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Electric current in star junctions of molecular wires
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There is an enormous amount of literature on molecular-size circuits. However, no common regularities have
ever been reported regarding the embedding of Y-like or, more generally, starlike molecular junctions into
circuits. At the same time, connections of several wires are unavoidable components of any circuit. We show that
in star junctions of N identical molecular wires, which are equally coupled to the feeding leads, the branched
current is inversely proportional to N 2. It is also proved that, independently of molecular structure, the minimal
resistance that is associated with the terminal-to-terminal current through such junctions is equal to hN 2/8e2.
In words, it is divided by eight von Klitzing resistance times N 2. These predictions rule the performance of
quantum wire junctions and provide useful references for studies of complex multiterminal molecular devices.
The current-voltage dependence predicted for the circuits that contain a star junction of molecular wires is
compared with I-V characteristics of constructively similar junctions of conventional resistors, where the Ohm
law prescribes the proportionality of branched current to 1/N . The newly derived basic formulas include the
exact solution of Lippman-Schwinger equation for a general model of multiterminal, rigid (coherent) scatterer,
and also, a new and general trace formula for multiterminal transmission.
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I. INTRODUCTION

Soon after great discoveries of integer and fractional
quantum Hall effects,1,2 and the conductance quantization,3,4

it became commonly acknowledged that the combination of
two fundamental constants, e2/h, determines the maximal
per-state conductance and its inverse—the minimal per-state
resistance for any conductor.5 As a consequence, in a perfect
conductor possessing n current-carrying states within eU

energy interval, the electric potential difference U along
the conductor drives the current max{Iq} = (2e2n/h)U , n =
1,2, . . . . The current is thus quantized. The observation of
current quantization in experiments3,4 was due to varying the
number of current-carrying states in a constriction region of
2D degenerate electron gas.

Any contact of an ideal conductor with outer electrodes
causes electron scattering on the way in and out of the
conductor. The fundamental conclusion from the current-
quantization law is immediate: in a two-terminal setup, the
current through any conductor, or more generally, any rigid
atomic system with n unfilled electron states within interval
eU , cannot be larger than max{Iq}. The remaining question
is what maximal current should we expect, if the scatterer is
contacted by more than two probes?

Over decades the source-to-drain quantum transport has
been extensively investigated experimentally and theoretically.
In contrast, the physics of multiterminal quantum conductors
is still poorly understood. Not many studies are published
where the basic quantities of the Landauer-Büttiker approach,
the terminal-to-terminal transmission probabilities Tj ′j were
calculated numerically.6–11 To our knowledge, no analytical
solution of the scattering problem for a physically sound
model of multiterminal conductors has ever been reported until
recently.

In Ref. 12, we have derived the exact formal expression
for the reduced Green’s function of a scatterer coupled to
the external current sources and absorbers via feeding and

withdrawing leads, Fig. 1 (see a general description of the
model in Ref. 13). When used in an appropriate transmission
trace formula, that expression has allowed us to obtain an
analytical form that relates Tj ′j to the Green’s functions of
the decoupled scatterer and leads. The developed technique
has been used to demonstrate the scaling of transmission
probabilities by a factor 4/N 2, N—the number of scatterer
terminals.

Here, we discuss an important consequence of quoted result
that reveals the principal difference between the currents
governed by classic and quantum laws. We also consider a
hypothetical but realistic experimental situation of current-
voltage measurements to show that the branched current driven
by the potential difference U through a star junction of N
molecular wires is bounded from above as

Iq = (N − 1)U

N 2R∗
⇒ max{Iq} = 8e2

h

(N − 1)U

N 2
, (1)

provided that the wires within star junctions are identical and
equally coupled to the feeding leads. The absence of integer
n is explained by the transmitting ability of star junctions
in focus, which are described in the tight-binding approxi-
mation, see Eq. (13) and following from it Eqs. (14)–(16).
As known, this description, though limited, provides the
basic understanding of electronic properties of conjugated
and saturated hydrocarbons.14 However, since this work
contributes to the Landauer-Büttiker approach, which leaves
out of focus the effects of electron-electron interaction,15 a
wealth of associated phenomena is beyond the scope. Their
description, either approximate or based on postulated models,
presents an appealing challenge that makes the elaboration of
exact one-particle picture all the more important. From this
perspective, Eq. (1) provides an important generalization of the
well-known result for a two-terminal coherent conductor: Iq =
(2e/h)

∫ ∞
−∞ T12(E)[f2(E) − f1(E)]dE, max{Iq} = 2e2U/h,
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FIG. 1. (Color online) Formal description of scattering in an
N -terminal system in terms of reduced system Green’s function G
as a functional of reduced Green’s function of scatterer M, GM

and lead Green’s functions G(j ), j = 1,N ; j = 1,2 corresponds to
two-terminal conductor. The model shown generalizes derivations,16

where scatterer-lead coupling admits only pair-bond interaction and
assumes all Vj square matrices of equal dimension.

where fj = [e(E−EF−eUj )/kBT + 1]−1 stands for the Fermi-
Dirac distribution function.

II. BASICS

In accordance with the standard formulation, let the rigid
atomic system (henceforth molecule M) be in contact with N
semi-infinite but otherwise perfect leads at terminals j = 1,
2, . . . , N , which deliver and withdraw electrons to and from
scatterer M. Then, in the absence of external magnetic field,
the dc through-terminal currents are described by the set of N
equations,16

Ij =
N∑

j ′=1

R−1
j ′j (Uj − Uj ′ ), (2)

where Rj ′j = [(2e2/h)T̄j ′j ]−1 is a voltage dependent
resistance of current path j → j ′, e(Uj−Uj ′)T̄j ′j =∫ ∞
−∞ Tj ′j (E)[fj (E) − fj ′ (E)]dE, and Tj ′j (E) is the probabil-

ity that an electron entering lead j with kinetic energy E is
transmitted into lead j ′.

There are two conditions which are crucial for the validity
of the equation above. The first is that a stationary state
is maintained by external reservoirs of charge carriers. The
second is that all leads are independent of each other. These,
in combination with the assumption that electrons moving
through the scattering region can experience only elastic
scattering, define the model launched by Markus Büttiker.13

Equation (2) represents a generalization of his equations for
the nonlinear response.16

Thus defined, the electrical performance of any molecular
device is fully determined by N (N − 1)/2 transmission prob-
abilities. The corresponding scattering problem is sketched
in Fig. 1. As usual, the properties of the isolated scatterer
(described by Hamiltonian HM) and semi-infinite leads
(described by Hamiltonians H(j ), j = 1,N ) are supposed to
be known.

Calculations of Tj ′j can be performed with the use of Fisher-
Lee-Datta trace formula,16,17

Tj ′j = 4Tr[(Im�j ′)G(Im�j )G∗]. (3)

It suggests a scheme of direct calculations of transmission
probabilities that implies the necessity of numerical inversion
of matrix G = [EI − HM − ∑N

j=1 �j ]−1. The nonzero ele-
ments of self-energy matrix �j coincide with matrix elements
of Aj = VT

j G(j )Vj , G(j ) is j -lead Green’s function matrix,
and Vj enters the matrix of lead-molecule interaction operator
V = ∑N

j=1 Vj . There are manifold implementations of this
scheme. Yet, there is another path to choose.

We obtain the general exact solution of the scattering
problem illustrated in Fig. 1, see Appendix A. We use it to
derive a new trace formula (see Appendix B),

Tj ′j = 4Tr[(ImAj )Gj,j ′(ImAj ′ )G∗
j ′,j ],

j ′ = 1, . . . ,j − 1,j + 1, . . . ,N ≡ {j̃}. (4)

Equation (4) relates transmission probabilities Tj ′j to the
entries into the off-diagonal member,

G{j̃},j = ( G1,j . . . Gj−1,j Gj+1,j . . . GN ,j )T
, (5)

of the reduced Green’s function G = GM + GMAG, parti-
tioned as

G =
(Gj,j Gj,{j̃}

G{j̃},j G̃j

)
, A =

(
Aj 0
0 Ãj

)
. (6)

This matrix describes a part of the whole system: a scatterer
arbitrarily coupled to N semi-infinite leads, and refers ex-
clusively to those molecular atoms that are involved in the
interaction V.

In general, nonsquare matrices Gj ′,j obey a set of N−1
equations,12

[
I − G̃M

j Ãj − GM
{j̃},j Aj

(
I − GM

j,j Aj

)−1
GM

j,{j̃}Ãj

]
G{j̃},j

= GM
{j̃},j

(
I − Aj GM

j,j

)−1
, (7)

where the molecule Green’s function

GM =
(

GM
j,j GM

j,{j̃}
GM

{j̃},j G̃M
j

)
(8)

has the same partition as G, whereas Ãj is a block-diagonal
matrix structured as

Ãj =
⎛
⎝ A1 . . . 0

Aj ′ �=j

0 . . . AN

⎞
⎠ . (9)

Noteworthy, the commonly known and widely used formula
(3) was derived in Ref. 16, assuming Vj square matrices
of equal dimension. Moreover, each molecular atom was
supposed to interact with only one nearest-neighbor atom from
the respective lead. We are not aware of any more general
derivation of Eq. (3). Free of the limitations just mentioned,
our derivation of the alternative (4) is completely general,
allows further analytical analysis in many actual cases, and
suggests more efficient computation.

Finding Tj ′j with the usage of Eq. (7) for (N−1) Nj ′ × Nj

matrices Gj ′,j is, in general, a computational task. However,
if molecule M is coupled to each of the leads via a single
molecular atom, i.e., Aj = Aj , the components of GM

{j̃},j
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FIG. 2. (Color online) Ab initio optimized geometries of molec-
ular wire Y connections which, with a sufficient accuracy, can be re-
garded as all-symmetric Y junctions, and where oligomers of polyene
H(CH)nH, polyparathiophene H(SC4H2)nH, and polyparaphenylene
H(C6H4)nH play the role of semiconducting wires.14,18–20 Benzene
ring comes forward in the role of connector.

are just scalar functions of energy. Then, Eq. (7) can be
simplified:

{(
1 − AjG

M
j,j

)(
I − G̃M

j Ãj

)
−Aj

[
GM

j ′,j
][

GM
j,j ′

]
Ãj

}
[Gj ′,j ] = [

GM
j ′,j

]
, (10)

where [Gj ′,j ] and [GM
j ′,j ] are column vectors and [GM

j,j ′ ]
is a row vector. For all-symmetric junctions exemplified
in Figs. 2 and 3, this equation can be solved analytically
(see Appendix C) and ultimately leads to a closed explicit
expression of Tj ′j as a function of energy and Hamiltonian
parameters.

In what follows, we shall use this advantage to prove the
central physical result of this article: the branched current in
circuits incorporating star junctions Iq/(N−1) is inversely
proportional to the squared number of wires. Thereby, the
maximal conductance of terminal-to-terminal current path
equals four times the spin-degenerate conductance quantum
divided by the squared number of wires. The corresponding
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FIG. 3. (Color online) On the representation of transmission
through star junctions as a functional of matrix elements of connector,
wire, and lead Green’s functions. In this example, three tight-binding
chains (wires) are coupled to benzene ring (connector) and semi-
infinite leads. Vc−w and V are connector-wire and wire-lead coupling
constants. In Refs. 7 and 10, benzene carbon atoms indicated by
arrows and labeled as 1, 2, and 3 are treated as scatterer terminals.
Such a connection to leads does not satisfy the definition of all-
symmetric junctions. The functioning of the molecular device studied
in Refs. 7 and 10 is covered by Eqs. (D5)–(D7), but not by Eq. (12).

minimal resistance equals

Rj ′j = R∗N 2, min{R∗} = h

8e2
. (11)

III. ALL-SYMMETRIC SCATTERERS

We define the all-symmetric scatterers as such, where
GM

j,j = GM
d and GM

j ′ �=j,j = GM
nd . Then, the trace (4) is fac-

torized as (see Appendix A)

Tj ′j = 4(ImAj )(ImAj ′ )
(
GM

nd

)2∣∣QjQj ′
[
1 − GM

nd

∑N
j ′′=1 Aj ′′Q−1

j ′′
]∣∣2 , (12)

where Qj ≡ 1 − Aj (GM
d − GM

nd ).
If the junction-lead coupling is equal at all terminals, Aj =

V 2G1,1 ≡ A (see Fig. 3), all terminal-to-terminal transmission
probabilities are also equal, Tj ′j = TN , and take the form

TN = 4V 4(ImG1,1)2
(
GM

nd

)2∣∣1−A
(
GM

d −GM
nd

)∣∣2∣∣1−A
[
GM

d +(N−1)GM
nd

]∣∣2 . (13)

Furthermore, for this type of junctions, functional
TN (GM

d ,GM
nd ) can be transformed into a functional of matrix

elements of the connector, wire, and lead Green’s functions,
TN (Gc

d,G
c
nd,G

w
1,1,G

w
1,N ,G1,1).12 The required entries into the

functional were found earlier for a number of molecular wires
and connectors.14,18–20 Hence Eqs. (12) and (13) can be used
in many straightforward applications (see, e.g., Ref. 21).

The shape of transmission spectrum TN (E) is determined
by the microscopic structure of the connector, wires, leads, and
by the connector-wire and wire-lead interactions Vc−w and V .
This information is compressed in the energy dependence of
matrix elements GM

d (E) and GM
nd (E), and also, in the wire-lead

coupling parameter V and LDOS at the lead binding atom,
ρ(E) = −π−1ImG1,1(E). With the above expression at hand,
the proof of Eq. (1) is as follows: if not constant, the LDOS
is a function that has at least one maximum. In the vicinity
of the maximum, LDOS can be approximated by a constant,
ρ(Emax) = α/(πV 2), A = −iα, and ReG1,1 = 0 due to the
Kramers-Kronig relation. This limits the proof to small applied
voltages.

The next two steps are crucial for the proof. The first is to
express GM

d and GM
nd in terms of wire and connector Green’s

function matrix elements, which refer to the connector binding
atoms (as in Gc

d , Gc
nd ) and wire binding atoms from either the

side of connector or lead (as in Gw
1,1, Gw

N,N ), or from both sides
(as in Gw

1,N ). The corresponding expression has been obtained
in Ref. 12. The second step is to transform Eq. (13) into a
functional form:

TN = 4

N 2

1

1 + F 2
(
α,N ,Gc

d,G
c
nd,G

w
1,1,G

w
1,N

) , (14)

where zeros of F as a function of energy are given by solutions
of transcendent equation(
Gw

1,1 − G−G�

)[
Gw

1,1 − G�

(
G− + NGc

nd

)]
(
1 − Gw

1,1G
−)[

1 − Gw
1,1

(
G− + NGc

nd

)] = − 1

α2
, (15)

G− = Gc
d − Gc

nd , G� = (Gw
1,1)2 − (Gw

1,N )2. For simplicity,
we assume that Gw

1,1 = Gw
N,N and V = Vc−w = −t , where t
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(used as the energy unit) is the absolute value of the wire
nearest-neighbor hopping integral.

A dense polelike structure of the left-hand side of Eq. (15)
ensures that within the overlap of junction and lead energy
spectra, solutions to this equation always exist. These solutions
determine the energies at which TN = max{TN } = 4/N 2.
Equation (1) is thus proved. A number of examples that
illustrate the behavior of TN (E) for different star junctions
is given in Refs. 12 and 21. The calculations confirm that
max{TN } = 4/N 2.

Thus the resistance R∗ attains its minimal value,
min{R∗} = h/(8e2), only if the molecular circuit is appropri-
ately tuned. Otherwise, it is voltage-, material-, and wire-lead
coupling dependent. Specifically, it depends on the junction
electronic structure, i.e., which wires and wire connector form
the junction. It is also important to notice that Eq. (1) refers to
the case when N − 1 terminals have equal electric potentials.

Obviously, the general regularity discussed above is just a
reflection of that the transmission probability is proportional to
the squared amplitude of the system wave function at the wire-
lead interfaces. First, we have come to the result TN � 4/N 2

considering a simple problem of transmission in a star junction
of semi-infinite tight-binding chains via a carbon atom with
(counted from zero) site energy εC. In this case, Eq. (13) can
be transformed into21

TN (|E| � 2t)

= 4

N 2

t2−(E/2)2

t2−t2V −2
C (E−εC)

[
NE−(E − εC)t2V −2

C

]
/N 2

.

(16)

This equation will be discussed in Sec. IV.
The formulas presented above express the transmission

probability in terms of connector Green’s function, wire
Green’s function, and lead LDOS. In this context, it is
worth emphasizing that the widely used WBL approximation
A = −iα25 is applicable to the leads of any material and
geometry as long as the lead LDOS has no or weak dependence
on energy.

IV. GEDANKEN EXPERIMENT

The main experimentally sound result of this work, Eq. (1),
suggests a number of unambiguous tests for the experimental
verification of theoretical predictions. In particular, we propose
to compare the performance of molecular wire Y junction
with a constructively similar junction of conventional ohmic
resistors R, see Fig. 4.

At first, the two-terminal resistance const × h/(2e2) has to
be measured for, e.g., alkane chain (CH2)2N+1. The resistance
R can be chosen such as for a sequential connection of
two resistors R, Iq(N = 2) = Ic(N = 2), i.e., R = const ×
h/(4e2). Then, Ic and Iq can be measured as shown in Fig. 4.
The relation of currents Iq(N = 3) and Ic(N = 3), which are
registered at the same voltage, is predicted to be Ic/Iq = 3/2.
This is what tell us Eqs. (1) and (2) when the molecular
circuit is tuned to max{Iq}. The Y junction in our example can
consist of any identical molecular wires which are attached
to an all-symmetric connector that otherwise has an arbitrary

q 2
U4

9RIq

Ic 2
2U
3R

Ic

U

R R

U

I

R

AA

FIG. 4. (Color online) Circuits imbedding Y junctions of molec-
ular wires (on the left) and conventional ohmic resistors R (on the
right). If R is chosen as explained in the text, the currents measured
by the left and right ammeters are related as Ic/Iq = 3/2.

structure. Also, the condition of equal wire-lead coupling must
be fulfilled.

The experimental realization of such measurements is really
challenging. One of the expected difficulties is that a nonequal
probing of Y junctions violates Eq. (1).12,21 As a consequence,
the number of unknown parameters to be determined in inde-
pendent experiments increases. One of several ways to handle
this problem is to measure currents Iq and Ic applying different
voltages at all three terminals. This and other experimental
difficulties may question the practical implementation of
molecular dimension circuits but not the newly predicted law
and its formal background. Recent advances in creating electric
contacts with a single molecule,22–24 where the use of wire
chemical soldering24 seems especially promising, strongly
supports that an experimental verification of the predictions
of this work and related to it work21 might soon become the
reality.

V. COMPARISON WITH OTHER STUDIES

As already mentioned, the results of this investigation
provide useful references, not less for computational works.
As an example, let us have a look at a paper of Cardamone
et al.7 and its near duplicate.8 The calculations were claimed
to refer to a three-terminal system of a type sketched in Fig. 3.
The numbering of benzene carbon atoms is the same as in
Ref. 7. In the quoted paper, the discussion of underlying
physics is essentially based on an equation for an effective
two-terminal transmission T eff

12 = T12 + T13T32/(T13 + T32),
where (and only here in this paper) Tj ′j ≡ Tj ′j (EF ), EF is
the Fermi energy. This borrowed from Ref. 26 equations is
inconsistent with the exact expression for T12, Appendix D,
unless the coupling with the third lead is zero. The main
results, represented in Figs. 4 and 5 in Ref. 7, are obtained for
a negligible or zero coupling with the third lead. Specifically,
the authors considered a current I1 flowing between terminals
1 and 2. It was supposed to be controlled electrostatically. The
part of Hamiltonian describing electrostatic coupling contains
eighteen unknown capacitances plus an arbitrary value of
reference potential U2.7 By varying these parameters, one
can obtain a huge number of reasonable curves, which have
a similar, as well as totally different shapes, if compared
with I-V curves represented in Fig. 4 by Cardamone et al.
Not remarkably, similar I-V curves can be simulated by
exploiting Eqs. (2) and (B5). This can be done, for example, by
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prescribing proportionality of atom 3 site energy to the voltage
U3. We will not go further in this comparison because there is
no chance to give a preference to one set of capacitances and
disregard hundreds of other reasonable choices.

Another example concerns calculations of I-V charac-
teristics of constructively the same benzene-based Y junc-
tion that is described by the single-particle tight-binding
Hamiltonian.10 We note first that this purely computational
study was performed for the model that has an analytical
solution (D5)–(D7). For the model, where the scatterer is a
benzene ring coupled to semi-infinite tight-binding chains,
Tj ′j has an explicit analytical expression.12,21 Despite the
simplifications mentioned, the author arrived at erroneous I-V
curves. According to the exact solution of the problem, neither
of curves I2(V23) shown in Figs. 8 and 9 in Ref. 10 can take
the value I2(0) = 0.

Finally, our expression (16) can be compared with a result
for the star junction of four tight-binding chains, which was
obtained in a recent study29 and represented there in Sec. III
and Appendix D. We rewrite Eq. (D22) for the case Vi = 0,
φi = φ. Then, Eq. (D22) has to be equivalent to our Eq. (16) if
εC = 2t + V̄C . Using a chain of definitions from Appendix D
in Ref. 29 and preserving notations of quoted work (except
that V̄C stands for VC in [29]), one can get

Tij = 4 sin2 φ|E/t − 2 − e−iφ|−2

× |(E/t − V̄C/t − 4)(E/t − 2 − e−iφ) − 4|−2, (17)

where 2eiφ = E/t − 2 + i
√

4 − (E − 2t)2/t2. This form is
already suitable for the calculation of Tij (E/t), showing that
Tij (E/t) = TN=4(E/t). However, it is only half way to a much
more compact and easy readable form Eq. (16). Unlike Eq.
(17), equation (16) makes obvious the transmission symmetry
TN (E) = TN (−E) and the independence of TN of the sign
of t . These properties are not at all evident from Eq. (17). In
no way does Eq. (17) show the transmission dependence on
E for the case of arbitrary N , as Eq. (16) does. Furthermore,
by no means the fact that the exact energy dependence (17),
calculated for a single value of VC , is nearly coincident with
the CAP (complex absorbing potential) approximation can
seriously be considered as a proof of general CAP applicability.

VI. CONCLUDING REMARKS

Being exact under the clearly specified model assumptions,
the equations derived in this work provide the understanding
of electric behavior of multiterminal systems at the level
of single-particle Hamiltonian description. The only input
required is the system Hamiltonian and a set of voltages
applied to the terminals. Taking into account the approximate
character of DFT and equivalent numerical calculations in
the field of electron transport properties,31 which thus far
were almost exclusively addressed in two-terminal systems,
makes the presented benchmark of exact results all the more
important.

The above analysis of coherent transmission through all-
symmetric starlike junctions of molecular wires has been
performed on the basis of a pair of exact Eqs. (4) and (10),
where the latter can be applied to a restricted class of models.
Much more complex for the analytical as well as computational

analysis is the pair of equations (4) and (7). As is proved here,
it can be obtained either by starting from the Fisher-Lee-Datta
trace formula and using a special partition technique, or by the
direct solution of the Lippman-Schwinger equation. Both ways
require finding matrix elements of operator (EI − HM)−1. If
HM is not a single-particle operator, the validity of Eqs. (3) and
(4) is seriously questioned.15 Unfortunately, in some studies
of electron-electron interaction effects, the transmission trace
formula (3) is silently assumed to be applicable.
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APPENDIX A: GENERAL SOLUTION
OF SCATTERING PROBLEM

As it can be seen in Fig. 5, to describe a multiterminal elastic
scatterer, it is sufficient to consider an arbitrary molecular
complex probed at two terminals, source (j = s) and drain
(j = d). In this case, V is a block-diagonal matrix with
two matrices Vs and Vd on the diagonal. Correspondingly,
Aj=s = VT

s G(s)Vs , Ãj=d = Ad = VT
d G(d)Vd , and column vec-

tors GM
{j̃},j and G{j̃},j are simply [Nd × Ns] matrices GM

d,s and
Gd,s . As it comes out from these definitions, the generalization
of two-terminal formulas to the case of multiterminal system
is just another reading of matrices, column and row vectors in
the forthcoming equations.

Any solution of stationary Schrödinger equation, which is
subject to the boundary conditions for the scattering problem,
obeys the Lippman-Schwinger equation,30

� = �0 + I

EI − HM −
∑

a=s,d
H(a)

V�, (A1)

. .
 .

Nd

1

Nd

1

{ }srb { }rb
d{ }r

{r }s {r }d

}rs{ { }dr

Ns

. .
 .

. .
 .

. .
 .

zz

1 1

Ns

dettimsnarttnedicni

drainsource

FIG. 5. Transmission through two-terminal conductor: particle
incident from the left can be either reflected by molecule M
back to the source or transmitted to drain. Each of source (drain)
binding atoms 1, 2,. . . , N̄s (N̄d ) can interact with Ns (Nd ) molecular
binding atoms. Solving this problem and treating d terminal as N−1
independent ways out, Eqs. (4) and (7) in the main text can be obtained
by renaming indices, s → j and d → {j̃}, and by the replacement
Ad → Ãj .
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where the system wave function can be represented as � =
�M(rM) + ∑

a=s,d �(a)(ra), and �0 is the solution to equa-
tion H(s)�0 = E�0, which describes incident and reflected
waves at the given energy E = Einc and wave vector kinc in
the isolated lead s, �0 = � inc(Einc,kinc) + � refl(Einc, − kinc).

From now and on, we work with the basis set in the
coordinate representation |{ra}〉, |{rM}〉 divided into subspaces
ra ∈ {rb

a}, ra /∈ {rb
a} and rM ∈ {rMa }, rM /∈ {rMa }, a = s,d.

The upper scripts b and Ma indicate that atom with such
coordinates is involved into the molecule-lead interaction, see
Fig. 5. That is to say, N̄s atoms {rb

s } in lead s interact with
Ns molecular atoms {rMs }, and N̄d atoms {rb

d} from lead d

interact with Nd molecular atoms {rMd }.
For vectors

�0
({

rb
s

}) =
⎛
⎝ ψ0

1
. . .

ψ0
N̄s

⎞
⎠ , � (a)

({
rb
a

}) =
⎛
⎝ψ

(a)
1

. . .

ψ
(a)
N̄a

⎞
⎠ ,

�Ma (
{
rMa

}
) =

⎛
⎝ψ

Ma

1
. . .

ψ
Ma

Na

⎞
⎠ , (A2)

we can write the following finite set of equations,

�(s)
({

rb
s

}) = 
0
({

rb
s

}) + G(s)Vs�
Ms

({
rMs

})
,

�(d)({rb
d

}) = G(d)Vd�
Md

({
rMd

})
,

�Ms
({

rMs
}) = GM

s,sV
T
s �(s)

({
rb
s

}) + GM
s,dVT

d �(d)
({

rb
d

})
,

�Md
({

rMd
}) = GM

d,sV
T
s �(s)

({
rb
s

}) + GM
d,dVT

d �(d)
({

rb
d

})
,

(A3)

where

G(a) =
⎛
⎝Ga

1,1 Ga
1,2 . . . Ga

1,N̄a

. . . . . . . . . . . .

Ga
N̄a ,1

Ga
N̄a ,2

. . . Ga
N̄a ,N̄a

⎞
⎠ , (A4)

Va =
⎛
⎝V a

1,1 V a
1,2 . . . V a

1,Na

. . . . . . . . . . . .

V a
N̄a ,1

V a
N̄a ,2

. . . V a
N̄a ,Na

⎞
⎠ , (A5)

and matrices GM
s,s , GM

d,s = (GM
s,d )T, and GM

d,d comprise
the reduced matrix of molecule Green’s function GM =
(
GM

s,s GM
s,d

GM
d,s GM

d,d

). The latter is defined on the manifold of matrix

elements 〈r|[EI − HM]−1|r′〉, r,r′ ∈ {rMs ,rMd }.
Obviously, the solution to the above set of equations

determines all components of semi-infinite vectors � (s), � (d),
and finite vector �M. Finding this solution is just a matter of
matrix algebra that yields for �(d),

�(d)
({

rb
d

}) = G(d)VdGd,sVT
s �0

({
rb
s

})
, (A6)

where

Gd,s = [
I −GM

d,dAd − GM
d,sAs

(
I−GM

s,sAs

)−1
GM

s,dAd

]−1

× GM
d,s

(
I − AsGM

s,s

)−1
. (A7)

Notice that, (i) the permutation symmetry of Gd,s can be proved
for any Hermitian Hamiltonian, (ii) reading s as j , d as {j̃},
and Ad as Ãj gives Eq. (7) in the main text, (iii) for any real
system, the molecule-lead interaction satisfies the condition

of convergence of von Neuman series for the corresponding
inverse matrices.

APPENDIX B: TRANSMISSION TRACE FORMULA

Obtaining a compact expression for the transmission
coefficient,20

Tds(E) =
∑

r⊥
d , rd /∈{rb

d }(∂Ed/∂kd )� (d) · �(d) ∗∑
r⊥
s , rs /∈{rb

s }(∂Es/∂ks)� inc · � inc ∗ , (B1)

E = Es(ks=kinc) = Ed (kd ), with the use of solution (A6),
requires though cumbersome but straightforward algebra. It
yields

Tds(E) = 4
∑

r

〈r|(ImAs)Gs,d (ImAd )G∗
ds |r〉, (B2)

where r ∈ {rMs ,rMd } and matrix Gs,d is defined in Eq. (A7).
Equivalently,

Tds(E) = 4Tr[(ImAs)Gs,d (ImAd )G∗
d,s], (B3)

where the trace operation is defined on s and d subspaces of
binding molecular atoms.

To complete the framework of our methodology, we present
the formal expression of Gd,s for the case Ns = Nd . It reads

Gd,s = [(
I − AsGM

s,s

)(
GM

d,s

)−1(
I − GM

d,dAd

) − AsGM
s,dAd

]−1
,

(B4)

where Vs and Vd entering As and Ad can be square, as well as
nonsquare matrices. Unlike Eq. (A7), which can acquire the
form (B4), Eq. (7) in the main text remains unchanged even
under the simplifying assumption Nj = Nj ′∈{j̃}.

To further clarify the usage of the above equation, we note
that if Ns = Nd = 1, i.e., {rMa } = 1 and hence, Aa = Aa ,
Eqs. (B3) and (B4) can be combined into a closed analytical
expression:20,32

Tds(E)= 4(ImAs)(ImAd )
(
GM

1s ,1d

)2

∣∣(1 − AsG
M
1s ,1s

)(
1−AdG

M
1d ,1d

)−AsAd

(
GM

1s ,1d

)2∣∣2 ,

(B5)

where

Aa =
∑

r,r′∈{rb
a}

V a
1,rG

a
r,r′V

a
r′,1. (B6)

where notation {rb
a} refers to the coordinates of the manifold

of binding atoms in lead a = s and a = d.
Obtained for the first time in Ref. 32, formula (B5) gives

probably the most compact explicit expression of the trans-
mission coefficient for exactly solvable models described by
tight-binding Hamiltonians. The use of N-long tight-binding
chain to express GM

1s ,1s
= GM

1d ,1d
and GM

1s ,1d
, and the same

Hamiltonian for a semiinfinite chain to express As and Ad

immediately gives an expression of Tds(E) that is equivalent
to that pioneered by Mujica et al.33 A number of other models
of molecular wires has been specified by finding explicit
expressions for matrix elements GM

1s ,1d
, GM

1a ,1a
, and Ga

r,r′ ,
see e.g., Refs. 14,18–20. Modified for a substrate-STM-tip
arrangement of s and d contacts, Eq. (B5) has been used
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for the quantitative interpretation of I-V STM measurements
performed on amine-terminated PPP oligomers.34

Later, a number of equivalent derivations have been
published as, e.g., in Refs. 35–38. Some approximate schemes
for the calculation of Tds , such as the source-sink potential
approach,39–43 have also been developed and applied to the
models, where the transmission is described exactly by the
pair of Eqs. (B5) and (B6).

APPENDIX C: TRANSMISSION FOR
ALL-SYMMETRIC SCATTERERS

Equation (10) can be written as

L(j )[Gj ′,j ] = [
GM

j ′,j
]
, (C1)

where matrix L(j ) reads

Lj ′,j ′′ (j ) = (
1 − AjG

M
j,j

)(
δj ′,j ′′ − Aj ′′GM

j ′,j ′′
)

−AjAj ′′GM
j,j ′G

M
j ′′,j . (C2)

For all-symmetric scatterers, GM
j,j = GM

d , GM
j ′ �=j,j = GM

nd ,
matrix elements Lj ′,j ′ (j ) ≡ Ld

j ′ and Lj ′,j ′′ �=j ′ (j ) ≡ Lnd
j ′′ , j ′′ =

1, . . . ,j − 1,j + 1, . . . ,N ≡ {j̃}, take the form

Ld
j ′ = (

1 − AjG
M
d

)(
1 − Aj ′GM

d

) − AjAj ′
(
GM

nd

)2
,

Lnd
j ′′ = −Aj ′′GM

nd

(
1 − AjG

M
d

) − AjAj ′′
(
GM

nd

)2
. (C3)

In these notations, Eq. (C1) can be transformed into

Gj ′,j = (
Ld

j ′ − Lnd
j ′

)−1

⎛
⎝GM

nd −
∑
{j̃}

Lnd
j ′′ Gj ′′,j

⎞
⎠ . (C4)

Multiplying both sides of the above equation by Lnd
j ′ and

summing over j ′, we arrive at

Gj ′,j = GM
nd

Ld
j ′ − Lnd

j ′

⎡
⎣1 +

∑
{j̃}

Lnd
j ′′

(
Ld

j ′′ − Lnd
j ′′

)−1

⎤
⎦

−1

. (C5)

Now, by noting that

Ld
j ′ − Lnd

j ′ = Qj ′
(
1 − AjG

M
d

)
, (C6)

where Qj ≡ 1 − Aj (GM
d − GM

nd ), it is easy to prove the
equality

Gj ′,j = GM
nd Q−1

j ′

⎛
⎝1 − AjG

M
d +

∑
{j̃}

Lnd
j ′′ Q

−1
j ′′

⎞
⎠

−1

. (C7)

Equivalently,

Gj ′,j = GM
nd Q−1

j ′ Q−1
j

⎛
⎝1 − GM

nd

N∑
j ′′=1

Aj ′′Q−1
j ′′

⎞
⎠

−1

. (C8)

Substituting Eq. (C8) into Eq. (4), we arrive at Eq. (12).

APPENDIX D: EXPLICIT SOLUTION TO EQ. (7)
FOR THREE-TERMINAL MOLECULAR DEVICES

For N = 3 and j = 3, we have from Eq. (C2),

L1,1(3) = (
1 − A3G

M
3,3

)(
1 − A1G

M
1,1

) − A1A3
(
GM

1,3

)2
,

L2,2(3) = (
1 − A3G

M
3,3

)(
1 − A2G

M
2,2

) − A2A3
(
GM

2,3

)2
,

L1,2(3) = −A2
[(

1 − A3G
M
3,3

)
GM

1,2 + A3G
M
1,3G

M
2,3

]
,

L2,1(3) = A1L1,2(3)/A2. (D1)

For j = 1,

L3,3(1) = (
1 − A1G

M
1,1

)(
1 − A3G

M
3,3

) − A1A3
(
GM

1,3

)2
,

L2,2(1) = (
1 − A1G

M
1,1

)(
1 − A2G

M
2,2

) − A1A2
(
GM

1,2

)2
,

L3,2(1) = −A2
[(

1 − A1G
M
1,1

)
GM

2,3 + A1G
M
1,3G

M
1,2

]
,

L2,3(1) = A3L3,2(1)/A2. (D2)

Note that Eq. (D2) follows from Eq. (D1) under an interchange
of indices 1 and 3, 1 ↔ 3.

Similarly, for j = 2 (interchange 2 ↔ 1 in the last
equation),

L1,1(2) = (
1 − A2G

M
2,2

)(
1 − A1G

M
1,1

) − A1A2
(
GM

1,2

)2
,

L3,3(2) = (
1 − A2G

M
2,2

)(
1 − A3G

M
3,3

) − A2A3
(
GM

2,3

)2
,

L1,3(2) = −A3
[(

1 − A2G
M
2,2

)
GM

1,3 + A2G
M
1,2G

M
2,3

]
,

L3,1(2) = A1L1,3(2)/A3. (D3)

The use of Eqs. (D1)– (D3) in the solution to Eq. (C2) for
N = 3 and then in the transmission formula,

Tj ′j = 4ImAj ImAj ′ |Gj ′,j |2, (D4)

yields

T1,3 = 4ImA1ImA3

∣∣GM
1,3L2,2(3) − GM

2,3L1,2(3)
∣∣2∣∣L1,1(3)L2,2(3) − L1,2(3)L2,1(3)

∣∣2 ,

T2,3 = 4ImA2ImA3

∣∣GM
2,3L1,1(3) − GM

1,3L2,1(3)
∣∣2∣∣L1,1(3)L2,2(3) − L1,2(3)L2,1(3)

∣∣2 , (D5)

T3,1 = 4ImA1ImA3

∣∣GM
1,3L2,2(1) − GM

1,2L3,2(1)
∣∣2∣∣L3,3(1)L2,2(1) − L3,2(1)L2,3(1)

∣∣2 ,

T2,1 = 4ImA1ImA2

∣∣GM
1,2L3,3(1) − GM

1,3L2,3(1)
∣∣2∣∣L3,3(1)L2,2(1) − L3,2(1)L2,3(1)

∣∣2 , (D6)

and

T1,2 = 4ImA1ImA2

∣∣GM
1,2L3,3(2) − GM

2,3L1,3(2)
∣∣2∣∣L1,1(2)L3,3(2) − L1,3(2)L3,1(2)

∣∣2 ,

T3,2 = 4ImA2ImA3

∣∣GM
2,3L1,1(2) − GM

1,2L3,1(2)
∣∣2∣∣L1,1(2)L3,3(2) − L1,3(2)L3,1(2)

∣∣2 , (D7)

where Tj ′j (E) = Tjj ′(E) for any scatterer that is described by
a Hermitian Hamiltonian.
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