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Three principal results concerning graphene-based wires and

their ambipolar behavior are presented. First, it is the exact

expression of the transmission coefficient for armchair

graphene wires described by the tight-binding Hamiltonian

with the step-like change U of site energies. Second, the exact

relation between the energy of incident electrons or holes and
potential U at which there is no backscattering for the given

mode of the transverse motion. Third, the range of relevance of

Klein’s formula describing the motion of relativistic particles in

the same potential profile is established. Analysis of newly

derived results shows that physics of interband transitions at

constant energy in graphene wires is richer than it was believed.
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1 Introduction In the rapidly growing literature on
graphene electronic properties, ‘‘Klein tunneling’’ is a
frequently used term. It refers to the formula obtained by
Oskar Klein 80 years ago [1] to describe the free motion of
relativistic particles, when the potential energy changes in a
step-like manner, as shown in Fig. 1a (see also Ref. [2] for
related references). The applicability of the Dirac equation to
the description of graphene has a very solid theoretical
background that has been used to investigate various aspects
of graphene physics [3, 4], in particular, the coherent
transport of charge carriers in graphene structures [5–8]. It is
well known that this approach is valid if the conditions of
long wave approximation and closeness to the neutrality
point are fulfilled. These requirements are not always met.
For example, nanowide graphene ribbons and large gate
voltages cannot be described in the framework of ‘‘relati-
vistic’’ approximation.

This communication is focused on the transmission of
electrons or holes through the step potential of arbitrary
magnitude U in an armchair graphene ribbon (aGR) of
arbitrary width. The analysis is based on the tight-binding
model that reasonably describes p electron subsystem
without the above-mentioned restrictions. For all possible
interband transitions at constant energy, which are illustrated
in Fig. 1b, the exact expression of transmission probability is
obtained in an explicit form. The Klein formula is re-derived
directly from exact model results for wide aGRs and a limited
range of step potential and tunneling energies. The possi-
bility of transmission without backscattering is thoroughly
examined. It is shown that the origin and manifestations of
this effect in narrow aGRs are essentially different from
predictions made for infinite systems [5–8].

2 Transmission coefficient The transmission coef-
ficient T can be obtained by finding the solution of Lippman–
Schwinger equation adopted for the given model [9]. With
the reference to notations explained in Fig. 1, the wave
function amplitudes to the left (L) and right (R) from the step,
can be represented as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðN þ 1Þ

p
sinðmjjÞcjLðRÞ

n;a , a¼ l, r,
jj ¼ pj=ðN þ 1Þ, j¼ 1,2, . . ., N . Due to model simplicity,
there is no j! j0 transitions so that the problem reduces to
calculation of sum T ¼

PN
j¼1 Tj, where
Tj ¼
vj
vj

c
jR
n;l

��� ���2; (1)
� 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



gjll

Tj ¼

2550 L. Malysheva et al.: Interband transmission in armchair graphene ribbons
p

h
ys

ic
a ssp st

at
u

s

so
lid

i b

Figure 1 (online color at: www.pss-b.com) (a) Energy diagram of
through-step transmission in armchair graphene ribbon (aGR)
sketched in gray (U¼ 0) and green (U 6¼ 0) but ideal otherwise. It
coincides with the diagram of Klein tunneling [1, 2], if on both sides
ofpotential stepU, energiesofexemplified transitionsareclose to the
jthmodebandgap,seeEq.(3).Bandgapenergy2mj isspecifiedinEq.
(9). (b) Full band spectrum (3) and possible interband transitions at
different energies of incident electron (E> 0) and step potentials U
for N ¼ 5-wide aGR. Each of j bands, j¼ 1,2, . . ., 5, is subdivided
into two valence (�E�

j ) and two conduction (E�
j ) subbands. Labels

indicate transitions involving either the same subbands, e.g., a
corresponds toE�

j ! E
�
j > 0 and b� toE�

j ! E
�
j < 0, or different

subbands,e.g.,E�
j ! E

þ
j > 0(e)andE�

j ! E
þ
j < 0( f).Transitions

are shown for the one of nonzero gap modes j¼ 3. The same
classification is used in the text for the zero gap mode j�, here, j�¼ 4.
vj (vj) is the group velocity of incident (transmitted) wave,
and the wavefuction coefficient c

jR
n;l can easily be found

from equations:
� 20
cjL
nr ¼ c0

nrðk�j Þ þ GjL
nr;1rðEÞc

jR
1l ;

c
jR
nl ¼ GjR

nl;1lðEÞc
jL
1r:

(2)
In this calculation scheme, c0
nrðk�j Þ ¼ A�

j e
ik�j nþ c:c:;

jA�
j j

2 ¼ 1, represents the solution of the scattering problem
for the semi-infinite aGR terminated by r (or l) sites. The
dispersion relations E ¼ E�

j ðk�j Þ and E
�
j ðk�j Þ ¼ E � U with

the wave vectors of incident and transmitted waves (k�j and
k�j ) in units of a�1, are given by Ref. [10]:
E�
j ðk

�
j Þ

h i2

¼ 1 � aj

� �2�4aj sin
2ðk�j =4Þ;

0 � k�j � p;
ð3Þ
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where aj � 2 cosðjj=2Þ, and the absolute value of hopping
integral t is used as an energy unit. Notation:
GjL
n;a;1;r �

X
m;m0

sinðmjjÞ sinðm0jjÞGL
m;n;a;m0;1;r
refers to the (multiplied by t) Green’s function of semi-
infinite aGR terminated by the r or l sites [11]:
GjL
n;r;1;rðEÞ ¼ GjR

n;l;1;lðEÞ ¼
gjll e

ik�j ðn�1Þ

1 � gjlr e
ik�j

; (4)
� �

¼

E E2 � 1 � a2
j

E2 � a2
j

� �2

�E2

; gjlr ¼
a2
j

E2 � a2
j

� �2

�E2

: (5)
The use of these definitions in Eqs. (1) and (2) yields:
Tj ¼
4 ImGjL

1;r;1;rðEÞ ImGjR
1;l;1;lðEÞ

1 � GjL
1;r;1;rðEÞG

jR
1;l;1;lðEÞ

��� ���2 : (6)
Formally, this is the transmission coefficient of a contact
via a single hop t between two leads described by Green’s
functions GjL and GjR [9]. In the particular case N ¼ j ¼ 1,
Eq. (4) represents the Green’s function of semi-infinite
polyparaphenylene chain M-M-. . ., M¼C6H4.

For the purposes of further discussion, Eq. (6) can be
transformed as follows:
4a2
j sinðk�j =2Þ sinðk�j =2Þ

4a2
j sin2½ðk�j þ ð�Þk�j Þ=4� � U2

��� ��� ; E�
j ! Ej

�;

4a2
j sinðk�j =2Þ sinðk�j =2Þ

4a2
j cos2½ðk�j þ ð�Þk�j Þ=4� � U2

��� ��� ; E�
j ! Ej

�
;

8>>>>>>><>>>>>>>:
(7)
where the upper (lower) sign in (�) and ð�Þ refers to E > 0
(E < 0). This is equivalent to the Pauli’s sign rule noted in
Klein’s paper [1]. It provides positiveness of group velocities
of incident and transmitted waves. In the Green’s function
language, this is equivalent to the same sign of ImGjL

1;r;1;rðEÞ
and ImGjL

1;r;1;rðEÞ at any value of step potential. To pay
attention, notation of these signs have a totally different
meaning as compared to � labeling of dispersion relations
E�
j ðk�j Þ and E

�
j ðk�j Þ that comes from Eq. (3). In Eq. (7), the

energy of incident wave E is assumed positive. From the
band spectrum symmetry, Tj(E> 0, U) ¼ Tj(E< 0, �U).

The first line in Eq. (7) defines the transmission
coefficient from ‘‘minus’’ to ‘‘minus’’ and from ‘‘plus’’ to
‘‘plus’’ subband, i.e., it refers to transitions between
bands having the same dispersion. In Fig. 1b, these
transitions are labeled as a� d. The corresponding
expressions of Tj represent a detailed form of the result
obtained by the mode-matching technique [12]. The
www.pss-b.com
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second line in Eq. (7), which defines the transmission
coefficient from � to þ and from þ to � subband (e� h
labels in Fig. 1b), gives an essentially different expression
of Tj.

Thus, for each of interband transitions illustrated in
Fig. 1b, the transmission coefficient has a specific expression
in terms of wave vectors of respective subbands, the mode
parameter aj, and potential U. The tunneling energy enters
implicitly via E ¼ E�

j ðk�j Þ.

2.1 Long-wave limit Equation (7) is valid for any
value of N and U, and (with small modifications [13])
it can be used to examine the through-step transmission in
zigzag carbon tubes of arbitrary diameter. As mentioned,
the long wave limit is interesting for establishing the
relationship between the tight-binding and Klein descriptions
of transitions E�

j ! E
�
j > 0 (a) and E�

j ! E
�
j < 0 (b).

The fulfillment of conditions jE � jaj � 1jj � 1 and
jUj � 1 restricts consideration to small wave vectors,
k�j ; k

�
j � 1, when the dependence E�

j ðk�j Þ becomes similar
to the energy–impulse relation of massless ( j¼ j�) or
massive ( j 6¼ j�) Dirac fermions. Then, the upper line of
Eq. (7) takes the form:
Tj

www
6¼j� ¼
2ajk

�
j k

�
j

signðE�
j Þk�j k�j þ 4a�1

j E�
j E

�
j þ Qj

��� ��� ;
Qj ¼

aj � 1

2
½k�j þ signðE�

j Þk�j �
2 � 4

ðaj � 1Þ2

aj
;

Tj� ¼ 1 � 1 ½k�j� � signðE�
j� Þk

�
j� �

2:

(8)
64

These equations (which are still valid for aGRs of
arbitrary width N ) are noticeably distinct from Klein’s
formula showing that formal similarity of energy–impulse
relations is not the only condition of relativistic-like behavior
of charge carriers in aGR.

For wide ribbons and low energies satisfying E � 1, the
aGR spectrum reads [13]:
E�
n ðk�n Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

n þ ðk�n =2Þ2
q

; n ¼ j� ej ¼ 0;�1; :::;

mn ¼

ffiffiffi
3

p

2

pjnj
N 1 þ pn

4
ffiffiffi
3

p
N

� �
; ej ¼ j�;ffiffiffi

3
p

2

pjn� ðþÞ1=3j
N ; ej ¼ j�<ðj�>Þ;

8>>><>>>:
(9)
where jnj � N , and ej denotes the lowest-energy band which
has zero gap, when j� ¼ 2ðN þ 1Þ=3 is an integer, and it has
nonzero gap, when either j�< ¼ ð2N þ 1Þ=3 or
j�> ¼ ð2N þ 3Þ=3 is an integer. If and only if Eq. (9)
works well, deviations of aj from unity give higher-
order corrections to Eq. (8) and can be disregarded. This
makes the expression of Tj6¼j� totally equivalent to Klein’s
.pss-b.com
formula:
Tn ¼
4Kn

ð1 þ KnÞ2
; Kn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE þ mnÞðE � mnÞ
ðE � mnÞðE þ mnÞ

s
; (10)
which form is borrowed from [2] because it is convenient for
comparison [14].

It is seen that in this approximation, Tj� ¼ Tn¼0 ¼ 1, but
for all other modesTv< 1 at any nonzero potential. However,
the tight-binding model predicts an essentially different
behavior of mode transmission, particularly, for narrow
aGRs. This is illustrated in Fig. 2 and will be discussed
next.

2.2 Transmission without backscattering,
Tj¼ 1 The consistency of each expression that follows from
Eq. (7) with the unit mode transmission, Tj ¼ 1, at U 6¼ 0, has
been examined in detail. This analysis leads to the conclusion
that, except j�-mode transmission, the absence of back-
scattering is realized for certain transitions at certain
magnitude of step potential U ¼ Ur

j related to the energy
of transmitted particle as:
Ur
j6¼j� ¼ E þ

a2
j � 1

E
: (11)
Some immediate conclusions from this equation regard-
ing the magnitude of mode parameter (0<aj< 2) and the
position of unit transmission TjðUr

j Þ ¼ 1 with respect to the
region of zero transmission, TjðUÞ ¼ 0 at E � j1 � ajj �
U � E þ j1 � ajj, i.e., a deep in the dependence Tj(U), are
noteworthy.

For all modes withaj> 1 (for brevity, j< modes), the unit
transmission is above the deep, U > E þ j1 � ajj (to
the right in the picture), and can involve transitions
E�
j ! E

�
j < 0 (b and f) or Eþ

j ! E
�
j < 0 (h). In contrast,

the conditionaj < 1 places the unit transmission of j> modes
bellow the deep, and associated transitions are
only E�

j ! E
�
j > 0 (a and e) or Eþ

j ! E
�
j > 0 (g). As a

consequence, for modes divided by this criterion (for
example, it concerns j

� þ 1 and j
� þ 1 as well as j�< and j�>

modes) dependencies Tj<ðUÞ and Tj>ðUÞ may have a
strikingly different appearance as illustrated in Fig. 2.

These results suggest that in an appropriately designed
experiment, semiconducting aGRs having ej ¼ j�< can be
distinguished from those, where ej ¼ j�>. To achieve this, at
least two requirements should be met. First, the possibility to
control the regimes of single- and two-mode current. Second,
the access to nanowide ribbons because tunneling energies
are restricted to small values by experimental conditions. At
E � 1, the increase of ribbon width wipes off the difference
between transmission of low-energy modes j< and j>.
Therefore, manifestation of our predictions in measurements
of source-to-drain current under varied gate voltage (playing
the role of step potential) can be expected only for narrow
ribbons with N 	 20 (about 5 nm) or less.

The substantially different behavior of Tj<ðUÞ and
Tj>ðUÞ is the direct consequence of that the j< mode unit
� 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 2 (online color at: www.pss-b.com) Through-step transmission coefficient Tj(U) of N ¼ 11 � wide armchair graphene ribbon.
Calculationsaccording toEq. (7)are representedbyblacksolid (T7,T9)anddashed(Tj�¼8) lines.Approximation (10) forT7 andT9 is shownby
reddashed-dottedlines.ThickverticalbarsonUaxesindicate tunnelingenergies(fromleft toright):E � jaj � 1j (near thebottomofsubband

E�
j ), jaj � 1j < E <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ja2

j � 1j
q

, E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ja2

j � 1j
q

, and E � aj þ 1 (near the top of subband Eþ
j ).
transmission must always be to the right of deeps in Fig. 2,
whereas for j> modes, it is always placed to the left. For the
same reason, the transmission spectrum of polyparapheny-
lene (not shown but hardly distinguishable from Tj��1¼7 in
Fig. 2), where the mode parameter takes the value of
a1 ¼

ffiffiffi
2

p
> 1, is very similar to Tj<ðUÞ of narrow aGRs.

Thus, the visial row Tj��1 in Fig. 2 appears to be intimately
related to electron transmitting properties of polyparaphe-
nylene. The origin of distinctive shape of Tj>ðUÞ has another
nature. It can rather be thought as a peculiar effect or
manifestation of edge states at graphene sheet zigzag edges
[15]. Indeed, if we cut an infinite aGR across l–r bonds, the
edge states appear in the respective semi-infinite parts, but
only for j> modes [13]. Therefore, the corresponding
Green’s functions in Eq. (6) do not have or have a pole at
zero energy depending on whether j< j� or j> j� ( j� j�<
or j
 j�<). This explains the difference between Tj<ðUÞ
and Tj>ðUÞ although the surface states themselves do not
contribute to the transmission because of their localization
at zigzag edges.

In conclusion, it is shown that in aGRs, the through-step
transmission coefficient can be explicitly related to all
associated transitions between subbands of the given mode.
As an approximation of exact expressions obtained here,
Klein’s tunneling formula is re-derived and its range of
applicability is demonstrated. Also, the step potential, at
which the mode transmission occurs with unit probability, is
obtained in the form of a function of tunneling energy and
mode parameter. Physics and experimental implications of
this result have been briefly discussed.
� 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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