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We consider coherent transport in an arbitrary molecular

complex functioning as N -terminal conductor. The matrices

that enter Datta’s trace formula for the transmission function

T(E) are represented in terms of free-molecule Green’s function

matrix elements referring exclusively to molecular atoms

perturbed by the lead–molecule interaction. Explicit expres-

sions of transmission function are obtained for a commonly
used model of multiterminal molecular devices, where the

molecule is coupled with each lead via a single bond. In the

particular cases of connection of molecular wires via a single

atom and a benzene ring, this gives the analytical expressions of

T(E). Physical implications of the derived formulas are briefly

discussed.
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A considerable research effort is currently undertaken to
decrease the size of electronic devices. This explains rapid
development of molecular electronics, where molecules are
thought as functional units of electronic circuits. The natural
small size and exact reproduction of molecular components
promises a number of advantages in comparison with
conventional electronic devices. The experimental progress
of controlling the current through a single molecule is
assisted by intensive theoretical modeling of molecular
device performance [1, 2].

Most of works in the field have been focused on the
source-molecule-drain model. Electron transmission in
multiterminal molecular devices remains thus far a poorly
explored area. Recent studies of coherent current in three-
and four-terminal systems [3–7] (and references therein) are
based on Datta’s trace formula [8]
Tj0j ¼ 4Tr ImSj0 G ImSj G
�� �
: (1)
It determines the probability that carriers with energy E
entering the conductor from perfect semi-infinite lead j (see
Fig. 1), are transmitted to lead j0. According to the original
reading of Eq. (1), matrix G describes the whole conductor
with the account of conductor–lead interaction by means of
self-energy S ¼

P
j Sj. Both G and S have the same
dimensionality as the matrix of conductor Hamiltonian HM.
Calculations of N � ðN�1) probabilities Tj0j requires the
knowledge of equal number of submatrices Gj0 6¼j; j. The
manifold of these can be treated as submatrices GGj0 6¼j; j of
another matrix GG built up of matrix elements which refer
exclusively to conductor binding atoms. Its dimensionality
is thus equal to ½N�N�, N ¼

PN
j¼1 Nj. Usually, it is much

lower than the dimensionality of G.
In this communication, we present the derivation of

equations for submatrices GGj0 6¼j; j in terms of their counterpart
submatrices GM

j0 6¼j; j describing the isolated conductor and
matrices Aj ¼ VjG

ðjÞVj describing the conductor–lead
interaction. The obtained equations provide an alternative
starting point for calculations of transmission probabilities
Tj0j ¼ 4Tr ImAj0GGj0; j ImAj GG�
j; j0

� �
: (2)
It is shown that for a certain class of multiterminal
systems, this formula can be advanced to analytical results
which are specified for junctions of molecular wires.

1 Green’s function partitioning The way we
obtain equations for the set of submatrices GGj0 6¼j; j is in the
spirit of Löwdin’s partitioning technique [9, 10]. Let us
� 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 1 Multiterminal molecular conductor M coupled to
perfect semi-infinite leads via binding atoms Nj,l, j ¼ 1;N ,
l ¼ 1;Nj. Here, isolated conductor and leads are described by
Green’s functions GM and GðjÞ, respectively. Conductor perturbed
by the interaction with leads V ¼

P
j Vj can be described either by

G ¼ IE�HM�
P

j Sj

� ��1

as in Ref. [8] or by GG as suggested in

presentwork.Leftandrightinsetsshowabinitiooptimizedgeometries
(BP86/6-31G�) of two- and three-terminal molecular conductors.
denote the manifold of terminal indices j0 6¼ j as f~|g, so that
f~|g ¼ 1; . . . ; j�1; jþ 1; . . . ; N . Then, the reduced matrix
GM (supposed to be known) can be represented as
www
GM ¼

GM
j; j GM

j;1 . . . GM
j;N

GM
1; j GM

1;1 . . . GM
1;N

. . . . . . . . . . . .

GM
N ; j GM

N ; 1 . . . GM
N ;N

0BBBBB@

1CCCCCA
�

GM
j; j GM

j; f~|g

GM
f~|g; j

~G
M

 !
; (3)� �
and similarly, the unknown matrix is GG ¼
GGj; j GGj; f~|g

GGf~|g; j eGG .

As seen, these matrices are partitioned so that the first and
second diagonal members are ½Nj � Nj� and ½ðN�NjÞ�
ðN�NjÞ� matrices, whereas the off-diagonal members are
column and row vectors consisting of ½Nj � Nj0 � matrices.
GG and GM are interrelated by the Dyson equation
GG ¼ GM þ GM AGG; (4)� � A1 . . . 0
0 1
where A ¼ Aj 0

0 ~A
and ~A ¼ Aj0 6¼j

0 . . . AN

@ A.
Solving two equations for the first column members of
matrix GG, we obtain
I�~G
M~A�GM

f~|g; jAj I�GM
j; jAj

� ��1

GM
j; f~|g

~A

� �
GGf~|g; j

¼ GM
f~|g; j I�AjG

M
j; j

� ��1

: (5)
Equation (5) determines components of column vector
GGf~|g; j which enter the transmission formula (2). One can go
.pss-b.com
the other way round and obtain an analogous equation for
row vector GGj; f~|g. It can be proved that GGj0; j ¼ GGT

j; j0 . Hence,
the choice of fixed terminal index as well as the use of either
above equation or its analog for the row vector is just the
matter of convenience.

In most of studies, the molecular conductor is supposed
to be coupled to each lead via a single atom (in Fig. 1,
Nj;l ! Nj). Then, all entries in matrices GM and A are
scalars. For such models, Eq. (5) can be simplified to [11]
X

j00 6¼j

Mj0; j00Gj00; j ¼ GM
j0; j; (6)
where Mj0; j00 ¼ 1� AjG
M
Nj;Nj

� �
dj0; j00 � Aj00G

M
Nj0 ;Nj00

� �
�AjAj00G

M
Nj;Nj0

GM
Nj00 ;Nj

.

In general, solving Eq. (6) is a computational problem.
However, an exception is presented by symmetric molecular

systems, where matrix elements GM
Nj;Nj0 6¼j

¼ GM
nd and

GM
Nj;Nj

¼ GM
d do not depend on j. This model, which is

relevant to junctions of molecular wires exemplified in
Fig. 1, admits obtaining an explicit solution without any
restriction on the coupling functions Aj. It reads
Gj0; j ¼
GM

nd

QjQj0 1�GM
nd

PN
j00¼1 Aj00Q

�1
j00

h i ; (7)
where Qj � 1�Aj G
M
d �GM

nd

	 

. Some of applications of this

equation are discussed next.

2 Molecular Green’s function for symmetric
junctions of molecular wires Junctions of molecular
wires can be thought as a set of chain-like molecules coupled
to a ‘‘connector’’. In Fig. 1, the connector is represented by
benzene ring. It can also be an annulene ring (like
cyclooctadecanonaene) or more complex molecule. The
simplest connector is realized by a carbon atom or
heteroatom.

The Green’s function of molecular wire junction can be
expressed in terms of wire Green’s functions Gwj and
connector Green’s function Gc by solving the Dyson
equation
GM
n; n0 ¼ G0

n; n0�
X
n00; n000

G0
n; n00Vn00; n000G

M
n000; n0 ; (8)
where indices of matrix elements run over molecular atoms;
G0

n; n0 ¼ G
wj

n; n0 , if n, n0 belong to wire j, or G0
n;n0 ¼ Gc

n;n0 , if n,
n0 belong to the connector; otherwise G0

n; n0 ¼ 0. Labeling
the binding atoms within wire/connector by 1j from the side
of wire and {x} from the side of connector (in Fig. 1,
x-atoms are 1,4 and 1,3,5), the wire–connector interaction can
be represented as Vn; n0 ¼

P
j V jðdn;fxgdn0; 1j þ dn0; fxgdn; 1jÞ,

where V j denotes the wire-connector hopping integral.
For symmetric connectors, all diagonal and off-diagonal

matrix elements which appear in Eq. (8) are equal,
Gc

x; x ¼ Gc
d, Gx;x0 ¼ Gc

nd. Then, the solution for GM
Nj;Nj

and
� 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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GM
Nj;Nj0

takes the form
GM
N

GM
n

GM
d

G

G

(

TN

� 20
j;Nj0
¼dj; j0 G

wj

Nj;Nj
þ Gc

d�Gc
nd

	 

ðV jG

wj

1j;Nj
Þ2D�1

j

h i
þ Gc

nd

V jV j0G
wj

1j;Nj
G

wj0

1j0;Nj0

DjDj0 1�Gc
nd

PN
j00¼1

V2
j00G

wj00

1j00; 1j00D
�1
j00

 ! ;
(9)
where Dj ¼ 1� Gc
d�Gc

nd

	 

V2
j G

wj
1j; 1j: For junctions of iden-

tical wires, D ¼ 1� Gc
d�Gc

nd

	 

V2Gw

1;1, and
TN
d ¼ Gc
nd VGw

1;N

� �2

D�NV2Gc
ndG

w
1; 1

� ��1

D�1;

¼ GM
nd þ Gw

N;N þ Gc
d�Gc

nd

	 

VGw

1;N

� �2

D�1:

(10)
T

Green’s functions of many chain-like molecules (linear
oligomers) have an analytical expression in the wave-vector
representation. In particular, for the commonly used model
of N-site tight-binding chain, the required matrix elements
are [12]
N

w
1; 1

w
1;N

)
¼ � 1

bsin ½ðN þ 1Þk�

sin ðNkÞ

sin k

( )
; (11)
T2 �

where k is related to energy as E ¼ �2bcosk.

For the benzene connector, the required matrix elements
are given by Gc

d ¼ EðE2�3b2Þ=Dc, G
c
nd ¼ Eb2=Dc (binding

sites 1,3), and Gc
nd ¼ �2b3=Dc (binding sites 1,4),

Dc ¼ ðE2�b2ÞðE2�4b2Þ. Zero site energy and the same
hopping integral b are assumed for wires and benzene
connector. For a single-atom connector with the site energy
e, Gc

d ¼ Gc
nd ¼ ðE�eÞ�1

. Taken together with Eqs. (10) and
(11), these expressions complete the definition of molecular
Green’s function for symmetric junctions of identical wires.

Note that the above derivations assume the wave-like
motion of charge carriers. The dephasing effects are thus
disregarded but they can be included into the presented
scheme either by a phenomenological re-definition of self-
energy [13] or by adding an extra term of ‘‘non-coherent’’
transmission in Eq. (1) [14].

3 Transmission through NN -wire junctions
Consider first the transmission through junctions formed
by single-atom connectors. Let all but one coupling
functions be equal, Aj 6¼1¼A. The chain of substitutions
GM ! Gj;1 ! Tj1 � TN and long but straightforward
algebra lead to the following expression
¼ 4AIAI
1 sin4k

��� sin½ðN þ 1Þk� þ A1 sin ðNkÞf g:

� NFN�1 þ ðE�eÞFNV�2
� �

þ A�A1ð Þ sin2 k
����2

;

(12)
where FN ¼ sin½ðN þ 1Þk� þ AsinðNkÞ, and all energy
quantities are in units of b without change in notations.
11 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
To expose the transmission dependence on the wire–lead
coupling strength and number of wires, it is instructive to use
the WBL approximation A ¼ �ia, A1 ¼ �ia1 [15].
The physical meaning of coupling parameters can be under-
stood from its definition for one-dimensional leads,
aj ¼ V2

j =ðbb0
jÞ, where Vj and b0j are, respectively, the wire–

lead and in-lead hopping integrals. The analysis of Eq. (12)
shows that the transmission is controlled by combined coupling
parameters aa1 � exp ð2gÞ and a=a1 � expð2nÞ. The former
can be regarded as a characteristic of coupling strength, the
latter characterizes the coupling asymmetry. In terms of these
quantities and under restrictions N010, E90:5, V ¼ 1, and
e¼ 0, the WBL version of Eq. (12) is accurately reproduced by
� 4

N 2

�
sin2ð2NkÞ cosh2 g

þ 2 sin2ðNkÞcoshn�enþ 2N�1
sinhn

h i2

�1

;

(13)
and following from it for a¼a1,
� 4

N 2
1 þ sinh2 g sin2ð2NkÞ
� ��1 ¼ 4

N 2
T2; (14)
and for N ¼ 2,
cosh2 nþ ðsinh2 g� sinh2 nÞ sin2 ð2NkÞ
� ��1

: (15)
Factor 1=N 2
in Eq. (14) is worth noting. For the given

model of two-wire junction (that is for a (2Nþ 1)-long wire
connected to the source and drain), the current driven by
constant potential difference U can be represented in the
form of Ohm’s law I2 ¼ U=Rq, where the quantum
resistance is defined as R�1

q ¼ ð2e=hÞ
R1
�1 T2ðEÞf ðEÞdE=U

with an appropriate weight factor f [8]. In classic description,
the current through two conventional resistors R connected
in series equals U/2R. If instead of one N-long wire (or
resistor R), the junction is continued by N�1 wires
(resistors) (and each is connected to its drain at the same
potential), the drain current IN ¼ 4U=N 2

Rq, according to
Eq. (14), but it equals U=NR, according to the Ohm law and
conservation of current. This comparison shows that for
junctions of quantum and conventional wires, the drain
current is governed by qualitatively different dependencies
on N ; specifically, by � 1=N 2

and � 1=N . However, for
the number of wires from three to five, both descriptions of
current branching give quantitatively close results in terms of
respective resistances.

Some peculiar features of the transmission dependence on
coupling parameters are illustrated in Fig. 2. For symmetric
coupling, a1¼a (or n¼ 0), maximal transmission probability
Tmax
N ¼ 4=N 2

is independent of coupling strength. But it can
be larger or smaller than this if a1 6¼a. The coupling
asymmetry also alters the overall spectrum shape. In both
cases of symmetric and asymmetric coupling, an increase of g
results in a counterintuitive effect. The left panel in Fig. 2
(symmetric coupling) shows that the resonance structure
becomes more pronounced (in contrast to often stated
www.pss-b.com
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Figure 2 (online color at: www.pss-b.com) Normalized transmis-
sion spectrum TNN 2

=4 (N ¼ 3, N¼ 10) calculated in the WBL
approximation: (12) solid lines, (13) dashed lines. Panel to the left
represents symmetric coupling with a¼ 2 (in black) and a¼ 8 (in
red). Panel to the right represents asymmetric coupling witha¼ 1/2,
a1¼ 2 (in black) and a¼ 1/2, a1¼ 8 (in red).
broadening of transmission resonances). In the right panel
(asymmetric coupling), we see instead that the transmission is
suppressed by increase of g (at the expense ofa1 larger value).

The extremely sharp resonance which is seen on the right
hand side of presented spectra attracts attention. It originates
from the bound state which is characteristic for junctions
with a single-atom connector [11]. As shown below, the
transmission spectrum of benzene based junctions possesses
similar feature.

In the interests of simplicity, we restrict ourselves by the
consideration of identical coupling in which case Eqs. (2)
and (7) can be combined into
Figu
V ¼
Pan
a¼
repr
thre

www
TN ¼ 4ðAI Þ2 GM
nd

	 
2
1�AðGM

d �GM
nd Þ

�� ���2

� 1�A GM
d þ ðN�1ÞGM

nd

� ��� ���2
:

(16)
The transmission spectra described by the above
equation are represented in Fig. 3. They show the presence
of delta-like peaks which have not appeared in previous
studies of this type of junctions. The bound state nature of
these resonances is proven by their spectral position.

Indeed, according to Eq. (10), the junction spectrum is
determined by equationsD¼0 andDN �D�NV2Gc

ndG
w
1;1¼0.

We have estimated solutions to these equations, taking into
account that for E> 2, k ¼ pþ id and hence, we have
Gw

1;N � ð�1ÞNþ1e�Nd, Gw
1;1 � e�d, if N05. Exploiting these
re 3 Normalized transmission spectrum TNN 2
=4 (N¼ 5,

1) calculated from Eq. (16) in the WBL approximation.
el to the left represents two-wire junction, connection 1,4;
1 (solid line) and a¼ 1/2 (dashed line). Panel to the right
esents two-wire junction, connection 1,3 (solid line) and
e-wire junction, connection 1,3,5 (dashed line); a¼ 1.

.pss-b.com
expressions and (as Gc
nd) benzene Green’s function in the

secular equations, it is easy to prove the following. For two-
terminal junctions with wires coupled to atoms 1,4, it is
equationD ¼ 0 or equivalently, 2sinhd ¼ e�d that has the root
ed ¼ ð1 þ

ffiffiffi
5

p
Þ=2. It gives the bound state energyE¼ 2.236, in

perfect agreement with the position of out-of-band peak in
Fig. 3 (left). For two-terminal junction with wires coupled
to atoms 1,3 and for three-terminal junctions with wires
coupled to atoms 1,3,5, only equation DN ¼ 0 or
2e3d sinh2 d=coshd ¼ V2N has appropriate roots. As an
example, assuming that V ¼ 1 we obtain E¼ 2.244 for
N ¼ 2 and E¼ 2.309 for N ¼ 3, also in a very good
agreement with the position of corresponding resonances in
Fig. 3 (right).

In conclusion, the exact explicit expression of transmission
coefficient is derived for symmetric junctions of molecular
wires. It describes the dependence of coherent transport on
the wire–lead coupling (specified in terms of Hamiltonian
parameters) and the number of wires N . The transmission
spectrum is shown to be scaled by factor 4=N 2

that determines
the maximal probability of transmission through junctions
coupled to external leads identically. The coupling asymmetry
can increase or decrease this value. It is also shown that the
bound states, which appear due to wire coupling via a single
atomor molecular connector, give rise to resonances above and
below the wire band edges. These inherent properties of
multiterminal molecular conductors are to be studied further in
the context of specific experimental realizations.
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