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The list of textbook tunneling formulas is extended by deriving
exact expressions for the transmission coefficient in graphene
ribbons with armchair edges and the step-like and barrier-like
profiles of site energies along the ribbon. These expressions
are obtained by matching wave functions at the interfaces be-
tween the regions, where quasiparticles have constant but dif-
ferent potential energies. It is shown that for an U0 high barrier
and low-energy electrons and holes, the mode transmission of

charge carriers in this type of ribbons is described by the text-
book formula, where the constant barrier is replaced by an ef-
fective, energy-dependent barrier, U0 → U(E). For the low-
est/highest electron/hole mode, U(E) goes, respectively, to
zero and nonzero value in metallic and semiconducting rib-
bons. This and other peculiarities of through-barrier/step trans-
mission in graphene are discussed and compared with related
earlier results.

1 Introduction In recent literature, a considerable at-
tention has been paid to modeling of charge transport in
graphene [1–11]. This report gets in focus two classic prob-
lems of Quantum Mechanics which have been discussed in
Refs. [3–6]: Particle transmission in a potential that has
a step-like or barrier-like profile. The transmission coeffi-
cient has been shown essentially different from the text-
book formula [12]. In particular, the normal incidence of
electrons or holes on the interface between two regions
with different potential energies results in the full transmis-
sion without backscattering [3,4]. In the Dirac relativistic
quantum mechanics, a similar behavior of the transmission
of massless fermions is known as the Klein paradox [13].
Because the quoted analytical treatments were based on the
use of the Dirac equation and matching either the wave
functions or transfer matrices at the interfaces of differ-
ent regions, the rederivation of the Klein result was natural
rather than surprising. As is well known, this approach for
graphene is restricted to energies around the point of neu-
trality that implies that the long wave limit is valid [14].
However, it is not at all ensured a priori that all calcula-
tions in this approximation lead to the results which fol-
low from exact calculations and then, passing to the long

wave limit. Here, the transmission coefficient is found by
exploiting the matching technique, as in Refs. [4–6], but
taking into account the exact energy spectrum of graphene.
In other words, we solve the Schrödinger equation to which
the Dirac equation is a certain approximation. Our general
conclusion is that the validity of relativistic approach to
the description of charge transport in graphene ribbons is
limited, strictly speaking, to the zero-mode transmission in
metallic ribbons.

Our model system is an armchair graphene ribbon (GR)
with site energies taking zero and U0 values as illustrated in
Fig. 1. This choice is dictated by the following considera-
tions. First, armchair GRs can have either metallic or semi-
conducting spectrum depending on the ribbon width [15].
Thus, the quantum conductance of both basic graphene
materials can be studied on equal footings. Second, distinct
from zigzag GRs, the armchair GR spectrum does not have
a special band of edge states that complicates the descrip-
tion. Third, the long wave limit of the transmission coef-
ficient (obtained here with the account to the discreteness
of graphene ribbons) can be compared with earlier derived
formulas that makes this analysis particularly instructive.
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Figure 1 Upper part: An armchair graphene ribbon with a step-like (left) and barrier-like (right) profiles of site energies; gray and black
circles corresponds to C atoms with site energies equal to zero and U0, respectively (filled by hydrogens dangling bonds along edges are
not shown). Blue (red) shaded regions indicate a higher (lower) concentration of electrons. Lower part: Schematic representation of the
singlemode and multimode electron transmission in an armchair graphene ribbon. A step-like and barrier-like change of site energies U0

models a gate voltage Vg, U0 = eVg; red and black horizontal lines correspond to the neutrality point, E = EF = 0. On the right, only
conduction bands are shown. The potential difference associated with a voltage source that drives electrons from the left to the right is
not shown. a ≈ 0.246 nm.

2 Transmission coefficient The solution to the sta-
tionary Schrödinger equation HΨ = EΨ with the nearest-
neighbor tight-binding Hamiltonian for a honeycomb lat-
tice has the form (C-C hopping integral |t| is a unit of en-
ergy)

Ψ =

√
2

N + 1

N+1∑
m=1

∞∑
n=−∞

∑
α

ψj
m,n,α|m,n, α〉, (1)

where |m,n, α〉 is the 2pz orbital at the αth atom of ben-
zene ring with coordinates {m,n}, α = l, r, λ, ρ with the
meaning of labels explained in Fig. 1; |N+1, n, α=l, r〉 =
0. According [16], coefficients ψj

m,n,α=l,r= sin(ξjm)φj
n,α,

ξj = πj/(N+1), j = 1,2,...,N , and φj
n,α satisfies equation

(the site energy is zero)

φj
n,α = gj

α,lφ
j
n−1,r + gj

α,rφ
j
(n+1),l, (2)

where gj
l,r = gj

r,l, gj
l,l = gj

r,r, Djg
j
l,r = 4 cos2(ξj/2),

Djg
j
l,l = E[E2 − 1 − 4 cos2(ξj/2)], and zeros of Dj =

[E2 − 4 cos2(ξj/2)]2 − E2 determine the π electron spec-
trum of an N -long acene, C4N+2H2N+4. For site energies
equal to U0, E → Ē = E − U0.

As shown in [16] (an extended discussion can be found
in [17]), states of π electrons in armchair ribbons can be

classified in 2N “j-minus” and “j-plus” conduction 1D
bands E±

j (κ±
j ) and equal number of valence bands −E±

j (κ±
j ).

Since we are interested in the wave-like solutions to the
above equation, φj

n,α = φ̃j
α exp(iκ±

j n), where κ±
j satisfies

the dispersion relation

E± 2
j = 1 ± 4 cos(ξj/2) cos(κ±

j /2) + 4 cos2(ξj/2), (3)

it is convenient to introduce the phase shift between the
lth and rth sites: φ̃j

l = φ̃j
re

i(θj−κ±
j ), eiθj = gj

l,l/(1 −
gj

r,le
iκ±

j ). It will be seen soon that the change of this phase,
θj→θ̄j , that corresponds to a change of site energies by
U0, E±

j →E±
j −U0 ≡ Ē±

j and κ±
j →κ̄±

j , plays an impor-
tant role in determining electron transmission to/through a
region, where the site energy equals U0.

With reference to Fig. 1, the wave function (1), describ-
ing incoming from the left and reflected backward or trans-
mitted to the right electrons, can be represented as

φj
n,r =

{
eiκ±

j n + rje
−iκ±

j n, n<1,

tje
iκ̄±

j n, n≥1,
(4)

φj
n,l =

{
ei[κ±

j (n−1)+θj ] + rje
−i[κ±

j (n−1)+θj ], n< 1,

tje
i[κ̄±

j (n−1)+θ̄j ] n≥1,
(5)



phys. stat. sol. (b) (2008) 3

Original

Paper

 

www.pss-b.com © 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

for the step-like potential, and

φj
n,r =

⎧⎪⎨
⎪⎩

eiκ±
j n + rje

−iκ±
j n, n<1,

aje
iκ̄±

j n + bje
−iκ̄±

j n, n ∈ 1,N,

tje
iκ±

j n, n>N,

(6)

φj
n,l =

⎧⎪⎪⎨
⎪⎪⎩

ei[κ±
j (n−1)+θj ] + rje

−i[κ±
j (n−1)+θj ], n< 1,

aje
i[κ̄±

j (n−1)+θ̄j ] + bje
−i[κ̄±

j (n−1)+θ̄]

j , n ∈ 1,N,

tje
i[κ±

j (n−1)+θj ] n>N
(7)

for the barrier-like potential. Matching the wave functions
at the interfaces between regions with different site ener-
gies gives us the necessary equations for unknown coeffi-
cients aj , bj , rj , and tj . Finding the amplitude of transmit-
ted j wave yields the transmission coefficient for the given
mode,

Tj = |tj |2
{∣∣E sin(κ̄±

j /2)/[Ē sin(κ±
j /2)]

∣∣ ,

1,
(8)

where the upper and lower lines refer to the potential step
and barrier, respectively. The total transmission coefficient,
T (E) =

∑
j Tj is determined by the number of ”open”

modes, see below.
2.1 Step U0 By exploiting tj from Eqs. (4) and (5),

we obtain

Tj =
| sin θj sin θ̄j |

sin2[(θj ± θ̄j)/2]
, (9)

or, rewritten as a function of wave vectors,

Tj =
cos2(ξj/2) sin(κ±

j /2) sin(κ̄±
j /2)∣∣cos2(ξj/2) sin2[(κ±

j ±κ̄±
j )/4] − (U0/4)2

∣∣ . (10)

The upper (lower) sign in these equations corresponds to
Ē > 0 (Ē < 0); energy is supposed to be positive; due to
the spectrum symmetry Tj(E, U0) = Tj(−E,−U0).

Note that dispersion relation Ē±
j (κ̄±

j ) can be satisfied
by both real and imaginary values of κ̄±

j . However, ac-
cording to Eq. (5) (and in analogy with the textbook treat-
ment [12]) imaginarity of κ±

j makes Tj zero. Distinct from
the textbook case is that the unit transmission can occur
at θj = θ̄j ; fulfillment of this equality does not necessar-
ily requires U0 = 0 that is the usual condition of the unit
transmission.

Here, our prime interest concerns the energy region
close to the Fermi energy EF = 0 of undoped graphene,
where the long wave approximation, κ±

j , |E| << 1 (also
implying |U0| << 1), provides a reliable description. For
this energy region, the energy scale

√
3|t|/2 is more con-

venient. Henceforth, it is used instead of |t| together with
a new notation

√
3kx ≡ κ−

j=j∗±μ with μ = 0,1,... << N .
The new variable satisfies the following set of dispersion
relations,

E = ±
√

k2
i + k2

x,

ki =
π

N+1

{
|±μ|, i = μ,
1
3 i, i = 1, 2, 4, 5, . . . , 3μ−1, 3μ+1, . . .

(11)
which are equivalent to Eq. (3) in the long-wave limit [18].
The upper line of Eq. (11) refers to metallic GRs, j∗ =
2(N+1)/3 is an integer; lower line refers to semiconduct-
ing GRs, where j∗ = (2N +3)/3 or j∗ = (2N +1)/3 are
integers.

For small energies, Eq. (10) takes the form,

Ti =
4kxk̄x∣∣(kx ± k̄x)2 − U2

0

∣∣ (12)

which can be rewritten with the use of Eq. (11) as

Ti = 2

√
(E2 − k2

i )(Ē2 − k2
i )∣∣∣±√

(E2 − k2
i )(Ē2 − k2

i ) + EĒ − k2
i

∣∣∣ . (13)

According to this equation, the zero-mode transmission in
metallic GRs has the unit probability, T0 = 1, independent
of the value of U0. This specifies the absence of backscat-
tering under the normal incidence in graphene n-p junc-
tions [3] in the context of metallic graphene ribbons.

The obtained result is worthwhile comparing with the
textbook formula for the probability of over-step transmis-

sion, D =
√

EĒ/
(√

E +
√

Ē
)2

[12]. The difference be-
tween transmission in metallic and semiconducting GRs is
substantial only in the case of single mode or few mode
transmission. For energies E>>|U0|, that is E ≈Ē, Ti ≈1
for the mode majority, independent of whether the ribbon
has a metallic or semiconducting spectrum. The general
behavior of T=

∑imax

i=0 Ti, imax >>1, as a function of U0

is as follows: For |U0| = qE, q >> 1, T∼2/q; T (U0=0)≈
2imax; T (U0=E)=0; and T (U0=2E)=Tmax<2imax.

2.2 Barrier U0 By finding tj from Eqs. (6), (7) and
substituting it in Eq. (8) we obtain

Tj =
sin2 θj sin2 θ̄j

sin2 θj sin2 θ̄j +
(
cos θj − cos θ̄j

)2 sin2(κ̄±
j N)

.

(14)
Similarly to Eq. (9), this representation is characteristic for
graphene structures. It shows, in particular, that the unit
transmission occurs under the coincidence of phases θj

and θ̄j . This can be regarded as a sort of new resonances
which differ from the familiar condition of resonances for
the over-barrier transmission, sin(κ̄±

j N) = 0.
In terms of wave vectors, Eq. (14) has the form

Tj =
sin2 κ±

j sin2 κ̄±
j

sin2 κ±
j sin2 κ̄±

j + U2
j sin2(κ̄±

j N)
, (15)

where (in units of |t|)
Uj =
|U0|
2

∣∣∣∣∣[EĒ−1+4 cos2(ξj/2)
] cos(κ±

j /2) cos(κ̄±
j /2)

cos2(ξj/2)

∣∣∣∣∣ .

(16)



p
h

ys
ic

ap s sst
at

u
s

so
lid

i b

© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-b.com

To facilitate the comparison with earlier results, it is
instructive to look at these expressions for small energies
of electrons and holes. In the long-wave limit, an analogue
of Eq. (12) for the barrier-like potential reads

Ti =
k2

xk̄2
x

k2
xk̄2

x + k2
i U2

0 sin2(
√

3k̄xN)
. (17)

Again, T0 = 1 for metallic ribbons. Except this case, under
the replacement kiU0 → U0/2 (and the above mentioned
convention regarding energy units) the above equation co-
incides with the textbook formula for the through/over-
barrier transmission [12].

If the energy of incident electrons is tuned to the neu-
trality point of the scattering region, E = U0, it follows
from Eq. (17)

Ti =
k2

x

k2
x + U2

0 sinh2
(√

3kiN
) . (18)

Formula (4) derived in Ref. [6] for this case reads (in orig-
inal notations)

Tn =
1

cosh2 Lqn + (qn/k∞)2 sinh2 Lqn

, (19)

where, to our understanding, k2
∞ = k2

x + q2
n, with kx and

qn = π(n + 1/2)/W , n = 0, 1, ..., having the meaning
of the longitudinal (along the ribbon) and transverse com-
ponents of the wave vector, respectively. Whatever reading
used, we could not agree our Eqs. (17) and (18) neither
with the above equation nor with Eq. (8) from the same
reference.

As seen from Eqs. (17) and (18), the multimode and
singlemode transmissions must be distinguished. In the mul-
timode transmission, E ≈ kimax , imax >> 1, and for
|E| >> |U0|, Ti(E) ≈ 1 for all open modes, |Ē| > ki.
In this case, the total transmission coefficient for metallic
and semiconducting GRs differs only marginally. In con-
trast, in the case of singlemode transmission, the differ-
ence is substantial. Because of the zero and finite values of
k0, T = 1 for metallic GRs, but for semiconducting GRs,
T ∼ exp

(− πL
3W

)
, if k0 < |E| << k1 and L/W > 1.

The latter result agrees with the expression for the Green
function of N ×N honeycomb lattice [19].

Another formula worth mentioning in the present con-
text refers to an expression for the tunneling probability
that was obtained in [4] for massless Dirac fermions with
(dimensional) kinetic energy E = ±h̄vF

√
k2

x + k2
y in a

2D space −∞ < x, y < ∞, where the potential energy
is U0, if 0 ≤ x ≤ L, and zero otherwise. Assuming the
equivalence of this expression for energy with Eq. (11) and
by using the correspondence

√
3a|t|/2 = h̄vF and

k2
y ↔ π2

W 2

{
| ± μ|2,
|μ ∓ 1

3 |2,
it can be proved that Eq. (17) and an expression for T
that follows from Eq. (3) in Ref. [4] have exactly the same
form.

To wind up this report, we would like to emphasize that
the methodology used for the derivation of the new formu-
las for the transmission coefficient in armchair graphene
ribbons is the same as in [3–6]. Distinct from the previous
considerations is the use of exact solutions of the model
Hamiltonian for the description of π electron states in ideal
armchair ribbons.
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[8] F. Muñoz-Rojas, D. Jacob, J. Fernández-Rossier, and

J. J. Palacios, Phys. Rev. B 74, 195417 (2006).
[9] E. H. Hwang, S. Adam, and S. Das Sarma, Phys. Rev. Lett.

98, 186806 (2007).
[10] K. Wakabayashi, Y. Takane, and M. Sigrist, Phys. Rev. Lett.

99, 036601 (2007).
[11] J. P. Robinson and H. Schomerus, Phys. Rev. B 76, 115430

(2007).
[12] L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Non-

relativistic Teory), 3rd ed. (Butterworth-Heinemann, Oxford
OX2 8DP, 2000), p. 79.

[13] N. Dombey and A. Calogeracos, Phys. Rep. 315, 41 (1999).
[14] T. Ando, J. Phys. Soc. Jpn. 74, 777 (2002).
[15] K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dressel-

haus, Phys. Rev. B 54, 17954 (1996).
[16] L. Malysheva and A. Onipko, Phys. Rev. Lett. 100, 186806

(2008).

4 Yu. Klymenko et al.: Electron transmission through step- and barrier-like potentials

 

[17] A. Onipko, arXiv:0808.3933 [cond-mat.mes-hall].
[18] L. Malysheva and A. Onipko, arXiv:0803.1761v1 [cond-

mat.mes-hall].
[19] A more accurate approximation reveals the fine structure of

the band spectrum of metallic GRs [18]. Here, it is dis-
regarded, but its incorporation into the final formulas is
straightforward.

[20] L. Malysheva and A. Onipko, phys. stat. sol. (b) 245, No. 10
(2008), this issue.


