increasing excitation intensity. 
The behaviour of ?(I )  is qualitatively the same in two- and three-dimensional 
cases, but is much less pronounced. The curves of Figure 4 representing two- 
dimensional motion were calculated for the same exciton parameter values 
as those for the curves in Figure 1. It may be seen that the increase of a up 
to 150 is reflected in the increase j j  by about 1.5 times. Correspondingly, 
the quenching effect enhances only 1.2 times. In the case of three-dimensional 
excitons j j  is practically constant for this parameter values. 

In Figure 5 the calculated results for lower values of M equal to lo4 
corresponding to singlet excitons in naphthalene and anthrathene crystals 
are given. As distinct from one-dimensional excitons, the effect of quenching 
enhancement increases for smaller M .  Namely, j j  increases approximately 
two times (and accordingly, the quenching effect grows 1.5 times) when a 
changes from 1 to 70. 

Figure 6 illustrates the ?(j) dependence and the related effects for three- 
dimensional excitons. This dependence though existing, in principle, is very 
small when c e 1. 

- . - '-Lo - - - -.-.-.- - -  
T 2 

10 - 

5 -  

U I .I 

FIGURE 6 Three-dimensional excitons. M = lo3, w/W = 10. Curves 1, 2, 3 correspond to 
C.103;  3.8- '2,  5.10-4; (p.10, respectively. Dashed lines correspond to C and cp calculated 
forj(0) = y = 1.75.104.8. 
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KINETIC THEORY OF EXCITON ANNIHILATION 233 

Our calculations show that in the case of one-dimensional exciton 
motion it is necessary to take into account the annihilation rate dependence 
on the excitation intensity even at comparable values of rates of monomolecu- 
lar and annihilation decay. 

At the same time it is possible to neglect the deviation of the solution of 
(33) with ? ( I )  replaced by y from its exact solution when the annihilation of 
excitons with three-dimensional isotropic motion is described. Thus, Suna’s 
theory is relevant to this case even at high concentrations including the 
case of strong nonlinear quenching. 

The deviations from Suna’s theory predictions may also turn out to be 
negligible when nearly two-dimensional exciton annihilation takes place. 
But for certain ratios between exciton parameters the additional luminescence 
quenching effect predicted by our theory may be important. 

V11 CONCLUSlON 

The procedure for decoupling a set of exciton density matrix equations based 
on the superposition approximation for a three-particle density matrix 
proves to be very useful in describing the dense incoherent exciton gas 
kinetics. Even a linearized theory of such an approach permits us to include 
into a discussion of the annihilation process higher concentration effects 
which has not been done in previous papers on the same problem. As a 
result, the annihilation theory in the case of steady-state conditions is 
extended to the high concentration region where the phenomenological 
equation (1)  or microscopic Suna’s theory may be irrelevant. In particular, 
the present approach applied to nonlinear luminescence quenching in 
molecular crystals is reasonable up to the concentration 

c 4 (6 In( W/6co))- ’ 
which is considerably higher than that permitted by Suna’s theory, 

High exciton concentration effects are mostly important for two-and one- 
dimensional excitons. For one-dimensional exciton motion in the case of 
diffusion-controlled annihilation the cubic root-like dependence of the 
concentration on the excitation intensity is to be expected. Therefore, it 
seems extremely interesting to perform experimental investigations of the 
triplet-triplet exciton annihilation in DBN, analogous to those in Refs. 12,14, 
but at higher intensities. Measuring the annihilation rate in a wide region 
of excitation intensities may be used as a productive tool for studying kinetic 
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234 Yu. B. GAlDIDEI AND A. 1. ONlPKO 

exciton properties, particularly for testing the exciton hopping rate param- 
eters. 

Although a system of interacting excitons has been discussed the theory 
developed may be applied to systems consisting of other sorts of quasi- 
particles with coordinates as good quantum numbers, and to classical 
systems where the interaction does not conserve the particle number. An 
interesting example of this application is given in Ref. 26, where the many- 
particle aspects of diffusion-controlled reactions were investigated on the 
basis of equations analogous to (8), (9). 

The existence of a small parameter connected with a great exciton dif- 
fusion length was supposed when the present theory was applied to non- 
linear luminescence quenching. This is a quite real situation for molecular 
crystal excitons. But for the type of small mobility excitations and at high 
excitation intensities our approximation fails and other solutions of non- 
linear equations (24), (25) must be found and used. In this connection we 
mention the theoretical and experimental investigation of nonlinear quench- 
ing in the system of nearly immovable eximer excitations.16 It was shown 
that the description of the annihilation process by a term quadratic in con- 
centration is not relevant at high intensites, which is in agreement with our 
theory. 

In conclusion we emphasize that the results presented are only concerned 
with the case of a stationary and uniform excitation. Therefore, application 
of microscopic equations (8), (9) to describe a dense elementary excitation 
gas in nonsteady-state and nonuniform conditions is an urgent problem in 
annihilation theory. 
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