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Spectrum of 77 Electrons in Graphene as a Macromolecule
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We report the exact solution of the spectral problem for a graphene sheet framed by two armchair- and
two zigzag-shaped boundaries. The solution is found for the 7 electron Hamiltonian and gives, in
particular, a closed analytic expression of edge-state energies in graphene. It is shown that the lower
symmetry of graphene, in comparison with Cy;, of 2D graphite, has a protfound effect on the graphene band
structure. This and other results obtained have far-reaching implications for the understanding of graphene

electronics. Some of them are briefly discussed.
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Introduction.—Mosl theoretical studies on the elec-
tronic properties of graphene start from either a Huckel-
type Hamiltonian [1-5] or k/kp versions of the Dirac
Hamiltonian [6—9]; for a review, see [10]. In one way or
another, references are made to the symmelry points of the
2D graphite band structure [11]. At these points, the va-
lence and conduction 7 electron bands join each other, and
the dispersion of electrons and holes is linear up to energies
<1 eV. This and the periodicity of the two sublattices of
2D graphite unites electrons and holes near the Fermi
energy with massless fermions. However, for finite-size
graphene structures such as graphene ribbons, the structure
illustrated in Fig. 1 is more relevant as a reference model
than the 2D graphite lattice. Shown here is a plane macro-
molecule consisting of N X N hexagons, which are ar-
ranged in sequences of N N -long oligomers of polyacene
and coupled to each other via 2N C-C covalent bonds. All
dangling bonds along the graphene edges are filled by
hydrogen atoms.

This model has been the focus of a number of works, but
until now only approximate analytical solutions of the
spectral problem have been proposed [1.2,8]. To begin,
we present the exact description of the graphene 7 elec-
tronic structure. It is shown that the spectrum is fully
determined by the dispersion relation (which is different
from that known for 2D graphite) supplemented by the
generalized Lennard-Jones equation. This part of the de-
scription is substantially based on our previous studies of
the band structure of conjugated oligomers [12,13]. Next,
we discuss applications of the obtained equations in the
context of graphene and its daughter lattices, armchair and
zigzag graphene ribbons (GRs) and carbon nanotubes
(CNTS3). In conclusion, we express the edge-state spectrum
in terms of elementary functions and show its agreement
with the exact results. In what follows, C-C hopping in-
tegral ¢ is the only parameter of the semiempirical
Hamiltonian of the graphene macromolecule. This parame-
ter is used as a unit of energy.

Exact solution of the eigenvalue problem for gra-
phene.—By taking an appropriate representation of the
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molecular orbitals of graphene, we reduce the initial two-
dimensional Schrodinger problem to 2N independent sets
of 2N one-dimensional equations. Each set describes a
hypothetical oligomer consisting of N monomers, as is
illustrated in Fig. | by dashed, numbered frames.

By exploiting m. n, and ¢ = [, A, p, r labeling explained
in Fig. 1, the 7 electron wave function that satisfies the
Schrédinger equation HW = EW with the tight-binding
Hamiltonian of a N X N graphene sheet can be repre-
sented as follows:

FIG. 1. Indication of labels of carbon atoms used in the present
description of the 77 electron spectrum of a N X N honeycomb
lattice. The right inset shows symmetry points of 2D graphite
(hexagon vertices) and graphene (crosses). In the lower part, a
dashed-framed block (oligomer of polyacene with the length
aN') can be thought as monomer M in an M-oligomer. The
monomer Green’s function matrix elements completely deter-
mine the electron spectra of M-oligomers [12,13]. In Eq. (3), the
role of these matrix elements is played by gj‘r and g;,
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where |m, n, @) is the 2p, orbital at the ath atom of a
benzene ring with coordinates {m, n} with a summation
running over all sites of the honeycomb lattice (|m, n, a) =
0 if these lattice sites are empty, for example, |1, N +
1, a) = 0), and

N
wm‘n.a = Z (b}[r,aa‘r’m a=1r (2)
J=l1

In the latter expansion, ahy = (N2/VN + 1)sing;m. &; =
mi/ (N + 1), j=1,2,..., N.and coefficients ¢}, o, ¢ =
[, r, are subjected to equations
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where g, =gl g, =gl Djgl, = dcos’(&;/2).
Djgy, = E[E* — 1 — 4cos?(£;/2)]. and zeros of D; =
[E* — dcos?(£,/2) — E? determine the spectrum of
N -long acene.

The set of Eqgs. (3) is central in this otherwise standard
derivation. As already mentioned, it appears in the theory
of M-oligomers M-M-...-M, where the energy-dependent
quantities of g}"‘[ and gi, are the monomer Green’s function
matrix elements referring to the same (left or right) or
different binding atoms of a monomer M: see Fig. 1.
This analogy was first noticed by Klymenko [14].

Finding the eigenvalues of (3) and thus solving the
eigenvalue problem det(H — EI) = 0 yields

. i i 1 N2 i 32
cosk = flg1;, 81,) = 271[1 +lg P (gi‘;]‘], (4)
gﬂr

where k and E are interrelated via
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Formally, the same equations as (4) and (5) appear in the
tight-binding description of M-oligomers [12,13]. As a
particular case, in the Lennard-Jones theory of polyenes
(M = C=C) [15]. the right-hand side of Eq. (5) is inde-
pendent of energy and equal to a constant. .

By taking into account the explicit expressions of g{‘[
and g7 ,. Eqs. (4) and (5) can be transformed into

E*2 = 1% 4| cos(£;/2) cos(k/2)| + dcos?(£;/2)  (6)
and
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respectively. Within the interval 0 = k= = ., Eq. (7) with

sign plus or minus has N solutions which determine
J-dependent quantum numbers «;,., v =01, ..., N -1,

and hence the spectrum of the graphene sheet E = iEhf: i
i

To be precise, Eqgs. (6) and (7) determine 4N N of the total
number 2N(2N + 1) of the 7 electron levels. Ad-
ditionally. there are two N-fold degenerate levels with
energies =1. These can be proven to be the states with
zero wave-function amplitudes at the / and r sites, thus
making them of no interest here. Below, only 4NN =
electron states, |/, v), are considered.

Spectra of graphene daughter lattices. —Equation (6)
remains valid for periodic boundary conditions (PBCs).
in which case the 7 electron spectrum is fully deter-
mined by this single equation, where k = x; = 27{/N,
[=012....N—-1. and §& =2mj/N, =
0,1,2,..., N — L. Thus defined, the dispersion relation
reads

[E=(k,, k_\,)]2 =1 = 4| cos(ak,/2) cos(+/3ak, /2)|
+ 4(:0,52((21\’} /2), (8)

where the minimal (translation distance « is indicated in
Fig. 1; the correspondence between the continuous varia-
bles in the dispersion relation and discrete quantum num-
bers in Eq. (6) is as follows: \/3ak, < . ak, — &;.

For the system in focus, the usage of Eq. (8) should be
restricted to the range 0 = +/3|k |, lk,| = 7/a. Itis easy to
see that, within this range, there are bnly two points: k, =
0, ak, = 27/3 and k, =0, ak, = —2m/3, where
E~ (kx.-k,,) = 0 (instead of six for 2D graphite [11]). Not
far away from these points, the dispersion relation (8) can
be approximated by the familiar formula

J3a
2

E*(k, k,) =

\/kﬁ + (k| = 27/3a), (9)

that is, by a linear form of dispersion, if it is expressed in
terms of the deviation of k from the points of zero energy.
The reduced number of these zero points is a direct con-
sequence of the lower symmelry in graphene in compari-
son with 2D graphite.

Equations (6) and (7) can be easily used for an instruc-
tive description of graphene daughter lattices, specifically,
armchair and zigzag GRs and CNTs. However, the cases of
finite and infinite (i.e., independent of the boundary con-
ditions) systems must be clearly distinguished. For infinite
armchair GRs, the spectrum is completely determined by
Eq. (6). where —7m = k = VBak, = . For infinite zigzag
GRs,itis § = ak,, which should be treated as a continuous
variable in the two equations (6) and (7).

The formal description of armchair and zigzag CNT
spectra is exactly the same as that of zigzag and armchair
GRs, respectively. The only difference is that the discrete
quantum number is not determined by the open boundary
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FIG. 2 (color online).
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Graphene spectrum E7. ., E = 0, according Eqs. (6) and (7). Squares and circles correspond to plus and

minus signs in these equations. as explained in th¢ text; different colors indicate different values of j. From left to right: General view,
projections £ =0, and k =0. N =N =21 and N = 75, N = 60 for upper and lower panels, respectively. Imaginary quantum
values of k are shown on a & continuation of the k axis. The corresponding energy levels (edge-state levels) are seen as dots (upper

panels) and a black line (lower panels) in the 6-¢ plane.

conditions [as in Eq. (2)] but by the PBCs. As a result, the
use of the dispersion relation (8) extends to the range
0=Blk|=m/a, 0= k| =27/a and 0 = \Blk,| =
2w/a, 0 = |ky| = w/a for zigzag and armchair CNTs,
respectively. This means that the band structure of zigzag
CNTs, as compared with armchair GRs, has two new
points of zero energy E~(k, = 0, ky, = *47/3a) = 0. In
armchair CNTs, four special points appear (k, =
+2m/\3a, k, = 27 /3a). Further discussion of CNTs
and GRs spectra can be found elsewhere [16].

Some of the essential parts of the above discussion are
exemplified in Fig. 2. Represented in its upper part is the 7
electron spectrum of a 21 X 21 graphene sheet, where each
value of j has its own color and circles and squares
correspond to “minus™ and “plus™ branches, respectively.,
of Eq. (6). Three panels show (from left to right) energies
of j, v levels, and cross sections of the spectrum by planes
k-E and £-E. Levels which are represented by circles in the
8-¢ plane correspond to imaginary values of x. They
associate with electron states which are localized near
zigzag-shaped boundaries. The conjugated part of the
spectrum, j, » levels with negative energies, is the mirror
reflection in the x-& and 8-¢ planes.

The transformation of the spectrum with the increase of
N and N is illustrated by the lower panels in Fig. 2. These
give a visual representation of the graphene band structure

E*(k,, k,). Note that the spectra shown in the middle and
right lower panels have the same appearance as those
which have been obtained in computational modeling of
armchair and zigzag GRs [1].

Spectrum of graphene edge states.—By denoting that
L 27/3 = q;, it can be shown that Eq. (7) has N real
solutions, KJTO < K]T.], R K;N,Z << K;‘Nil. if q;<4q",
where ¢° can be found from Ej . = =[1 — 2cos(m/3 +
¢°/2)]. If N > 1. then ¢¢ = (v/3N)~'. The smallest of the
solutions for x becomes imaginary if ¢ > ¢: Kig = i6,.
j = j*, where j* = [2(N + 1)/3]; [A] denotes a minimal
integer of rational number A. Note that Kj:‘ﬂ =8, =0if
(N +1)/3 is an integer. In Fig. 2, imaginary values of
Kiwjeg = 18; are shown on an extension of the r axis.
Energy levels E -

=it
equal to zero: see below.

The energies which satisfy Eqs. (6) and (7), and fall into
the interval —(2N + 1)™' << E << (2N + 1), correspond
to imaginary values of 3, and, hence. to electron states.
decaying towards the middle of the graphene sheet along
the armchair direction. These states (a Kind of Tamm or
Shockley surface states in molecular structures [17]) have
been discussed by many authors in the context of zigzag
graphene ribbons [1.2,4,5.8], where such states associate
with decaying modes of the transverse electron motion. In

i} are very close but are never
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FIG. 3. Energy of edge states E_.asa function of £;. Exact

dependence and Eq. (12) are represented by a single solid line;
approximation (13) for §;N > | and 7/3 — ¢; << | are shown
by dashed and dotted lines, respectively.

distinction from the Tamm states, edge states of graphene
are not fully localized: They decay in the (transverse)
armchair direction. In the (longitudinal) zigzag direction,
these states are delocalized and can be described by a
superposition of propagaling slates.

By restricting ourselves to imaginary values of «;, =
id;, that is, by the spectrum of decaying modes, we can
rewrile the minus branch of Eq. (6) in the form

sinh(z‘i‘[-/l)
Sinhd,;(V + 1/2)°

T

(10)

where §; must satisty

sinhé ;N
sinhd (N + 1/2)

#

= 2cos(¢;/2), J=j. (1)

The two equations above give the exact position of edge-
state levels in the graphene spectrum. An approximate
solution of Eqs. (11), 8; = —21In[2cos(£;/2)], yields the
values of edge-state energies

o [2cc)s(§l/2]]" —2cos(£;/2) -

L [2e0s(£;/2)]72¥ D — [2cos(£;/2) PN D
(12)

which even in the logarithmic scale are indistinguishable
from the exact solution; see Fig. 3. For values of ¢;. which
are close to #/3 and under the condition o;N > 1,
Eq. (12) simplifies to

E. ;. = 6 exp(—=48;N), 5;N > 1,

(13)
[7— mj/(N + DPY,

w3 —q; K1

The exponential behavior shown here has been observed
previously in many numerical models, e.g.. [1.4.5], and an

analytical description was given by Brey and Fertig [8].
Qualitatively, the latter agrees with Eq. (13). but the func-
tional form of the exponential factor is very different from
our exact result. Further comments on this point can be
found in Ref. [18].

To summarize our findings, we have presented an exact
quantitative description of a rectangular sheet of graphene
which brings to light the crucial role of zigzag boundaries
in determining the 7 electron spectrum near the Fermi
energy. This result devalues the concept of a “‘zero
mode™ with no dispersion. Secondarily, this solves a num-
ber of long-standing problems, which have been the sub-
ject of a considerable computational and analytical effort.
Not immediate but a straightforward application of the
obtained solution is an accurate description of the spectrum
of achiral graphene ribbons and carbon nanotubes near the
point of neutrality [16]. Altogether this forms a new plat-
form for arguable interpretation and modeling of the elec-
tronic properties ol graphene and its daughter structures.
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