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An exact description of � electrons based on the tight-binding model of graphene as an alternant, plane
macromolecule is presented. The model molecule can contain an arbitrary number of benzene rings and has
armchair- and zigzag-shaped edges. This suggests an instructive alternative to the most commonly used ap-
proach, where the reference is made to the honeycomb lattice periodic in its A and B sublattices. Several
advantages of the macromolecule model are demonstrated. The newly derived analytical relations detail our
understanding of � electron nature in achiral graphene ribbons and carbon tubes and classify these structures
as quantum wires.
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I. INTRODUCTION

The electronic spectrum of 2D graphite, one-atom thick
hypothetical material with the structure of a honeycomb lat-
tice, was first described more than sixty years ago in the
band theory language.1 Since then it was addressed by many
authors especially after the discovery of multiwall2,3 and
single-wall4,5 carbon tubes and free standing, experimentally
accessible graphene.6–10 Two approaches have dominated
theoretical modeling of graphene and its daughter
structures.10 One following the line of the Wallace pioneer
work produced a considerable development based on the
solid state theory methods,11–13 see also Refs. 14 and 15 and
references therein. The other approach has focused on pecu-
liar electronic properties near the Fermi energy, where the
methodology of quantum electrodynamics proved to be both
heuristic and instrumental.16

The molecular approach to the description of graphene
has received comparatively little attention. Zigzag carbon
tubes can be thought as buildup of cyclacenes;17 similarly, a
graphene sheet can be constructed from linear acenes. From
this point of view, graphene is a typical alternant
macromolecule18–20 representing a vast field which has been
contributed in a number of fundamental studies.18,19,21–24

Recently, simple tight-binding model of � electrons in
graphene as a macromolecule was briefly reported.25 It was
demonstrated that such an approach provides a deep insight
into the graphene electronic structure. Several developments
have been outlined which were inaccessible or missed in the
previous studies. In particular, a controversy between the ob-
vious nonequivalence of armchair and zigzag directions in
the honeycomb lattice and the identity of band structures
near the Fermi energy for armchair and zigzag carbon tubes
is resolved by exposing principal distinctions between differ-
ent types of metallic graphene ribbons and related carbon
tubes in accurate analytical expressions.

The purpose of this paper is to give a detailed description
of the model proposed in Ref. 25 and partly its further
developments.26–29 In Sec. II supplemented by Appendixes A
and B, the solution of the Schrödinger problem for the
graphene sheet framed by armchair and zigzag edges is ob-
tained. It comes to the dispersion relation where wave vector

components are not independent but interrelated via a tran-
scendent equation, typical for alternant oligomers. The usage
of this pair of equations is specified for graphene daughter
structures, armchair, and zigzag carbon tubes and parent
graphene ribbons, as the basis for further analysis. The Fermi
energy region receives much of attention in Sec. III and Ap-
pendix C, where � electron spectra of achiral graphene rib-
bons and carbon tubes are expressed in terms of elementary
functions. As a particular application of these results, quan-
tum conductance of graphene-based wires is discussed in
Sec. IV. This is followed by a Sec. V.

II. EXACT SOLUTION OF THE SCHRÖDINGER
PROBLEM

Shown in Fig. 1 is a honeycomb N�N lattice. The lattice
label indicates that in the armchair direction, the sheet of
graphene contains N hexagons in polyparaphenylenelike
chains, whereas in the zigzag direction, it has N hexagons
forming acene chains. Hydrogen atoms along edges are not
shown and not taken into account in the nearest-neighbor
tight-binding Hamiltonian H. By exploiting m , n, and �= l,
�, �, and r labeling explained in Fig. 1, the � electron wave
function that satisfies the Schrödinger equation,

H� = E� , �1�

can be represented in the form of expansion
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FIG. 1. Indication of labels of carbon atoms used in the present
description of the � electron spectrum of N�N honeycomb lattice.
a is the minimal translation distance in the lattice.
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� = �
m

�
n

�
�=l,r,�,�

�m,n,��m,n,�� , �2�

where �m ,n ,�� is the 2pz orbital at the �th atom of benzene
ring with coordinates �m ,n�, the summation is running over
all sites of the honeycomb lattice,

�m,n,� = �� j=1

N
	n,�

j sin
�jm

N + 1
, � = l,r

� j=1

N+1
	n,�

j sin
�j�m − 1/2�

N + 1
, � = �,� ,	 �3�

and unknowns 	n,�
j , j=1,2 , . . . ,N, are to be found from

Eq. �1�.
Details are described in Appendixes A and B, where so-

lutions to Eq. �1� are obtained for the open boundaries, that is
for the lattice terminated by armchair and zigzag edges as
they appear in Fig. 1. For periodic boundary conditions in x
direction, the wave function is also found.

In Appendix A, the � electron spectrum is shown to be
determined by equation 
energy is in units of the hopping
integral �t� �Refs. 1 and 14��.

Ej

2 = 1 
 4 cos

�j

2�N + 1�
cos

� j



2
+ 4 cos2 �j

2�N + 1�
, �4�

where for the signs + and −, and each value of j, N values of
� j


, � j,�j


 , � j =0,1 , . . . ,N−1, are solutions to equation

sin � j

N

sin � j

�N + 1/2�

=  2 cos
�j

2�N + 1�
. �5�

Thus, � electron states of graphene can be classified into
2N “j-minus” and “j-plus” conduction bands and equal num-
ber of valence bands with N levels Ej


�� j,�j


 � within each
band. This is 4NN of the total number 2N�2N+1� of �
electron levels. Additionally, there are two N-fold degenerate
levels with energies 
1. These originate from the states with
zero wave-function amplitudes at the l and r sites in linear
acenes.28

Equation �5� makes one quantum number dependent on
the other. It appears because of zigzag-shaped edges. Before
finding solutions to this equation, let us consider related
structures, where zigzag edges either do not exist or their
effect can be disregarded. For such daughter structures of
graphene, the spectrum is completely determined by an ap-
propriately modified Eq. �4� or its substitute Eq. �A15� in the
case of periodic boundary conditions in y direction.

In a graphene strip with N�N, zigzag edges affect a
small part of the spectrum. In the limit N→�, these edges
play no role at all and � j


 can be replaced by a continuous
variable, the wave vector in units of the inverse periodicity in
armchair direction �see Fig. 1�.

Hence, the spectrum of an infinitely long graphene strip
with armchair edges, called henceforth armchair graphene
ribbon �aGR�, is fully determined by a single equation that
reads

Ej
aGR�kx


� = 
�1 
 4 cos
�j

2�N + 1�
cos

�3kx



2
+ 4 cos2 �j

2�N + 1�
, 0 � �3kx


 � � . �6�

Here and in what follows, we are using dimensionless wave
vectors in units of a−1.

As shown in Appendix A, a pair of equations similar to
Eqs. �4� and �5� can be obtained for periodic boundary con-
ditions in y direction. From Eq. �A15�, it follows that the
spectrum of zigzag carbon tube with an infinite length 
or,
simply, zigzag carbon tube �zCT�� is determined by

Ej
zCT�kx


� = 
�1 
 4cos
�j

N cos
�3kx




2
+ 4 cos2�j

N
,

j = 0,1, . . . ,N − 1. �7�

In the next case, complications of finding the spectrum
connected with the necessity to solve Eq. �5� are avoided,
due to that the boundary conditions at zigzag edges are cho-
sen to be periodic. In combination with armchair open edges,
this corresponds to a segment of armchair carbon tube
�aCTS�, the spectrum of which can be written as

Ejj�

 � Ejj�

aCTS

= 
�1 
 4 cos
�j

2�N + 1�
cos

�j�

N
 + 4 cos2 �j

2�N + 1�
,

j = 1,2, . . . ,N, j� = 0,1, . . . ,N − 1. �8�

In the limit N→�, one can obtain the band spectrum
of armchair carbon tube �aCT� by making a replacement

�j
N+1 ⇒ky


 in the above equation. This yields

Ej�
aCT�ky


� = 
�1 
 4 cos
ky




2
cos

�j�

N
 + 4 cos2ky




2
,

0 � ky

 � � . �9�

Finally, in the limit N ,N→�, when both quantum num-
bers in Eq. �4� can be treated as continuous variables, the
dispersion relation for � electrons in the infinite graphene
sheet reads
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E�kx

,ky


� = 
�1 
 4 cos
ky




2
cos

�3kx



2
+ 4 cos2ky




2
,

0 � �3kx

, ky


 � � . �10�

Usually, another form of dispersion relation is referred
identically. Obtained for the honeycomb lattice consisting of
two periodic triangular lattices A and B,1 it reads14,15,30–32

EW�kx,ky� = 
�1 + 4 cos
kx

2
cos

�3ky

2
+ 4 cos2kx

2
,

0 � kx, �3ky � 2� . �11�

The dispersion calculated according to these two energy-
wave vector relations, one for N�N and the other for peri-
odic honeycomb lattice, is shown in Fig. 2. The striking dif-
ference between the dispersion in the left and right panels
originates from the different symmetry of locally identical
lattices.

The subsequent discussion is primarily focused on the en-
ergy region near the Fermi energy �for this model, it equals
zero�. In the majority of related studies, this region associates
with zero-energy points of the Wallace dispersion relation
�11�. Therefore, it is worthwhile to compare such points in
Eqs. �10� and �11�. These are shown in Fig. 2 and indicated
by crosses and by K and K�, respectively. K points corre-
spond to the corners of the first Brillouin zone of 2D graphite
�middle panel in Fig. 2�. Cross points have different coordi-

nates and the number of these zero-energy points is only two.
The distance between cross points in the k space differs from
that is between neighboring K and K� points. All this is a
consequence of the lower symmetry of N�N honeycomb
lattice in comparison with its counterpart, 2D graphite lattice
periodic in A and B sublattices.

For carbon tubes, zero-energy points of dispersion in zCT

Eq. �7�� and in aCT 
Eq. �9�� are, respectively, cross and
circle points and cross and star points. The dispersion of aGR

Eq. �6�� has only one zero-energy point, which is the cross
point, and for the zGR dispersion, this point cannot be shown
in the real kx-ky plane. Different manifestations of zero-
energy points, as summarized in Table I, in the band spectra
of achiral carbon tubes and graphene ribbons will be illus-
trated below by concrete examples.

III. BAND STRUCTURE NEAR THE FERMI ENERGY

In this section, we take a closer look at the spectra of
graphene daughter structures specified above, namely, finite-
width graphene strips which are infinite in armchair �aGR�
and zigzag �zGR� directions, and corresponding carbon tubes
which can be viewed as zGR ruled in armchair direction
�aCT� and aGR ruled in zigzag direction �zCT�. Note that in
this description, periodic boundary conditions along the
graphene ribbon and respective carbon tube are not used.
Such boundary conditions are relevant to a GR ring and CT
toroid, the structures which have not the same spectra as the
counterparts with open ends.33

FIG. 2. �Color online� Lower part: 2D graphite lattice build up of A and B triangular lattices �on the left� and N�N honeycomb lattice
of graphene sheet �on the right�. Zero-energy points, six for 2D graphite and two for graphene, are indicated as K and cross points,
respectively. Circle �0, 4�

3 � and star � 2�
�3

, 2�
3 � indicate additional zero-energy points of zCT dispersion 
Eq. �7�� and aCT dispersion 
Eq. �9��

respectively. Distance in k space between cross points �= 4�
3 � differs from that is between K and K� points which is equal to 4�

�3
. Upper part:

dispersion in graphene 
on the right, Eq. �10�� and in 2D graphite 
on the left, Eq. �11��; midpanel shows the Brillouin zone in 2D graphite.
Energy is in units of �t�, wave vector is in units of a−1.
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For carbon tubes, approximate but sufficiently accurate
expressions will be derived from the exact dispersion rela-
tions. It will be demonstrated that in comparison with previ-
ously suggested approximations, these expressions improve
the agreement with the exact model results and expose es-
sential differences between the spectra of aCT and metallic
zCT. For graphene ribbons, the obtained results extend and
correct earlier descriptions. Also, it seems advantageous that
the spectra of finite and infinite graphene ribbons and carbon
tubes are described here on equal footings and with the use
of the same basic equations. In the case of carbon tubes, our
approach leads to the same spectra as were obtained in the
framework of zone folding technique.11,14 However, the
quoted technique is not applicable to graphene ribbons that
have motivated the appearance of other calculation schemes
to be discussed later on. In comparison with our previous
related publication,27 this section places a special emphasis
on the origins and values of band degeneracy in graphene
ribbons and carbon tubes.

Below, only a part of the spectrum is in focus. It corre-
sponds to the minus branch of Eq. �4�. Therefore, we omit
indication “−” in energy and wave vector notations. Index �
will be used for system labeling, ��aCT, zCT, and so on.

A. Spectrum of armchair carbon tube

To obtain an expression of aCT energy spectrum near the
Fermi energy, Eq. �9� needs to be expanded in power series
near the cross and star points. Up to the lowest order in q
=ky − 2�

3 , �j�
N , and q, ��N−j��

N , the minus branch of Eq. �9� takes
the form

E�
��q� = 


�3

2
�m�

�2�1 −
�3

2
q� + q2, � = aCT,

m�
� =

2����
�3N

� 1, �q� � 1,� = 0, 
 1, . . . . �12�

Note that Eq. �12� represents expansions near both zero-
energy points. The state with � ,q=0 is not degenerate be-

cause the star point does not belong to the aCT spectrum. All
other band energies in this spectrum are twofold degenerate.
Electron states with energies other than the band bottoms or
tops are twofold and fourfold degenerate for �=0 and ��0
bands, respectively.

Conduction �valence� band bottoms �tops� are attained at

q = q�
aCT =

�3

4
m�

aCT2, �13�

and are equal to

�E�
aCT�q�

aCT�� =
�3

2
m�

aCT�1 −
3

32
m�

aCT2� . �14�

The quantity ���−1 �3
2 m�

aCT would be the band spacing if linear
in q term under the root in Eq. �12� were disregarded, as,
e.g., in Refs. 15, 30, 31, and 34.

In the spirit of analogy to be discussed in Sec. III E, we
refer to the approximation E�

��q�= 

�3
2
�m�

�2+q2 as relativis-
ticlike approximation. The band structure of aCT, calculated
with the use of exact Eq. �9� and approximated according to
Eq. �12� and in the relativisticlike approximation just men-
tioned, is represented in Fig. 3. Equation �12� provides a very
accurate reproduction of exact results which need no com-
ments. In contrast, the spectrum in the relativisticlike ap-
proximation shown by dotted lines is noticeably worse.
However, both approximations are practically equivalent for
the description of quantum conductance and integral charac-
teristics such as density of states.

According to its derivation, spectrum �12� refers to the
cross and star points. As previously stated, the star point does
not belong to the spectrum. Thus, with an account to spin
degeneracy, the electron state with energy E0

aCT�0� is twofold
degenerate, and states with energies E��0

aCT �0� are fourfold de-
generate.

The same conclusion follows from zone folding.14,15,30–32

However, the band spectrum E�
aCT�ky� shown in Fig. 4 asso-

ciates with K and K� valleys, and not with the cross and

TABLE I. Coordinates of zero-energy points �zep� in k plane for achiral carbon tubes and graphene
ribbons. �a� for zigzag graphene ribbons, zero-energy point cannot be defined in real coordinates kx and ky;
values of the corresponding longitudinal wave vector �in units of a−1� at zero-energy point �or points� are
shown in column k0. g�

� is degeneracy of the �th band energy �E�
��k�

�=0��; �b� �N+1� /3 is an integer; 
�c� and
�d�� N is even, odd. EH-L

� denotes the HOMO-LUMO gap in carbon tube segments �CTS� and graphene
ribbon strips �GS�, see text.

� zep kx ,ky k0 g�
� EH-L

�

� 0, 2� / 3

aCT 2� / 3
1��=0� 0�b�

2���0� � / �3�N+1�
� 2� / �3 , 2� / 3

� 0, 2� / 3

zCT 0 2
0�c�

2e−2N�ln� / N ��d�

o 0, 4� / 3

aGR � 0, 2� / 3 0 1 2e−2N�ln� / N+1 �

zGR �a� � 1 Same
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circle points. In our opinion, this is misleading. The distance
between these points is different and, as discussed above, K
points are characteristic for 2D graphite and not for carbon
tubes and graphene ribbons.

B. Spectrum of zigzag carbon tube

An analytical expression for zCT spectrum in the vicinity
of cross and circle points can be obtained from Eq. �7� in a
way similar to the above consideration. We note first that as
known, distinct from armchair carbon tubes which are al-
ways metallic, zCT has a gapless spectrum, if j�=N /3 is an
integer, Ej=j�

zCT�kx=0�=0. Otherwise, zCT spectrum has a gap.
If N /3 is not an integer, band index of the lowest conduction
�highest valence� band can be equal either to j�= N−1

3 or to
j�= N+1

3 . In general, these two possibilities correspond to dif-
ferent types of semiconducting tubes although they have the
same band gap. Distinctions between, let us say N−1 and
N+1 semiconducting carbon tubes �and their parent
graphene ribbons� are seen in the electron states, which are
obtained in Appendix B and also in the respective Green’s
functions, where these distinctions are especially
prominent.28

Again, Eq. �7� has to be expanded near zero-energy points
in powers of kx and 2��j−j��

N . In a metallic zCT, j�= N
3 and j�

= 2N
3 for the cross and circle points, respectively. In a semi-

conducting zCT, the choice of j� is explained above. As a
result of the expansion, we arrive at

E�
��kx� = 


�3

2
�m�

�2 + kx
2,

m�
� =

2����
N �1 +

��

2�3N� � 1, � = zCTm,

m�
� =

2�

N � −
1

3
 � 1, � = zCTs,

� = 0, 
 1, . . . , �15�

where extensions in labeling indicate metallic �zCTm� and
semiconducting �zCTs� zigzag carbon tubes.

Distinct from the aCT spectrum is that the �=0 band in
zigzag carbon tubes is twofold degenerate, as all other �
bands near the Fermi energy. Another distinction is that
within one valley associated with either cross or circle zero-
energy point, it is only one value of kx that matches any
energy value within the given band. In the aCT spectrum,
there are two values of ky which correspond to the same
energy within the �th band.

It is worthwhile noting that the band energies in the zGR
spectrum contain a linear in � /N term, whereas in the aCT
spectrum, the correction term is quadratic in � /N 
see Eq.
�14��. Hence, the band spacing in aCT spectrum is nearly
constant; whereas in zCT spectrum, it is essentially depen-
dent on the band index.

From the comparison of calculations according to Eqs. �7�
and �15�, as illustrated in Fig. 5, it is apparent that retaining
the � term under parentheses in the definition of m�

zCTm gives
a much better agreement with the exact calculations than the
use of m�

zCTm= 2����
N . The extra �-dependent term in the band

energy Ej=j�
zCT�0� and the shift of band bottoms and tops with

the increase in band index toward larger wave vectors in aCT

FIG. 3. Band structure of armchair carbon tubes as calculated
from exact Eq. �9�, solid lines, and its approximations 
Eq. �12��,
dashed lines, and Eq. �12� without the q term in parentheses, dotted
lines; N=20. Only few conduction bands are shown. The valence
bands with the same band index are just a mirror reflection of con-
duction bands to negative energies. Spectrum refers to the cross and
star points; star point itself does not belong to the spectrum, see
text.

FIG. 4. Full spectrum �on the left� and its view near cross point
�on the right� for armchair carbon tube �aCT� and zigzag graphene
ribbon �zGR�. N=20; solid lines are calculated according Eq. �9�;
dashed lines represent approximation �12� for aCT and approxima-
tion �30� for zGR. Only conduction bands are shown.
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are missed in the k · p approximation which is equivalent to
the use of �2+1�D quantum electrodynamics formalism.31 As
already mentioned, this difference becomes insignificant in
the limit of large tube diameter.

An important conclusion that follows from Eqs. �12�,
�14�, and �15� is that near the Fermi energy, carbon tubes can
have three types of spectra: �i� with �to a good approxima-
tion� equally spaced bands, as for aCT, �ii� with regularly
irregular band spacing, as for zCTm, and �iii� with an alter-
nating band spacing, approximately, between values of 2�

3N
and 4�

3N , as for zCTs.
Subsequent sections reveal a very close similarity be-

tween the band spectra of armchair and zigzag carbon tubes
and their parent graphene ribbons, zGR and aGR, respec-
tively. Also, one prominent exception from otherwise identi-
cal regularities will be described in detail.

C. Spectrum of armchair graphene ribbon

The spectra of graphene ribbons have been persistently
studied numerically at different levels, from tight-binding to
ab initio.13,20,35–40 Few attempts to attack the problem
analytically40–43 have been paralleled by extensive simula-
tions of ribbon spectra. Two forthcoming sections provide a
fully analytical description of aGR and zGR spectra near the
Fermi energy. This description details and extends the results
of works.25–27

It is easy to show that with minor changes, which are
connected with different boundary conditions in the trans-
verse direction, aGR spectrum repeats zCT spectrum 
Eq.
�15��. Specifically, the condition of metallicity for aGR re-
quires j�=2�N+1� /3 to be an integer. Then, index �= j− j�

=0 corresponds to the zero-energy band. If 2�N+1� /3 is not
an integer, aGR spectrum has a gap, and the band closest to
zero is either j�= �2N+1� /3 or j�= �2N+3� /3 depending on
which of these two numbers is an integer. There is only one
zero-energy point in the spectrum of metallic aGR, it is the
cross point.

For kx ,� /N�1, the exact spectrum 
Eq. �6�� simplifies to

E�
��kx� = 


�3

2
�m�

�2 + kx
2,

m�
� =

����
N + 1�1 +

��

4�3�N + 1�� � 1, � = aGRm,

m�
� =

�

N + 1
� −

1

3
 � 1, � = aGRs,

� = 0, 
 1, . . . , �16�

which repeats the spectra of metallic and semiconducting
zigzag tubes, where N⇒2�N+1�. Another way of derivation
of aGR band structure was presented in Ref. 42. It was con-
cluded that “there is no general rule of the subband index.”
The above equation constructively opposes this statement.

The difference between the boundary conditions for aGR
and zCT results in about two-times smaller band spacing in
the aGR spectrum than it was found for the zCT spectrum.
Continuing this comparison we note that all � bands in aGR
spectrum are nondegenerate. This conclusion just repeats the
known result.13 The k · p approximation, where electron states
in K and K� valleys have to be admixed, prescribes the two-
fold band degeneracy in armchair graphene ribbons.41

D. Spectrum of zigzag graphene ribbon

In zigzag ribbons, longitudinal and transverse motions are
not separable. According to Ref. 41, this can be expressed in
the form of a transcendent equation

q = kx cot��3kxN� , �17�

where q and kx are, respectively, the longitudinal and trans-
verse wave vector components referring �according to the
authors of the quoted paper� to one of K points. Equation
�17� was obtained by exploiting the Dirac equation for mass-
less fermions with the dispersion

E�kx,q� = 

�3

2
�kx

2 + q2. �18�

As a particular case, Eq. �17� appears in a recent analysis of
graphene structures with more complex edges than just zig-

= 34

1

2

+1

+2

+3

0
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1

2

3

0
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+3 3= 33
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)
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kx a( 1 )
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FIG. 5. Same calculations as in Fig. 3, but for zigzag carbon tubes, semiconducting N=32,34 and metallic N=33. Solid and dashed
curves labeled by � values represent Eqs. �7� and �15�, respectively. Dotted curves in the midpanel correspond to m�

zCTm= 2����
N . Spectra refer

to the cross and circle points in Fig. 2.
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zag or armchair.44 However, the results of these studies are
restricted by limitations of the long-wave approximation.
Here, the problem is addressed on the basis of exact analogs
of Eqs. �17� and �18�, represented in the next two equations.

The part of zGR spectrum that includes the Fermi energy
is described by the minus branch of Eq. �10�,

EzGR�kx,ky� = 
�1 − 4 cos
ky

2
cos

�3kx

2
+ 4 cos2ky

2
,

�19�

where for each value of 0�ky ��, allowed values of kx has
to be found from

sin�3kxN

sin�3kx�N + 1/2�
= 2 cos

ky

2
. �20�

Note that Eq. �18� is just an expansion of radicand �19� near
the cross point in powers of kx and q=ky − 2�

3 up to kx
2 and q2.

Approximation �17� follows from the exact relation �20� af-
ter the following replacements 2 cos�� /3−q /2�⇒1
−�3q /2 and

sin�3kxN

sin�3kx�N + 1/2�
⇒ 1 −

�3kx

2
cot��3kxN� ,

this cannot be justified in any rigorous way.
Equation �20� has N solutions kx

���, �=0,1 , . . . ,N−1, for
each value of ky. One of these solutions is imaginary,
�3kx

�0�= i�, if ky falls into the interval 2�
3 +qc�aky ��, as

illustrated in Fig. 6. Shown in this figure are graphical solu-
tions of Eq. �20� for two cases, q�qc and q�qc. The critical
value of q=qc corresponds to kx

�0�=0, that is

qc = 2 arccos� N

2N + 1
� −

2�

3
. �21�

In the state with kx=0 and q=qc, the electron energy equals

EzGR�0,
2�

3
+ qc� � Ec = 1 − 2 cos��

3
+

qc

2
� . �22�

For energies �E��Ec, implying that q�qc, the spectrum is
described by Eq. �19�, where �3kx= i�, and by equation

sinh �N

sinh ��N + 1/2�
= cos

q

2
− �3 sin

q

2
, q � qc. �23�

In this representation too, the quantum numbers q and � are
interdependent. The rest of the spectrum is determined by
Eqs. �19� and �20�.

An equivalent and in certain respects more convenient
expression of the spectrum can be obtained by combining
these two equations in order to exclude ky from the first of
them �see Appendix C�. Then, the energy of electron states
becomes a function of one variable kx,

EzGR�kx� = 
  sin��3kx/2�
sin�3kx�N + 1/2�

 , �24�

where kx is dependent on ky via Eq. �20�.
Up to this point, our consideration of zGR spectrum was

exact. Now, we proceed with useful approximate expressions
which make apparent the electronic structure of zigzag rib-
bons and expose its similarity and dissimilarity with the band
spectrum of armchair tubes. In this discussion, the ribbon
width will be assumed large, N�1, so that qc= 1

�3�N+1/2� and
Ec= �2N+1�−1. The approximate formulas to be presented
give rather accurate estimates already for N�10.

The dispersion for edge states �ES�, for which q�qc and
�E��Ec, is described exactly but implicitly by

EES�kx = i�/�3� = 

sinh��/2�

sinh ��N + 1/2�
. �25�

One can see that for N��1, the edge-state energy goes to
zero exponentially with the increase of �,

EES��� = 
 2 sinh��/2�e−��N+1/2� →
��1


 e−�N. �26�

The behavior of EES
��q�� that is the edge-state dispersion
shown in Fig. 7 is more complicated. Its explicit expression
can be found from Eq. �23� under certain restrictions on q.

For 1�q /qc�2, this dependence is reasonably described
by ��q
1−2 exp�−2�3qN��, so that

EES�q� � 
 �3q exp�− �3qN� . �27�

This approximation is close to exact calculations up to q
�� /12. For larger wave vectors, � /6�q�� /3 �or N��2�,
the solution to Eq. �23� can be represented as

3 kx

0.4 0.2 0 0.2 0.4 0.6

0.8

1

1.2
cq <

q

δ

c>q

q

FIG. 6. �Color online� Graphical solutions of Eq. �20� which
correspond to intersections of horizontal lines, representing the

right-hand side, with curves y1�kx�=
sin�3kxN

sin�3kx�N+1/2� and y2���
= sinh �N

sinh ��N+1/2� , N=50. The upper horizontal line intersects only y1;
the lower one intersects y1 and y2.
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� = − 2 ln�2 sin
�/3 − q

2
� , �28�

showing that with the approaching of the wave vector to its
maximal value, q→� /3 �ky→��, the edge-state energy goes
to zero as

EES�q� = 
 e−2N�ln��
3

−q�� . �29�

Thus, dispersion of edge states, which in numerical stud-
ies appears as a dispersionless band,13,36 is governed by ex-
ponential dependencies defined in Eqs. �27� �for qc�q
�� /12� and �28� �for � /6�q�� /3�. The crossover be-
tween the two can approximately be designated to a region,
where � /12�q�� /6. Analytical expressions of edge-state
dispersion, which are defined in the above equations, are
compared with the exact results in Fig. 7. As seen, the long-
wave approximation followed in Refs. 41 and 44 and illus-
trated by curves �17�, �18�, and �27� does not reproduce the
dispersion of edge states in the larger part of ES band.

Out of the ES band, �E��Ec, and for kx , �q��1, Eq. �19�
can be rewritten as 
see Appendix C �Ref. 45��

E�
��q� = 


�3

2
�m�

�2�1 −
�3

2
q� + q2,

� = 0,1, . . . � N, � = zGR,

m�
� =

��� + 1/2�
�3N

, �30�

where q�qc within the �=0 band. Without the linear in q
term, the spectrum 
Eq. �30�� can be obtained from Eqs. �17�
and �18�.

As shown by many numerical calculations �but never
proved analytically�, with an exception of the ES band en-
ergy interval, zGR and aCT have a very similar band spectra.

Both spectra have nearly equally spaced bands with the bot-
toms and tops which are pronouncedly shifted toward larger
wave vectors with the increase in band index. The band spac-
ing in zGR spectrum is two times smaller, �

2N , than it is in the
aCT spectrum. Therefore, aCT bands are in-between pairs of
zGR bands. The band structure parameters for zGR, band
energies and positions of bands are given by the same equa-
tions as for aCT 
Eqs. �13� and �14�� where m�

aCT should be
replaced by m�

zGR. All these features can be seen in Fig. 5 that
compares the full aCT and zGR spectra of � electrons as
well as their details near zero-energy points.

So, for �E��Ec, the zGR spectrum can be obtained from
the aCT spectrum by the “mass” scaling and the other way
round. In the narrow energy interval 2Ec near the Fermi en-
ergy, aCT and zGR spectra are qualitatively different. This is
connected with the appearance of ES band in zigzag
graphene ribbons. As shown, the dispersion within this band
is exponential and goes to zero when the wave vector ap-
proaches its maximal value. The k · p approximation, as it
was used in Ref. 41, leads to a “reversed” picture, where ES
energy tends to zero when the wave vector goes to zero.

To wind up this section, we note that only marginal
changes are required to apply the above scheme of calcula-
tions to carbon tubes and graphene ribbons of finite length,
taking into account their termini. In particular, the gap be-
tween the highest occupied molecular orbital �HOMO� and
the lowest unoccupied molecular orbital �LUMO� is equal
to46

EH-L
� = 2�

0,
N + 1

3
integer,

� = aCTS,

�

2�3�N + 1�
, otherwise,

0 even N ,

� = aCTS,

e−2N�ln �
N � odd N ,

e−2N�ln �
N+1 � � = GS,

	
�31�

where N and N is the length of aCT and zCT segments
denoted as aCTS and zCTS, respectively; GS abbreviates
armchair �N�N�1� and zigzag �N�N�1� graphene
strips. HOMO-LUMO gap values and other characteristics
which have been discussed here are summarized in Table I.

E. Relativistic analogy

The band structure of carbon tubes and graphene ribbons
can be summarized in a single line,47

E�
��k�

�� = 
 �m�
�2 + k�

�2, �32�

where k�
� has the meaning of dimensionless wave vector, m�

�

�only here, in units of
�3
2 �t�� is the �th band energy, and index

� specifies the structure and the �th band minimum or maxi-

mum in the 1D k space k̄�
� as follows

10
−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

q q0 c

E

π/3

(25)

(29)
(27)

(27)

(25)

5

(29)

0.05

qc qc

2010

1010

100

3010

(17)−(18)

FIG. 7. Edge state dispersion in a N=10 wide zigzag ribbon.
Solid curves represent exact calculations according Eqs. �20� and
�25�. Various approximations are marked by equation numbers.
Curves �17� and �18�, and curve �27� are undistinguishable in semi-
logarithmic scale. Inset: same data for small values of q in nonloga-
rithmic scale.
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m�
� =

����
N �1 +

��

4�3N� ,

��� − 1/3�
N

,

��� + 1/2�
�3N

,

2����
N �1 +

��

2�3N� ,

2��� − 1/3�
N

,

2����
�3N

,

k̄�
� =

0,

0,

2�

3
+

�3

4
�m�

zGR�2,

0,

0,

2�

3
+

�3

4
�m�

aCT�2,

�33�

�=aGRm, aGRs, zGR, zCTm, zCTs, and aCT from top to
bottom. Equation �32� is valid for k�

� ,m�
��1; �=0, 
1, . . .

for all structures, except zGR in which case �=0,1 , . . ..
One can see that within each band �except the ES band�

the dispersion relation �32� has the form of 1D relativistic
energy-momentum relation in its conventional representation
with the speed of light equal to unity.48 Thus, from the point
of view of energy and momentum conservation laws, quasi-
particles in the �=0 conduction and valence bands of metal-
lic carbon tubes and graphene ribbons �except zGR� should
behave as 1D massless Dirac fermions �or neutrinos and an-
tineutrinos�, whereas in ��0 bands they should behave as
relativistic particles having mass m�

�.
Perfect penetration of electrons or holes with linear dis-

persion into a classically impenetrable region has been no-
ticed in several publications.49–51 More recently,29 it was
shown that by passing from the exact tight-binding descrip-
tion to approximation �32�, expressions for the probabilities
of tunneling through a potential step and through a potential
barrier within the �th band �and interband scattering prohib-
ited� exactly coincide with formulas, derived almost eighty
years ago for tunneling of relativistic particles.52,53 It is really
amazing that by predicting the penetration probability for
massive relativistic particles, Oskar Klein predicted the prob-
ability of transmission of charge carriers through n / p junc-
tions in alternant macromolecules and, in particular, in
graphene, a material unknown in his time.

Equations �32� and �33� make obvious that spectra of
achiral carbon tubes and graphene ribbons can be divided
into three groups: �i� metallic spectra with equally spaced
bands, case of aCT and zGR; �ii� metallic spectra with an
irregular band spacing, where in case of zCT �aGR� it can be
any fraction of 2�

N � �
N+1 � and also larger than that; and �iii�

semiconducting spectra with a band spacing, alternating be-
tween 2�

3N and 4�
3N , and between �

3N and 2�
3N+1 in cases of

semiconducting zigzag tubes and armchair ribbons, respec-
tively. These differences in the band structures along all cis
and all trans carbon chains reflect in a quantitative manner
the nonequivalence of armchair and zigzag directions in the
honeycomb lattice structures. In the infinite graphene sheet
these differences disappear.

IV. QUANTUM CONDUCTANCE

Within the framework of the Landauer approach,54–57 the
zero-temperature Ohmic conductance of an ideal wire is
equal to

G��E� = G0�
v

g�
�T�

��E� , �34�

where G0=2e2 /h is conductance quant, g�
� is the band degen-

eracy �spin degeneracy 2 is included into G0�, and transmis-
sion coefficient T�

� is zero or unity depending on whether the
�th band is open or closed for charge carriers with energy E.

With an account to Eq. �32�, T�
��E�=��E−

�3
2 m�

�� for con-
duction bands, and T�

��E�=���E−
�3
2 m�

��� for valence bands;
��x� is the Heaviside step function. The values of g�

aCT and
g��0

zGR represented in Table I must be doubled because electron
or hole states with 
k�

aCT�0 and 
k��0
zGR �0 are degenerate.

This “rule” was earlier noticed in the numerical study of GR
conductance.58

The electron or hole conductance of armchair and zigzag
carbon tubes and their parent graphene ribbons has thus the
form of a ladder, symmetrically ascending with the increase
in energy for electrons, and with the decrease in energy for
holes. For the charge carrier energy that falls in between the
�th and ��+1�th bands, the wire conductance equals

G��E� = G0�
� aGRm, aGRs,

2� + 1 zGR,

2� zCTm, zCTs,

2�2� + 1� aCT,
	 �35�

The width of steps repeats the band spacing m�
� defined in

Eq. �33� in units of
�3
2 �t�. The height of the �th ladder step is

G0 times band degeneracy as explained above.
In the aforementioned study,58 the step width was calcu-

lated numerically. For GzGR�E�, the same expression was
suggested, whereas GaGRm�E� according to the quoted paper
is equal to 2�G0; for GaGRs�E� no expression was presented.
The possible reason for the extra factor of two in the con-
ductance of metallic armchair ribbons is explained below.

As long as dispersion �32� is valid, the conductance lad-
ders of basic graphene wires can be classified in the follow-
ing three types: �i� with regular step width for always metal-
lic aCT and zGR wires; �ii� with irregular step width for
metallic zCT and aGR; and �iii� with alternating step width
for semiconducting zCT and aGR. These characteristics dis-
tinguish graphene ribbons and carbon tubes as 1D quantum
wires from the conductance ladders known for 2DEG
channels.59

The appearance of G��E� depends on the energy scale
which, in its turn, is determined by the ribbon width �tube
circumference�. Experimentally, this can result in different
observations, from ladders, which might be fully or partly
resolved, to unresolved ladders. In the latter case, that is
when the discrete behavior of quantum conductance cannot
be resolved, all ladders are smoothed out into straight lines
with the same slope and zero-energy values equal to
GGR�0�=G0 and GCT�0�=2G0 for graphene ribbons and car-
bon tubes, respectively.
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Returning to the aGRm conductance, we remind that in
this case, the step width equals ����

N �1+ ��

4�3N � 
see Eq. �33��.
Therefore, for large N, quite many pairs of bands near the
Fermi energy have very close energies, i.e., they are appar-
ently degenerate. Then, GaGRm�E�=2�, if ��N. Obviously,
under the same conditions GzCTm�E�=4�.

V. SYNOPSIS

A new methodology of analytical modeling of � electron
spectrum of graphene and its daughter lattices, achiral carbon
tubes, and graphene ribbons, has been presented. It is based
on the tight-binding model of graphene as a macromolecule
with armchair- and zigzag-shaped boundaries. The exact so-
lution of the Schrödinger problem, the spectrum and wave
functions, have been obtained and illustrated by a number of
examples. Several spectral features, which were previously
accessible only for numerical calculations, have received an
adequate analytical description in terms of elementary func-
tions. In comparison with the understanding based on the 2D
graphite band structure, the macromolecule model is shown
to be more relevant and more beneficial. It provides a con-
sistent description of graphene electronic properties. Present-
ing the full details of this model sheds light on the intimate
interrelation between graphene, acenes, and other conjugated
oligomers. In general, this model gives more comprehensive
picture of what may be called relativistic appearance of
graphene.
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APPENDIX A: SPECTRUM

By neglecting the overlap between � orbitals at neighbor-
ing C atoms, �m ,n ,� �m� ,n� ,���=�mm��nn�����, Eqs. �1� and
�2� can easily be transformed into a set of four equations

E�m,n,l = �m,n−1,r + �m,n,� + �m+1,n,�, �A1�

E�m,n,� = �m,n,l + �m−1,n,l + �m,n,�, �A2�

E�m,n,� = �m,n,r + �m−1,n,r + �m,n,�, �A3�

E�m,n,r = �m,n+1,l + �m,n,� + �m+1,n,�. �A4�

For the N�N sheet of graphene, these equations are to be
solved with open boundary conditions which read

�0,n,l = �0,n,r = �N+1,n,l = �N+1,n,r = 0,

�m,0,r = �m,N+1,l = 0. �A5�

Coefficients �m,n,� and �m,n,� can be expressed in terms of
�m,n,l and �m,n,r as

�E2 − 1��m,n,� = E��m,n,l + �m−1,n,l� + �m,n,r + �m−1,n,r,

�A6�

�E2 − 1��m,n,� = E��m,n,r + �m−1,n,r� + �m,n,l + �m−1,n,l.

�A7�

Exploiting these two equations in Eqs. �A1� and �A4�, we
obtain a reduced set, involving only �m,n,l and �m,n,r. This set
has the form

E�E2 − 1��m,n,l = �E2 − 1��m,n−1,r + E�2�m,n,l + �m−1,n,l

+ �m+1,n,l� + 2�m,n,r + �m−1,n,r + �m+1,n,r,

�A8�

E�E2 − 1��m,n,r = �E2 − 1��m,n+1,l + E�2�m,n,r + �m−1,n,r

+ �m+1,n,r� + 2�m,n,l + �m−1,n,l + �m+1,n,l.

�A9�

Now, it is convenient to represent wave-function coeffi-
cients in the form �3�. By substituting it into Eqs. �A8� and
�A9� and performing standard algebra, we arrive at

	n,�
j = g�,l

j 	n−1,r
j + g�,r

j 	�n+1�,l
j , � = l,r ,

	0,r
j = 	N+1,l

j = 0, �A10�

where gl,r
j =gr,l

j =4 cos2�� j /2�D j
−1, � j =

�j
N+1 , gl,l

j =gr,r
j =E
E2

−1−4 cos2�� j /2��D j
−1, and

D j = 
E2 − E − 4 cos2�� j/2��
E2 + E − 4 cos2�� j/2�� .

�A11�

The latter equation is nothing else but the determinant of the
spectral problem for linear acenes.28 Under replacement
� j ⇒ky, Eq. �A11� converts into the dispersion relation for
polyacene.24

Formally the same equation as Eq. �A10� appears in the
theory of M oligomers60,61 which are linear molecules con-
sisting of N monomers M coupled to each other via left and
right binding atoms, as illustrated in Fig. 8. Monomer M can
be described by the Green’s function G�,��

M = ����I
−HM�−1����, where HM is one-particle Hamiltonian in the
tight-binding representation. Otherwise, M is an arbitrary
complex of NM atoms.

In Eq. �A10�, g�,��
j associates with the Green’s function

matrix element of a hypothetical monomer indicated by the
dashed frame in Fig. 8. Thus, all relations which follow from
Eq. �A10� can be exploited in the present context. In general
terms, the description of M oligomers with the use of Eq.
�A10� represents a generalization of the Lennard-Jones
theory of polyenes, �M�N, NM =2, M =C=C.21

The � electron spectrum of conjugated M oligomers is
determined by two equations.60,61 One of them relates the
state energy E with the wave vector expressed in units of
periodicity of the oligomer chain,
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cos � = f�GM� , �A12�

where f�GM� is a functional of monomer Green’s function
matrix elements,

f�GM� �
1

2Gl,r
M �1 + Gl,r

M2 − Gl,l
M2� . �A13�

In our case, �=�3kx, kx is in units of a−1. The other equation
determines allowed values of the wave vector which must
satisfy equation

sin �N

sin ��N + 1�
= −

Gl,r
M

Gl,l
M2 − Gl,r

M2 . �A14�

Equations �4� and �5� follow from Eqs. �A12�–�A14� after
replacing Gl,l

M and Gl,r
M by gl,l

j and gl,r
j and some algebra.

It is easy to see that the analogy with M oligomers is
straightforwardly applicable to segments of zigzag carbon
tubes. The only difference is that in Eqs. �A10� and �A11�,
we have to replace � j =

�j
N+1 by � j =

2�j
N , j=0,1 , . . . ,N−1. This

is to say that the role of hypothetical monomer �framed box
in Fig. 8� is played by cyclacene chain �instead of linear
acene chain�.

In this case, applying Eqs. �A12�–�A14�, one obtains

Ej

2 = 1 
 4cos

�j

N cos
� j




2
+ 4 cos2�j

N
, �A15�

where for the signs + and −, and each value of j, except j
=N /2, N values of � j


, � j,�j


 , � j =0,1 , . . . ,N−1, are solutions
to

sin � j

N

sin � j

�N + 1/2�

=  2cos
�j

N  �A16�

for j� 
N /2�, and

sin � j

N

sin � j

�N + 1/2�

= 
 2cos
�j

N  �A17�

for j� 
N /2�. Here, 
x� is the nearest integer function.
Equations �4� and �A15� were used in Sec. 2 to obtain

dispersion in graphene daughter structures. The wave func-
tions for these structures are discussed next.

APPENDIX B: WAVE FUNCTIONS (REF. 62)

The wave function �2�, which corresponds to the energy
Ej


�� j,�j


 �, can be represented as

� j,�j

 = Aj,�j


�
m

�
n

�
�=l,r,�,�

�m,n,�
j,�j




�m,n,�� , �B1�

where Aj,�j

 is the normalization constant,

�m,n,�
j,�j




=�
− s1 sin

�jm

�N + 1�
sin
� j


�N + 1 − n�� ,

sin
�jm

�N + 1�
sin�� j


n� ,


 sin
�j�m − 1/2�

�N + 1�
sin
� j


�n − 1/2�� ,

s1 sin
�j�m − 1/2�

�N + 1�
sin
� j


�N + 1/2 − n�� ,

	
�B2�

s1�sign
sin � j�N+1 /2��, and �= l ,r ,� ,� from up to down.
For each j, there is N solutions of Eq. �5� with plus and
minus in its right-hand side.

Thus defined, coefficients �B2� satisfy boundary condi-
tions �A5�. For segments of armchair carbon tubes, we have,
instead of Eq. �A5�,

�0,n,l = �0,n,r = �N+1,n,l = �N+1,n,r = 0,

�m,1,� = �m,N+1,�. �B3�

With these boundary conditions, it is convenient to represent
energies of � electron states in aCTS as follows

Ejj�
aCTS = �zjj�� , �B4�

zjj� � �2 cos
�j

2�N + 1�

 s2e−i�

j�
N ,

j = 1,2, . . . ,N, j� = 0,1, . . . ,N − 1,
	 �B5�

and s2=sign�cos�j�
N �.

In these notations, eigen states of aCTS take the form

� j,j� = Aj�
m

�
n

�
�=l,r,�,�

�m,n,�
j,j� �m,n,�� , �B6�

where

2

1
N
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m n
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l

l
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FIG. 8. N�N graphene sheet in Fig. 1, represented as a se-
quence of dashed-frame boxes, illustrates the analogy with M oli-
gomer structure exemplified by N-long oligomer of polyparaphe-
nylene. In Eq. �A10�, gl,r

j plays the role of monomer Green’s
function matrix element referring to monomer binding atoms l and
r.
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�m,n,�
j j� =�


s2

zjj�

�zjj��
sin

�jm

�N + 1�
e2i�

j��n−1/2�
N ,

sin
�jm

�N + 1�
e2i�

j�n
N ,


s2 sin
�j�m − 1/2�

�N + 1�
e2i�

j��n−1/2�
N ,

zjj�

�zjj��
sin

�j�m − 1/2�
�N + 1�

e2i�
j�n
N ,

	
�B7�

with the same correspondence between � and l, r, �, and � as
in Eq. �B2�.

The wave functions for other structures discussed in the
main text can be obtained via obvious modifications of Eqs.
�B1� and �B2� or Eqs. �B6� and �B7�.

APPENDIX C: PROOF OF EQ. (30)

Equation �20� represents the relation between cos�ky /2�
and kx in the graphene sheet framed by two armchair-shaped
and two zigzag-shaped boundaries, as shown in Fig. 1. The
substitution of this specific expression of cos�ky /2� into
Eq. �19� and usage of a chain of trigonometric identities
yields

1 − 4 cos
ky

2
cos

�3kx

2
+ 4 cos2ky

2
=

sin2��3kx/2�
sin2�3kx�N + 1/2�

.

�C1�

This gives Eq. �24�.
All N roots of Eq. �20�, 0�kx

���, �=0,1 , . . . ,N−1, sat-
isfy the following inequality:

0 �
sin�3kx

�N

sin�3kx
��N + 1/2�

� 2. �C2�

The �th root is bounded from below by ��
�3N

. Therefore, we
can redefine kx

� as follows:

�3kx
� =

�

N
�� + ��� . �C3�

It can be proved that 0����1. Moreover, it turns out
that for sufficiently small ��N, ��� 1

2 . In this approxima-
tion, the substitution of Eq. �C3� into the left-hand side of
Eq. �20� leads to

sin�3kx
�N

sin�3kx
��N + 1/2�

= �1 +
��� + ���

2N
cotan������−1

.

�C4�

On the other hand, for q�1,

2 cos
ky

2
� 1 − �3q/2 − q2/8. �C5�

By equating these two expressions of the same quantity, we
obtain

tan����� �
��� + ���

�3qN
. �C6�

The latter equation can be solved approximately, thus, solv-
ing the initial problem.

Let us assume that �q�� ���+1/2�
�3N

. Then,

kx
� �

��� + 1/2�
�3N

−
q

��� + 1/2�
, �C7�

showing that real solutions of Eq. �20� depend linearly on the
wave vector q�1. This is in contrast with the exponential
dependence of the imaginary solutions discussed in Sec.
III D. If q�qc,

kx
� �

��� + 1/2�
N�3

. �C8�

Equations �C7� and �C8� can also be obtained from Eq. �17�.
These results prove Eq. �30� and justify a simple picture

of zGR spectrum above and below the band of edge states
�but not far from the Fermi energy�, where q and kx can be
considered as independent quantum numbers, particularly,
near the bottoms or tops of conduction or valence bands.
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