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The origin of the spectrum of π electrons that results
from the coupling of N N -long acenes via C-C cova-
lent bonding has been traced with the use of the Green
function formalism.

Exact expressions of acene and graphene Green’s func-
tions, which are useful for analysis of the electronic
properties of these macromolecules, are obtained and ad-
vanced to a form suitable for instructive applications.

1 Introduction Free standing graphene, a monoatomic
layer of graphite, is a new material [1,2] that exhibits ex-
ceptional electronic quality [1–5] and a unique nature of
charge carriers. On the one hand, electrons and holes ap-
pear as quasi-particles in condensed-matter physics when
the Schrödinger equation governs our prediction of their
behavior [6–16]. On the other hand, they behave as rela-
tivistic particles which are subject to the Dirac equation
[17–22]. Much theoretical effort has been focused pri-
marily on the electronic states of infinite graphene. In the
continuum approximation, these states can be mapped into
a Hamiltonian of 2+1 dimensional quantum electrodynam-
ics with Dirac fermions. This description is based on the
cone-like spectrum near the neutrality (zero-energy) points
of the 2D graphite band structure, see [22] and references
therein. Less attention has been paid to graphene as a
molecular species. From this point of view, graphene can
be considered as a macromolecule obtained by C-C bond-
ing of acene chains as shown in Fig. 1. In certain aspects,
the macromolecule model provides a better approxima-
tion for the description of real graphene structures [16],
particularly, in the nanometer scale, where the continuous
approximation is of limited value [23].

As is clear from Fig. 1, N -long linear acenes are ba-
sic units of the N×N sheet of the graphene honeycomb
lattice, whereas N -long cyclacenes play the same role for
zigzag (N ,0) carbon nanotubes (CNTs). In this sense, the
graphene and acene spectra are intimately interrelated. The
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Figure 1 N -long linear acene as a basic unit of the N×N sheet
of the graphene honeycomb lattice (up) and N -long cyclacene
playing the same role for zigzag (N ,0) carbon nanotubes (CNTs).

electronic structure of acenes, the semi-empirical descrip-
tion of which goes back to the Pariser and Parr classic
works [24,25], is understood fairly well [26–28]. This
study elucidates the relationship between the graphene
and acene spectra. Keeping in mind subsequent applica-
tions, our analysis has been performed with the use of the
Green’s function method. All derivations are based on the
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standard operator equation

GM =
[
EI − HM

]−1
, (1)

where HM is the tight-binding Hamiltonian operator of
acene (M=A) or graphene (M=G); the electron energy
E is in units of |t|, t denotes the C-C hopping inte-
gral. For the Green’s function matrix elements, notations
〈mα|GA|m′β〉 ≡ GA

mα,m′β and 〈mnα|GG|m′n′β〉 ≡
GG

mnα,m′n′β will be used for acene and graphene, respec-
tively; |mα〉 and |mnα〉 denote 2pz orbitals at the αth car-
bon atom of the m-th and mn-th hexagon, respectively, as
shown in Fig. 1. The formal description of acenes and cy-
clacenes, and graphene and CNT is very similar. However,
in the interests of simplicity, only the acene–graphene pair
will be in focus. An extended discussion that also includes
cyclacenes and zigzag CNTs can be found in Ref. [29]

2 Acene Green’s function For linear acenes, the
matrix form of solution to Eq. (1) is given by [30]

GA
mα,m′β =

2
N + 1

N∑
j=1

gj
α,β sin(ξjm) sin(ξjm

′), (2)

where ξj = πj/(N+1), j = 1, 2, ...,N , and

Djg
j
α,β =

{
E

[
E2−4 cos2(ξj/2)−1

]
, α = β = l, r,

4 cos2(ξj/2), α = l(r), β = r(l),
(3)

where Dj = [E2 − 4 cos2(ξj/2)]2 − E2. For the rest of
matrix elements, we obtain

GA

mλ,m′
n

λ
ρ

o =
δm,m′ {E

1 }
E2 − 1

+
8

N + 1

×
N∑

j=1

gj
α,β cos2(ξj/2) sin[ξj(m−1/2)] sin[ξj(m′−1/2)],

(4)

Dj(E2 − 1)gj
α,β

=

{
E[E2−4 cos2(ξj/2)+1], α = β = λ, ρ,

2E2−4 cos2(ξj/2), α = λ(ρ), β = ρ(λ),
(5)

and

GA
mα,m′β

=
4

N + 1

N∑
j=1

gj
α,β cos(ξj/2) sin[ξj(m−1/2)] sin(ξjm

′),

(6)

Djg
j
α,β =

{
E2 − 4 cos2(ξj/2), α = λ(ρ), β = l(r),
E, α = λ(ρ), β = r(l).

(7)
As shown in [16], the quantities gj

l,l = gj
r,r and gj

l,r =
gj

r,l defined in Eq. (3) determine the dispersion relation for
an N×N sheet of graphene E(κj , ξj) via the equation

2gj
l,r cosκj = 1 − (gj

l,l)
2 + (gj

l,r)
2, (8)

where κj is the second, complementing ξj quantum num-
ber. 2N values of κ±

j,ν , ν = 0, 1, ..., N − 1, for each j clas-
sify the graphene spectrum into 4NN j, ν levels; see be-
low.
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Figure 2 Band structure of polyacene, E(κ=k+) (red) and
E(κ=k−) (blue), calculated from Eq. (9) for infinite linear acene
(left panel) and cyclacene (right panel). Continuation to imag-
inary values of wave vectors, k± → ±π ± iδ, 0 ≤ δ ≤
2 ln((1+

√
17)/4) ≈ 0.5, is shown by dashed lines. Solid lines of

the right panel for κ ≤ π repeat similar calculations of Ref. [27].
Triangles show energy levels for N=7 according to Eq. (11).

By performing summation over j, it is possible to ex-
press the energy dependence of the acene Green’s function
in terms of (dimensionless) wave vectors k+ and k−, sub-
jected to the equation

4 cos2(k±/2) = E(E ± 1). (9)

For example, GA
1λ(ρ),(N+1)λ(ρ) = Gk+ + Gk− , where

Gk± =
1

2(E ± 1)
sin k±

sin(N + 1)k± . (10)

Other matrix elements have similar expressions. As seen
from Fig. 2, for the given energy, either both k+ and k−
are real, or one is real, whereas the other one is imag-
inary. In the latter case, matrix elements which refer to
opposite sites of the chain have two typical terms: One

is exponential, ∼ exp
(
−√|E|N

)
, and the second term

has a singular character. Hence, the probability of electron
transmission through acenes (∼ GA 2

1,(N+1) [31]) can oc-
cur via partly coherent and partly tunneling mechanisms.
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Tunneling governed by a single exponential factor, as it
takes place in conjugated oligomers [31,32], is not possi-
ble. This is a reflection of the metallic nature of polyacenes
[26,27].

2.1 Acene electron spectrum The acene electronic
structure is determined by the equation (E2 − 1)Dj = 0;
zeros of Dj give a four-band spectrum

E±
c(v) = +(−)

1
2

[
∓1 ±

√
1 + 16 cos2(ξj/2)

]
, (11)

where each of two conduction (c) and two valence (v)
bands has N levels. Note that two extra levels E = ±1
do not appear in Eq. (2) as poles of the acene Green’s
function. The states with these energies correspond to zero
wave function amplitudes at l and r sites and thus, break
the acene chain into λ-ρ ”isolated” pairs.

For long chains N>>1 and |E| << 1, spectrum (11)
is well approximated by E = ±q2

μ with qμ= πμ/N , μ =
1,2,... . In the limit N→∞, the quantum number ξj can be
considered as a continuous variable, ξj → k, and qμ →
q = π−k acquires the meaning of k separation from the
zero-energy point at k = π. The spectrum of polyacene
(an infinite acene chain) that comes out from the spectra of
linear acene and cyclacene, is shown in Fig. 2.

3 Graphene Green’s function Similarly to Eq. (2),
the matrix elements of the graphene Green’s function can
be represented in the form of an expansion

GG
mnα,m′n′β =

2
N + 1

N∑
j=1

Gj
nα,n′β sin(ξjm) sin(ξjm

′),

(12)
where Gj

nα,n′β = Gj+
nα,n′β + Gj−

nα,n′β . Here, we restrict
ourselves to representative examples of matrix elements
refering to the l and r sites, namely,

Gj±
1l,{ 1

N }{ l
r }

=

{
gj

l,l sin(κ±
j N)

gj
l,r sin κ±

j

}

sin(κ±
j N) − gj

l,r sin[κ±
j (N − 1)]

, (13)

where labels + and − correspond to, respectively, ”plus”
and ”minus” branches of dispersion relation (8). This rela-
tion can be rewritten as [16]

Ej±
c(v) =

+(−)
√

1 + 4 cos2(ξj/2)± 4| cos(ξj/2) cos(κj/2)|.
(14)

Thus, quantum numbers κ±
jν are determined by poles of

Gj±
nα,n′β as a function of κ±

j , i.e., by the roots of the equa-

tion sinκ±
j N − gj

l,r sinκ±
j (N − 1) = 0, or [16]

sin κ±
j N = ∓2 cos(ξj/2) sinκ±

j (N + 1/2), (15)

which together with Eq. (14) gives energies of 4NN j, ν
levels. Additionally, the graphene spectrum contains two
N -fold degenerate levels with E = ±1.

In most cases, it is an interval near the Fermi energy,
where interesting physics occurs. Whithin this interval and
for N,N >> 1, we have [33]

E(j∗±μ)−
c =

{√
μ2Δ2

G
+ κ2/4,√

(μ ∓ 1
3 )2Δ2

G
+ κ2/4,

(16)

where ΔG =
√

3π/[2(N+1)], μ << N , and the upper
and lower lines refer to an integer and rational value of
2(N+1)/3, respectively. In the case of integer values of
2(N+1)/3=j∗, say, for N=N ∗, infinitely long armchair
graphene ribbons (GRs) have a metallic spectrum. In con-
trast, for N=N ∗±1, the lowest energy mode is j∗=2(N ∗
±1)/3, and the spectrum has a band gap (Eg = 2ΔG/3),
as defined by the lower line in Eq. (16).

The Green’s functions of graphene strips with the
length N and N = N ∗, N ∗+1 and N ∗−1 have a pro-
nouncedly different appearance; see Fig. 3. In what fol-
lows, we concentrate on energy intervals below (above)
the bottom (top) of the second lowest band of metallic
GRs, |E|≤ΔG , and within the band gap of semiconducting
GRs, |E|≤Eg/2. For these energies, the Green’s functions
shown in the mid and right panel in Fig. 3 are accurately
reproduced by a single member of expansion (12), namely,
by the j∗-th term. To reproduce the energy dependence of
the Green’s function illustrated in the left panel, two terms
are needed, partial Green’s functions j∗ and j∗+1.

As immediately follows from Eq. (16), the E–κ rela-
tion can be satisfied only by real and only by imaginary
(κ=iδ) values of the wave vector for metallic and semi-
conducting GRs, respectively. As a result, an exponential
factor

Gj∗
1l,Nr ∼ exp

(
−2N

√
(Eg/2)2 − E2

)
, (17)

appears in the Green’s function of semiconducting GRs.
This factor governs the probability of single-mode elec-
tron/hole transmission through a potential barrier; see Ref.
[34] of this issue.

For metallic GRs, the number of poles depends on N
as, approximately, [

√
3N/(N+1)+1/2]. For semiconduct-

ing GRs with N=N ∗−1, there are no poles at all, but in the
case of N=N ∗+1, there is a single pole under the condi-
tion N>0.9

√
3(N+1)π−1/2 or, approximately N>N/2.

These peculiarities are illustrated in Fig. 3.
To conclude this report, the spectra and Green’s func-

tions of graphene and its building blocks, acenes have been
discussed in parallel that provides a deeper insight into
the origin and particularities of the graphene electronic
structure. An exact analytical expression of the graphene
Green’s function is found in terms of an expansion over
partial Green’s functions. The character of the Green’s
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Figure 3 Green’s function matrix element squared, GG 2
11l,1Nr , N=20, for semiconducting (blue, green) and metallic (red) graphene

strips; the correspondence between colors and N values is the same, as in Fig. 4. An increase/decrease of N results in a shift of the
deep and peak in the left and right panels, respectively, towards smaller/larger energies and also, in a larger/smaller number of peaks
in the mid panel. Differences between the exact Green’s function expansion and its approximation by the j∗th term (mid and right
panels), and by a sum of the j∗th and (j∗+1)-th terms of the expansion (left panel) are vanishingly small. The dashed blue line shows
an approximation by the j∗ term. Notations Δ̄G = ΔG/3 = Eg/2 = π/[2

√
3(N+1)] are explained in the text.
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Figure 4 Solutions to Eq. (15), shown by intersections of black,
red, and blue curves, corresponding to N =50, 20, and 6, respec-
tively, with three horizontal lines 2 cos ξj∗/2 for N = N ∗ (red),
N ∗-1 (blue), and N ∗+1 (green); N ∗=8. Green curve, represent-
ing N=3 (<N /2) does not have intersections in the region of
imaginary κ = iδ; see text.

function singularities near the Fermi energy has been ex-
amined and shown to be qualitatively different for metallic
and semiconducting graphene ribbons.
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