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We present the one-electron spectrum and eigenstates of
bounded graphene nanoribbons that describe electron dynam-
ics in terms of transverse and longitudinal motion. On this ba-
sis, we find the transmission coefficients for armchair graphene
nanoribbons and polyacene under step-like electronic poten-

1 Introduction The fascinating properties of gra-
phene, an atom-thick layer of carbon atoms arranged in a
honeycomb lattice, are documented in many experiments
[1-5]. The unique combination of electronic properties and a
comparative easiness of its fabrications shows that graphene
is a candidate number one for a variety of applications,
including future electronics and sensing.

In recent years, the electron behavior in graphene has
been extensively studied by various methods of analytic and
numerical modeling. Graphene ribbons (GRs) with armchair-
and zigzag-shaped edges are most frequent objects of the
investigation with the help of either Dirac equation [6-9] or
Schrodinger equation with tight-binding Hamiltonian [10-
16]. In the present study, we use the latter approach.

The honeycomb graphene lattice suggests six equivalent
armchair- and six equivalent zigzag shaped electron path-
ways alternating every 30°. In Fig. la, these pathways are
indicated by the chains of polyperylene and polyacene. A
sheet of graphene with mutually perpendicular armchair and
zigzag edges can be regarded as a pile of NV in-plane stacked
N-long parachained phenylenes or, alternatively, as N cova-
lently bonded A-long acenes. It is obvious that making N or
N infinite, we obtain basic graphene structures: an armchair
graphene ribbon (aGR, Fig. 1b ) or a zigzag graphene ribbon
(zGR, Fig. 1c). Proceeding further, we can make the aGR
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tial. The problem is solved for different interfaces between the
regions with zero and nonzero site energies. The obtained re-
sults have numerous applications to the construction of multi-
terminal graphene-based electronic devices.
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(or zGR) width infinitely large, which gives us an infinite
sheet of graphene. The solution of the ecigenvalue problem for
aGR and zGR is thus crucial for understanding the dispersion
and transmission in graphene in 12 different directions.

For many practical applications, a very important prob-
lem is the particle transmission under a potential with step-
like profile. In this study, we consider electron transmission
through graphene ribbons with site energies taking the val-
ues 0 and U, as shown in Fig. 1b—d. Unlike previous works
[17-19], we perform calculations of the through-step trans-
mission coefficient for different interfaces between the re-
gions with zero and nonzero site energies. We emphasize that
the proposed approach allows us to consider different inter-
faces, in contrast to the continuous model of Dirac fermions.
It is shown that the difference between the dependences of
the transmission coefficients for different types of interfaces
is well pronounced and, presumably, can be evaluated in the
course of the experimental investigations.

The transmission coefficients are found for two types of
GRs: with armchair and zigzag boundaries. The armchair
nanoribbons are considered for any width A with a special
emphasis on polyperylene, i.e., on an aGR of width A/'=2
(2aGR). For the zigzag nanoribbons, the mathematical ap-
proach is much more complicated. To the best of our knowl-
edge, the problem of finding the explicit expressions for the
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2 A. Onipko and L. Malysheva: Electron transmission through step-like potential
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Figure 1 (a) N x N sheet of graphene. The sixfold local symmetry
of an infinite honeycomb lattice is highlighted by the segments of
polyperylene (yellow) and polyacene (blue). (b and c) Structure of
polyperylene, which is also referred in the text as 2aGR. The yellow
and red circles indicate zero and U-shifted site energies of carbon
atoms modeling p—r and A—p interfaces of the potential step U.
(d) Polyacene chain which is also abbreviated in the text as 1zGR.
The change in the color of circles from blue to red corresponds to
the /—A potential step. Location of carbon atoms is specified by the
numbers m, n, and the label @ = [, A, p, [. Hydrogen atoms along
the edges of graphene sheet, polyperylene, and polyacene are not
shown.

transmission coefficient in the zigzag nanoribbons was not
discussed in the literature. Thus, we restrict ourselves to the
casc of polyacene, a zGR with the width N =1 (1zGR) il-
lustrating several principal properties exhibited by graphene
in the zigzag direction. It should be stressed that the narrow
ribbons 2aGR and 1zGR are of considerable interest them-
selves because they are potentially useful for different mul-
titerminal graphene-based electronic devices, as shown in
Fig. la.

2 Transmission in aGR In the nearest-neighbor ap-
proximation, for the lattice site enumeration explained in
Fig. 1, the tight-binding Hamiltonian of aGR can be rep-
resented as

H= 7 > lel =340) = Albf brig,

r'—-r=q r

M
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where b} (b,) is the electron creation (annihilation) opera-
toratr = m, n, «; & and —B (B > 0) are, respectively, the
electron site energy and hopping integral.

In this representation, the wave function of 7 electron
reads ¥ =Y _v¥.b7|0), where the expansion coefficients
obey (for any n) the set of equations (energy is always ex-
pressed in the units of 8)

(E - 8,,) 1pm.nv/ ‘=

m=1,2,..N

(E - En) wm,n,)‘ = _Wm,n,l - Wm—l,n,l - wm,n,p,

_wmn—lvr - wmvnv)» - merl.n,)u

m=1,2,..N+1
(E - 8)1) l/jm,n,,o - _1//711,11,r - 1)[/m—l,n,r - 1//7114,11,%’
m=1,2,...N+1
(E - 8”) wm,n,r - _1/’111,,11+1,l - wm.n,p - wnwrl,n‘p’
m=1.2,...N
w(),n,l = wo.n,r = w/\f-l—l,n,l = w/\/‘+l,n,r =0.

@)

For a potential step U located between the atoms in r
and [ positions, &,<o = 0 and ¢,.., = U, the scattering-type
solution to the equations presented above was found for an
arbitrary width of aGR [17, 18]. Here, we will see that the
solution is different for the location between the ncarest-
neighbor atoms in, e.g., the p and r (as in Fig. 1b), and A
and p positions (as in Fig. 1c). However, this difference is
shown to manifest itself in the transmission coefficient only
in the former case but not in the latter. In other words, the
transmission through the potential step at the r—/ and A—p
interfaces is identical but it is different when an electron
meets the potential step at the p—r and /-A interfaces. To
our knowledge, the potential was supposed to change just
between nearest-neighbor r and / atoms in all related studies
[8,17-19].

Labeling the wave function to the left and right of the
interface by L and R, respectively, we can write the solution
to Eq. (2) in a single-mode form

wrl;:,n,a = w%.)n,a(k) + r(J)w}('Vl],)nfa(k)’
Vi = 17910, (B),

where ¥, (j =1,2,..., N)is an eigenstate of aGR. For
the zero site energies, the corresponding dispersion relation

takes the form [11]

3)

El =14 p’+2u; cos(v/3k/2), ;= 2cos(&;/2),
4)

where &; = 7j/(N=+1), and the wave vector k, 0 < k < m, is
in the units of a!. The wave vector marked by the overbar
(k), as well as the corresponding eigenenergy E;, refer to the
aGRs with site energies shifted by U: E; = E; — U. The sign
=+ in Eq. (4) marks the “plus" and “minus" branches of the
dependence E (k). The mode with the lowest absolute energy
belongs to the “minus" branch. Moreover, the energy E
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(j* = 2(N + 1)/3) equals zero for metallic aGRs for which
(M+ 1)/3 is an integer number.

Itis easy to see that, for any particular place of changes in
the site energy, the substitution of Eq. (3) in Eq. (2) results in
two equivalent pairs of equations for the unknown amplitudes
of reflection r'” and transmission ¢, Ttis clear that to find two
quantities (reflection and transmission coefficients), we need
only two equations from system (2). The reason to write four
equations is that we want to find the transmission coefficients
for different types of interfaces. Thus, for each type we use a
corresponding pair of equations from system (2). Namely, for
the p—r interface (Section 2.1), we use the third and fourth
equations of Eq. (2), for the A—p interface (Section 2.2) — the
second and third equations, while for the »—/ interface we use
the first and fourth equations of system (2).

The eigenfunctions ¥, (k) can be found by using dif-
ferent approaches [12, 14—16]. Here, it is convenient to use
the phase representation

=D gin(&m), a =1,
40 eV D gin[g(m — 1/2)],  a =4,
man.a :l:ei[ﬁk(n—l/z)-f—@] sin[&,-(m _ 1/2)], o=p,
eV sin(Em), a=r,
)
where the phase 0 is defined as follows:
i0 1 iN/3k/2
5 =—E(l:|:,u,je ), 0<6<m. (6)

J

The =+ sign in Egs. (5) and (6) corresponds to the “plus”
and “minus” branches of Eq. (4). The phase factor was first
introduced in Ref. [17], where the functions ¥, ,, ¥, were
represented in the form (5).

As follows from Eq. (5), the phase factor is determined
by the phase difference between neighboring A, B sites rep-
resented by the pairs r—[ and A—p. It follows from Eq. (6)
that

|E; e’ + 11" = M§~ )
We also see that, since E; can be positive or negative, 6 is
a discontinuous function of energy. However, we can use
instead a continuous variable 0 < 6 < 7, which implies that
6 = |6|. Then, by analogy with Eq. (4), the above equation
can be regarded as the phase dispersion relation. Similarly,
for U # 0, we get |E;e” + 1> = ;. Henceforth, the phases
6 and 0 should be understood as explained.

Equations (1)—(6) suggest an instrumental framework for
the evaluation of the through-step transmission coefficient
for different interfaces between the regions with zero and
nonzero site energies. It is free of the necessity of application
of matching conditions whose choice is somewhat arbitrary.
In addition, it is much easier than calculations with the use of
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Green’s functions [ 18], which must be defined for semiinfinte
aGRs with different terminations.

2.1 I-) and p—r interfaces Itis obvious from the sys-
tem symmetry that the transmission coefficients for /-A and
p—r interfaces are identical. Their common feature is that the
potential changes between the sites which belong to different
parallel chains of A-B pairs, whereas the phase difference
refers to A—B pairs within the same chain; see Eq. (5). To
consider the potential step dividing p and r sites, we can use
two out of four equations in Eq. (2). Specifically, instead of
the last two equations for n = 0, we can write

L R R L
Elﬁm,(},p == m,0,r - w}n—l,(),r - wm.(),k’
. /R R L L
Ewml).r _wm,l,l - wm,(),p - merl,OAp’

®)
where ¥, and ¢ are defined in Eq. (3).

Finding ¢ with the use of Egs. (5) and (8) is the matter
of simple algebra. The substitution of the result into

70 _ Y |t”“|2 _ sin(v/3/2) E; |t“’|2
v sin(v/3k/2) | E;
sinf | .o
— t(]) 9
sin 0 ’ ‘ ©)
yields
o sin@sin@ (10)

T, = = T
T [sin’l6 + 6)/21 + U(1 — p)/(4E E))|

where a—a’ =1—A or p—r.

As a specific feature of this result, we can mention the
fact that, for the gapless mode j = j* = 2(N+1)/3 (if N+1
is divisible by 3), we have u; = 1. Hence, for j = j*,

OE,_ZZ . iln931119 . an
sin“[(6 + 0)/2]

It is important to note that, as shown in Ref. [17], relation

(11) defines the transmission coefficient for an r—I interface

for any j. In the next section, we show that the same is true

for a—a’ = A—p.

2.2 }—p and r-l interfaces As mentioned above, the
electron transmission through the r—I interface between zero
and nonzero potentials has already been studied with the use
of the matching technique [17] and the Lippman—Schwinger
equation [ 18]. Therefore, we consider the case of A—p inter-
face shown in Fig. 1c. Recall that within the A—p and r—/
pairs, which alternately form parallel chains of A-B sites
across the ribbon, the phase of the wave function differs
by 6.

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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4 A. Onipko and L. Malysheva: Electron transmission through step-like potential

Substituting Eq. (3) into the second and third equation
of Eq. (2) for n = 0, we obtain

L L L R
Ewm,ﬂ,)\ _wm,ﬂ,l - Ilhm—l,l’),[ - wm,ﬂ,p’

.1 R R L L
Ewm,t).p = _wm,(),r - wm—l,(},r - wm,(},k' (12)
With % found from this pair of equations, the same way
of calculations leads us to the following expression of the
transmission coefficient:

0o .s?:inﬁsilié 7 (13)
sin”[(0 + 6)/2]

which is valid for «—a’ = A—p. The same relation was found
in [17] for «—o' = r—I. It coincides with the preceding result
(10) only for j = j*.

The case j = j* is special because the phase difference
6+ is independent of the aGR width,

ﬁk) . (14)

2cos’ 6 =1 £ cos (T

In the long-wave limit, cos’6;» ~ 1 for the “+" branch

and cos? 6 ~ 3k*/16 for the “—" branch. For small ener-
gies with v/3k <« 7, |0 #| ~ m/2 is associated with Berry’s
phase [20].

Furthermore, except the trivial case U = 0, the mode
transmission coefficient is equal to 1, i.e., there is no
backscattering only for k = k, when the gate potential equal-
izes E; with E;. In other words, this happens only when the
electron state in the valence band has the same energy and
wave vector as the incident electron. Hence, the phase 6, just
changes its sign, 0,(k) = —6;(k = k). It is thus not surpris-
ing that the interband transmission from the conduction to
valence band, or vice versa, which essentially involves the
same states has the probability 1.

Expression (13) has the following important property: its
form coincides with the form of the corresponding expres-
sion for tight-binding chains. It is rather easy to obtain the
transmission coefficient for the step-like structure consisting
of a half-infinite chain with a wave vector k connected to a
half-infinite chain with a wave vector k, k, k > 0. Proceeding
in the same way as above, we derive a well-known formula

sin k sin k 4kk

TE) = sin”[(k + k)/21 **~° (k + k)?’

15)

where E = —2cos k, E = E — U = —2 cos k, and the limit
of small wave vectors corresponds to the effective mass ap-
proximation. Thus, the transmission coefficient (13) for the
r—l interface represented in terms of phase quantities has ex-
actly the same form as the coefficient of transmission through
two tight-binding chains with different site energies, repre-
sented in terms of wave vectors.

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

2.3 aGRs of arbitrary width Relations (10) and (13)
are valid for any N. If j* = 2(N41)/3 is an arbitrary in-
teger, then p ;=1 implies that the metallic mode transmis-
sion is the same for any position of the potential step. Hence
1Y) =19 = T,2) = TY", and for all other modes, 7,/"""
=T # T = TU7". As a consequence, the appear-
ance of T(Ey, U) (where Ep is the Fermi energy) in armchair
graphene ribbons strongly depends on the location of the
change in potential. This statement is illustrated in Sections
2.4 and 2.5.

The cause of the indicated transmission dependence is
that 6; determines the phase difference between the A and
B sites with identical transverse coordinate m or m — 1/2.
Therefore, if the necarest neighbors on both sides of the in-
terface belong to the same A-B pair, then scattering can be
described in terms of the change 6; — 0. This is obviously
impossible if the interface divides the sites with different
transverse coordinates.

In view of the spectrum symmetry, we have

T(j)(—lEl, U) = T(j)(IEI, _U)

Obviously, TY(E, U = 0) = 1. The nonzero values of U
mimic the effect of gate voltage applied to the right half of
the ribbon at different values of the Fermi energy E = Ey.
This also concerns zigzag GRs. According to the Landauer
approach, formulas (10) and (13) determine the dependence
of the Ohmic current on the external parameters E}. and U in
the related electron-transport experiments.

2.4 Narrow aGRs (2aGRs) As an example, we con-
sider one- and two-mode transmission in the most narrow
armchair graphene ribbon with gapless spectrum (N = 2,
Jj* = 2). The second mode (| E,(k)| < 2) has a linear disper-
sion if |E,(k)| < 1. This dispersion dominates the energy
interval |E = E (k)| < V3—1, where only the single-mode
transmission is possible. The transmission coefficient is close
(but not equal) to one if the potential step varies within the
same energy interval as illustrated by the top row in Fig. 2.
As follows from Eq. (11), in this energy interval, the trans-
mission coefficients for the A—p and /- interfaces are iden-
tical. In contrast, for j = 1, single-mode transmission for
both interfaces (third and bottom rows in the same figure)
is zero within the energy interval |E = E (k)| < V3= 1,
which manifests the prohibition of intermode transmission
due to the mode orthogonality. For the same reason, the func-
tions T(FEy, U) shown in the second and fourth rows have a
jumplike shape associated with switching (on/off) of one of
two modes. These features are similar for both interfaces.

At the same time, pronounced differences between the
behavior of the transmission coefficient for the A—p and /-A
interfaces can be seen when U > 0 and E, > +/3 — 1. As
U increases, transmission is significantly suppressed in the
latter case as compared with the former case. This trend is
preserved for larger V.

www.pss-b.com



Original

Paper
Phys. Status Solidi B (2015) 5
‘ o L, : 3 - e ; ; .
FAREN 0.73 10 59r 1251 2.25
1
PN
H \ Lin 1F b
! \
! !
p— f'—“— I TITTTNY STTT T~ ! .
1.55 ey - - - - ; : : \ \
10 05 F 1254 2.25
: \ | Il /J‘A
] \
- 1 b L)
' .':". T '2.55 0 i i L o I~ L i
it i 2 0 2 4 2 0 2 4 2 0 2 4

Figure 2 Through A—p (three upper rows) and [—A (two lower
rows) step transmission in 2aGR as a function of the right-gate po-
tential, Z,' Té-’za, =T: Toﬁl_)a,(U ) (dotted curves), Tf_)a,(U ) (dashed
curves), Tél_)a, )+ T;z_)a,(U ) (solid curves). The panels are labeled
by the values of incident-electron energy set equal to Ex. The top
row represents a single-mode transmission when the first conduc-
tion band is partly filled (0 < Ex < /3 — 1). In this energy in-
terval, the transmission coefficient is identical for both types of
interfaces: Tg‘, = Tl(_Z)A = T®. The second and forth rows corre-
spond to the two-mode transmission when both conduction bands
are partly filled (v/3 — 1 < Ep < 2). The bottom and third rows cor-
respond to the single-mode transmission when the first conduction
band is completely filled but the second band is filled only partly
2 < Er < 3+ 1); Er and U are in the units of f.

Summarizing the inherent properties of polyperylene as a
molecular wire, we conclude that it must exhibit the conduc-
tance ~2¢*/h weakly depending on the changes in the Fermi
energy and gate potential if | Ey|, |U| < /3 — 1 (~2eV). For
E. < V3= 1, the single-mode transmission is identical for
both types of interfaces. For larger Ey, the difference be-
tween the transmission coefficients for A—p and /-A inter-
faces is more pronounced for positive U, and the same is true
for aGR of arbitrary width. The gap of zero conductance for
large | Ex| decreases as A increases.

It is important to note, that the transmission coefficient
T, depends on N\ only via the quantity ;- Therefore, in-
dependently of the aGR width, the behavior of 7", remains
similar for equal w;, or, which is the same, for the modes
and N having equal relation j/(N + 1). The most important
example is the case of j = j* for metallic aGR: indepen-
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Figure 3 Through A—p (upper row) and [—X (lower row) step
transmission in aGR with A'= 11 as a function of the right-gate
potential, Zj T;-’_’a, = T,_ (solid curves). The function T;’_* o 8)(U )
is plotted with the dashed lines (the first and second columns), and
the function TO([’_* 0{72=°)(U ) is plotted with the thin solid lines (the
third column). The panels are labeled by the values of incident-
electron energy set equal to Ep. The first column represents the
five-mode transmission, i.e., for Ex = 0.5,the bands j = 6, ..., 10
are open for charge carriers. The second column corresponds to the
eleven-mode transmission when all the bands are open. The third
column corresponds to the six-mode transmission when the bands
j=1,...,6areopen. Er and U are in the units of §.

dently of the aGR width, the dependence T, (E, U) remains
the same, namely, its behavior is represented by the dashed
curves in Fig. 2. The dotted curves in the same figure repre-
sent not only 7., for V= 2, but also T, for N'= 5, T”,,
for N'= 8, and, generally speaking, for all pairs of values of
j and N'which satisfy j/(N + 1) = 1/3. Thus, the presented
curves show the energy dependence of the transmission co-
efficient for some modes for the ribbons wider than A/ = 2.
To show the behavior of the sum of T\ (E, U) for wider
ribbons, in the next section, we consider the case N = 11.

2.5 Wider aGRs (M = 11) In Fig. 3, we represent the
through step transmission T = 3. T, as a function of the
right-gate potential in aGR with A" = 11. The width is cho-
sen to provide the possibility to compare the obtained results
with the previously reported dependences for Zj_*fl, Y}jj,, and
T,jj,“ obtained with the help of the Green’s functions method
[18]. Here, we pay the main attention to the overall transmis-
sion coefficient ) _ ; 7.7, and to the difference in the functions
for the A—p and [—X interfaces. Depending on the values of
incident-electron energy, all modes or only several modes
contribute to the transmission. The dispersion relation (4)
immediately gives the following criterion for the band open-
ing: the jth band is open if |1 — p;| < Er < 1 4 ;. Then,
for Ex = 0.5 we obtain the five-mode transmission (first col-
umn in Fig. 3), while for Ex = 1.25 all the modes of aGR
with N = 11 are conducting.

As it was the case for 2aGR, for wider aGRs the trans-
mission coefficients for the A—p and [—A interfaces are sub-
stantially different for U > 0 and large E\., see third column
in Fig. 3. As U increases, the transmission through [-X step is

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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6 A. Onipko and L. Malysheva: Electron transmission through step-like potential

much lower as compared to the case of the A—p interface. This
feature of the transmission in aGRs can be used to identify
the type of interfaces in the experiments aimed at measuring
the conductivity of aGR-based electronic devices.

3 Transmission in 1zGR Polyacene (width 2.84 A),
as a molecular wire, provides two pathways for an excess
electron, and the same is true for polyperylene (width 4.26 A).
Furthermore, the m-electron spectrum of both polymers is
semimetallic. Therefore, one can expect a similar behavior
of through-step transmission near the neutrality point. We
now show that this expectation is not justified. In fact, the
single-mode through-step transmissions in 2aGR and 1zGR
are rather different as long as Ey is not far away from the
neutrality point.

In 1zGR, the appearance of two modes is connected with
the parity of eigenstates: symmetric and antisymmetric, j =
s, a. The energies of these states are partly overlapping [21],

2E, = sign[E,)]v/ 1 + 16 cos*(k/2) —(+)1, &,=0,

2E,, = sign[Ey,]y/1 + 16cos2(k/2) —(+)1, &,=U.

(16)

The wave function amplitudes at the physically equiv-
alent atoms /, r and A, p, have the same or opposite signs
for symmetric or antisymmetric states, respectively. The
pairwise sums and differences of these amplitudes, ¥ =

mlr —

wi (VU U, = Wl + (2) Y obey the follow-

m.l mr?

ing equations:

(E—=en) P = =90 =¥,

[E—en+() Y5, = =¥ — ¥l a7
where ¢,, =0 or U.

The expression for cigenstates of zigzag graphene rib-
bons with zero site energies was obtained in Ref. [12]. In
the case in focus, N = 1, functions satisfying Eq. (17) with
& = 0 can be represented as

[Eyo +(=)1
s(a) s(a) ikm

[ + — —e s
m,lr ( ) E.v(a}

ws(a) — _(+) Sign[ES<(,)] eik(m—l/Z)'

m,Ap

(18)

At this point, it is worth emphasizing that 2aGR also has
axial symmetry and, consequently, the wave functions at the
pairs of sites 1, n, I(r), 2, n, I(r) and 1, n, A(p), 3, n, A(p) are
either identical or have different signs. However, unlike the
case of 1zGR, the equations for the “£" combinations ¥/ 10
+ wi,,’:),,.,( » turn out to be coupled because of the phase differ-
ence between r and [, and A and p sites. As a result, the selec-
tion rule in aGR corresponds to different modes, whereas in
1zGR, it corresponds to different parities of the states. This
principal distinction concerns armchair and zigzag graphene

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

ribbons of any width. It is also the cause of substantial dis-
tinctions in the electron transport properties along armchair
and zigzag pathways.

As in the previous section, we can construct the solution
toEq. (17)withe,.; = Oand &,,-; = U in the form of Eq. (3),
where j — s(a), o = Ir, Ap, and the index n = 1 is omitted,
see Fig. 1. The usage of Egs. (3) and (18) thus modified
in Eq. (17) yields an expression for #® and, hence, for the
respective transmission coefficient

4 sin k°@ sin k'@

y pCJRA L 19
F_F (19)
Fl = E.\‘(u) E.\'{u) + (_)1‘ + ‘E.\'w) |:E.\'(LL) + (_)1] )
_ ks(a) ]_CS(“) ks(¢1)+]_<s(a)
F, = 8sign[E]cos cos EN cos — (20)

As before, we restrict ourselves to positive energies of inci-
dent electrons. It is also worth noting that the superscript
of the wave vector corresponds to the dispersion relation
used in calculations, whereas the overbar refers to 1zGR with
en=U.

The m-electron spectrum of polyacene is symmetric with
respect to the site energy. According to Eq. (16), the bands
of symmetric and antisymmetric states alternate. If, e.g., the
energy of incident electron lies within the lowest conduc-
tion band (symmetric states), then the step potential U = Ey.
makes the highest valence band open for electron transmis-
sion (antisymmetric states). However, this transmission is
forbidden by the selection rule.

Thus, despite its semimetallic spectrum, polyacene can
behave as a semiconducting polymer, like, e.g., polypara-
phenylene. It is the case where |Eg| < 1, as illustrated in
Fig. 4, the top row, where the transmission coefficient (i.e.,
the Ohmic conductance) is equal to zero within the interval
0 < U< 1(~2.5-3eV). This is in a striking contrast with
the transmission in 2aGR; see Fig. 2. However, for larger
| Ex|, as illustrated in Figs. 2 and 4 by all but the top panel
rows, the behavior of the transmission coefficient has many
common features. Moreover, for Ep > 2, the transmission
coefficient of 2aGR with /- interface is quite similar to the
transmission coefficient of 1zGR.

4 Conclusions To conclude, we have found the trans-
mission coefficients for armchair GRs of any width with dif-
ferent interfaces between the regions with zero and nonzero
site energies. For GRs with zigzag-shaped edges, we consid-
ered the case of transmission for N = 1, i.e., for polyacene.
The obtained explicit expressions allow us to compare the
transmission coefficients for two types of graphene nanorib-
bons: 2aGR and 1zGR. One of numerous implications of
this comparison is that a segment of 2aGR with a side stub
of 1zGR can be regarded as a three-terminal multifunctional
electronic device with easily adjustable characteristics.
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Figure 4 Through step transmission in 1zGR as a function of the
right-gate potential, 7' = T° 4 T*: T°(U) (dashed curves), T*(U)
(dotted curves), T°(U) + T*(U) (solid curves). The panels are la-
beled by values of the incident-electron energy set equal to Ey. The
top row represents a single-mode transmission of symmetric wave-
states when the first conduction band is partly filled (0 < Ep < 1),
the middle row reflects the two-mode transmission when both con-
duction bands are partly filled (1 < Er < 1.56), the bottom row
corresponds to single-mode transmission of antisymmetric wave-
states when the first conduction band is completely filled but the
second is filled only partly (1.56 < Ey < 2.56).
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