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This report concerns finding the tunneling exponential factor exp [−2κ (E) d], on the basis of electronic

band structure of organic oligomers, which are d-long molecular wires. It is shown that energy depend-

ence κ (E) given by the Franz two-band model agrees remarkably well with exact model calculations, pro-

vided that the quadratic dispersion parameter is calculated from the real (non-parabolic) band structure of

organic oligomers. For narrow and moderate band gaps (with respect to the band width), the approximate

dependence is practically indistinguishable from that which is obtained from these exact calculations. The

divergence (particularly, in the mid of the band gap) becomes appreciable and increases with an increase

of the band-gap/band-width ratio. The apparent effective mass (as it is estimated from κ (E ) measured at

the Fermi energy E = E
F
) is defined in terms of the inherent parameters of the wire.
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1 Introduction 

Despite a substantial effort that has been undertaken to relate the electron transmitting properties of mo-
lecular wires with their electronic structure [1–8], the use of phenomenological formulas dominates the 
electrical characterization of metal-molecule(s)-metal (MMM) contacts, see [9] and references therein. 
Here, under the term “molecular wires” we define organic oligomers as having the structure M–M–
. . .–M = (M)N, which can provide electrical contact between metal or semiconductor electrodes. Oli-
gomers of polyene, alkane, and polyparaphenylene are one of many other molecules commonly used in 
MMMs. 
 Probably, the most simple and physically sound description of electron (or/and hole) tunneling 
through organic oligomers suggests the Franz two-band model [10]. It relates the electron imaginary 
wave vector iκ  to electron energy E within the gap between the valence and conduction bands. It reads 
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where energy ∆E = Eb – E is referenced to the conduction-band bottom Eb showing that in the vicinity of 
Eb, i.e., when ∆E � Eg, the Franz model is practically equivalent to tunneling of a free particle with im-
pulse ħk and mass *m  through a rectangular barrier. The same is true with respect to the holes, if the 
energy is close to the top of valence band, denoted as Et. 
 According to Eq. (1), the WKB tunneling probability through a molecular wire with the band gap Eg 
and length d is given by TWKB(E) = exp [(−2κ

 

(E) d]. This translates into the ohmic tunnel current under 
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the applied voltage V, eV � Φ, proportional to TWKB(E = EF) = exp [(−2κ
 

(EF) d] with the tunneling con-
stant κ

 

(EF) defined as 
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where Φ = Eb – EF signifies the relative position of the Fermi energy EF with respect to the conduction 
band bottom. Φ is the potential barrier for electrons entering the molecule from contacting electrodes. 
 Few comments are in order. Although it was not explicitly stated by its inventor, formula (1) implies: 
(i) the quadratic dispersion relation for electrons in the conduction band and for holes in the valence band 
and (ii) equal effective masses of both types of charge carriers. These assumptions limit the applicability 
of the model but the actual restrictions have not been clarified. In this communication, we focus on the 
range of the applicability of dispersion relation (1) for MMM contacts. Specifically, we will show that 
the use of the Franz interpolation formula for a description of wide-gap tunnel contacts overestimates 
κ
 

(E), if Eg is of the order or larger than the conduction (valence) band width W. Also, the meaning of the 
apparent effective mass *m , as it is inferred from measurements of κ

 

(EF), will be specified in terms of 
the parameters of the molecular wires. 

2 The Franz dispersion relation versus the exact dispersion relation 

At zero voltages, the probability of tunneling through a molecular wire is governed by an exponential 
factor exp [−2δ

 

(Ε
 

) N], where N is the number of monomers [for PE, AE, and PPP oligomers, N = NC/2, 
(NC − 1), and NC/6], δ (E) is calculated from the electronic band structure [11]. In the tight-binding ap-
proximation, the interrelation between the electron energy and (dimensionless) wave vector is given by 

 cos ( ) ,f Eξ =

 (3) 

where f(E) is a certain functional of the monomer Green’s function, and ξ takes real values from 0 to π 
within the bands, whereas in the band-gap energy intervals, ξ should be replaced by iδ or π + iδ [1]. 
Figure 1 represents the dispersion relation for a part of the valence and conduction bands, and the gap 
between them. In calculations, we have used the sets of tight-binding parameters which reasonably re-
produce the π electronic structure of oligomers of polyene (PE), polyparaphenylene (PPP) [4], and two 
bands of extended σ states of alkane oligomers (AE) [5]. Solid lines correspond to the exact dependen-
cies E(ξ

 

) and E(δ
 

), whereas dashed lines show parabolic approximations for E(ξ
 

) and E(δ
 

) near the 
band edges. For example, near the conduction band bottom E = Eb + βMξ 2 and E = Eb − βMδ 2. For each 
type of oligomers, the quadratic dispersion parameter βM was determined from the best fit to the exact 
calculations; the obtained values of βM are summarized in Table 1. With the use of this parameter and the 
lattice constant aM, see Fig. 1, we can represent the Franz interpolation formulas (1) and (2) in the form 
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where, similarly to Eq. (2), Φ = Eb – EF. In Fig 1, δappr(E 

) graphs are shown by dashed-dotted lines. 
 Equation (4) is in excellent agreement with the exact dispersion relation (3), if Eg is smaller than W. 
For PE and PPP oligomers, associated with narrow-gap (Eg/W  ≈ 0.3) and mid-gap (Eg/W ≈ 0.75) semi-
conductors, see Table 1, approximate dependence of δ

 

(E ) cannot be distinguished from the exact one in 
Fig. 1. For AE oligomer exemplifying wide-gap semiconductors (Eg/W ≈ 2), the difference between 
δappr(E 

) and δ
 

(E
 

) is noticeable only in the mid gap. Example of XO (Eg/W = 6.4) is given to illustrate the 
tendency rather than to exemplify a real molecule. According to our estimates, for large-gap MMM con-
tacts, maximal tunneling constant δmax ∼ ln (Eg/W) whereas Eq. (4) and Eq. (1) gives δmax ∼ g M ./E β  
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Fig. 1 Dispersion relation (3) in and near the region of fundamental band gap is shown by solid lines; energy scale 

is in units of |β |, and the electron energy is referenced to the mid of the gap. Parabolic dashed curves E(ξ
 

) and E(δ ) 

are determined by the values of (positive) parameter β
M
/|β |, see text. Using these values, δ (E) was calculated ac-

cording Eq. (4) (dashed-dotted curves). Abbreviations PE = (CH=CH)
N
 (N = N

C
/2), AE = (CH

2
)
Nc
 (N = N

C
 – 1), and 

PPP = (C
6
H

4
)
N
 (N = N

C
/6) stand for oligomers of polyene, alkane, and polyparaphenylene, respectively; XO = (CH

2
)
Nc
 

(N = N
C
 – 1) signifies a hypothetical oligomer with a large-band-gap/band-width ratio. Inset: Schematic representa-

tion of PE, AE, and PPP oligomers with the same number of C atoms N
eff
 in row (eight). Hopping integrals between 

double and single C–C bonds (PE), between sp3 orbitals directed along the same and neighboring covalent bonds 

(AE), and between C atoms within the same benzene ring and the nearest-neighbor rings are denoted in such a way 

that exp (−2η) determines the ratio of the inter-monomer to intra-monomer hopping integrals in the respective tight-

binding Hamiltonians. Equivalent chain has the same length, as the respective oligomer with N
eff
 carbons in row, and 

the same dispersion relation near the band bottom (top), as the conduction (valence) band of the oligomer. 

 
 The observed regularities agree well with the following consideration. For ∆E/W � 1, the behavior of 
δ as a function of energy is controlled by the quadratic dispersion near the conduction band bottom. The 
same is true regarding dependence δ (E 

) near the top of valence band, where it is controlled by the dis-
persion relation E = Et − βMξ 2. Parabolic approximation is reasonable up to about half of the band width, 
which explains why we see divergence between approximate and exact values of δ only for Eg/W > 1. 
 

Table 1 Interrelation between the electronic structure of molecular wires and the maximal tunneling 

constant, dimensionless δ
max

 and dimensional κ
max
 = δ

max
/a

M
, calculated with the tight binding parameters 

suggested in [4, 5]. exp (−2η) determines the ratio between smaller and larger energies of resonance  

electron transfer, see inset in Fig. 1. Other quantities are defined in the text. For shorter oligomers 

(N
C
 < 8), a

M
 (and hence, the apparent effective mass *m  = α me

) is a weakly varying function of molecular 

length. 

 e−2η Eg (eV) W (eV) βM 

(eV) δmax aM (Å) κmax (Å
−1) mM/me α (N � 1) 

PE 0.77  2.00 6.58 7.04 0.27 1.24 0.22 0.35 0.30 
PPP 0.92  3.42 4.56 1.42 0.78 1.06 0.74 2.39 0.39 
AE 0.34  8.51 4.38 1.66 1.08 1.29 0.84 1.38 1.17 
XO 0.14 17.66 2.76 0.80 2.00 1.29 1.55 2.86 1.69 
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3 What is the apparent effective mass? 

Note, it is not the tunneling distance d but rather the number of monomers that appears in calculations of 
the probability of through molecule electron tunneling [11]. To make an instructive comparison of 
δappr(EF) with κ (EF), we introduce a lattice constant aM such that d = aM 

Neff, see inset in Fig. 1. Under the 
tunneling length we understand the distance between the carbons at the molecule termini along the mo-
lecular axis. Calculated values of aM (optimized molecular geometry was found with the use of BP86/6-
31G* method) are represented in Table 1. Obviously, the spectrum of a tight-binding chain with hopping 
integral −βM, at the bottom and top of the band, has the same dispersion relation as that was found above 
for the oligomers. Using this equivalence, we can introduce electron effective mass mM in oligomers 
using the standard relation between the effective mass and hopping integral in the tight-binding chain 
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M 2

M M
2

m
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�
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Now, comparing exp [−2κ (E) d] with exp [−2δ (E) N] and representing notation in Eq. (1) as m* = α
2me, 

we can conclude that the coefficient in front of the free electron mass me can be calculated as 

 M

e eff

m N

m N
α = , (7) 

where Neff = 2N – 1, N, and 4N – 1 for PE, AE (XO), and PPP oligomers, respectively. 
 It is worthwhile mentioning that the apparent effective mass does not repeat the trend of the mM. For 
example, tunneling through PPP oligomers is more efficient, than tunneling through AE oligomers, be-
cause *m  of PPPs is smaller than that of AEs. However, the relation between the respective masses, 
which come out from the band structure calculations, is just the opposite, mM(PPP) > mM(AE). 
 In conclusion, we have suggested a scheme that allows one to classify molecular wires as electrical 
current conductors, by using only two inherent parameters of the wire: the lattice constant of the equiva-
lent tight-binding chain aM and the quadratic dispersion parameter βM. These two parameters are needed 
to determine one phenomenological parameter *m  in the Franz formula. They can be found from the first 
principle calculations with any affordable accuracy. Applications of the scheme are limited to the case of 
equal effective masses of electrons and holes. A generalization that covers tunnel contacts with light and 
heavy charge carriers will be reported elsewhere. 
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