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Signatures of Wannier-Stark and surface states in electron tunneling and related phenomena
Electron transmission through a tilted band
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As predicted by Wannier in 1960, band states quantization in a constant electric fieldEn5const6nE, where
n50,1,2, . . . , andE is proportional to the strength of electric field@this kind of spectrum is commonly referred
as the Wannier-Stark ladder~WSL!#, implies that the probability of tunneling through a tilted band should have
E spaced peaks, at least, under the weak coupling of the band states to the source and drain electrodes. It has
been discovered however@Phys. Rev. B63, 235 410~2001!# that in finite-width crystals, the appearance of the
canonical WSL is preceded by WSL’s with other level spacing, namely,Em8/m /(122m8/m), wherem and
m8,m/2 are positive integers determined by the applied voltage. In the current article, the WSL’s~including
field-induced surface states! are discussed in the context of the electron quantum transport. On the basis of the
tight-binding formalism and Green function technique we have developed a nonperturbative description of
tunneling through a spatially finite tilted band. In this case, a resonance-type structure of the transmission
spectrum of tunneling through a tilted band and its exponential dependence on the electric field strength are
expected from physical arguments supported by earlier related studies. We have derived an explicit expression
of the tunneling probability as a function of the energy of the tunneling electron, electric field strength and
applied voltage. This exhibits some features of the tunneling process in the presence of the electric field, which
have been missed in previous studies. The experimental implications of the results obtained are also outlined.

DOI: 10.1103/PhysRevB.64.195131 PACS number~s!: 73.21.2b, 73.61.2r, 73.90.1f
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I. INTRODUCTION

In 1960 Wannier introduced the concept of the Wanni
Stark ladder~WSL!, associated with the spectrum of electr
band states in a constant electric field.1 This gave rise to a
vast number of publications aimed at developing an in-de
understanding of the electric field effects in solids. In t
1990’s this activity resulted in several reports on the exp
mental observation of the Wannier-Stark~WS! effect, Bloch
oscillations, and related coherent phenomena.2–4 It also
stimulated the appearance of new ideas such as, e.g.
namic localization5 and quasienergy band collapse in tim
dependent electric fields.6–8 The invention of optically
driven lattices has uncovered new possibilities for study
quantum field effects.9–14

In its canonical form, the WSL represents a spectrum
evenly spaced electronic levelsEn5const6nE, where n
50,1,2, . . . , andE ~the level spacing proportional to th
strength of the electric field! is equal to the Plank constan
times Bloch oscillation frequency. In the tight-binding fo
malism, this kind of spectrum is readily expected,15 if the
constant shiftE of the electron on-site~atomic! energy along
the electric field is comparable to the widthEbw of the parent
zero-field band of Bloch electron states. Such an extre
case of the WSL is of little, if any, physical interest though
is easy to think about. In most cases the perturbed band
spectrum emerges as a result of the delicate interplay of
electric field and interatomic interaction effects. Treating
0163-1829/2001/64~19!/195131~14!/$20.00 64 1951
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field parameter as small or large is equally inappropriate
their description.

In the early 1970’s it was realized that the tight-bindin
model presents a unique opportunity to investigate the fi
effects in solids on a rigorous basis of the exact formal
lution of the Schro¨dinger equation.16–19 The corresponding
Green function problem can also be solved without any
striction on the field parameter.20–22 Though a number of
important results have been obtained in this way,16–23 the
fundamental changes of the band spectrum of finite-thickn
crystals in a constant electric field have not been elucida
completely.

In our recent work24 which henceforth will be quoted a
paper I, the full spectrum of a single tilted band has be
classified in terms of a band of the bulk states affected by
field merging into two~lower and upper! bands of field-
induced surface states. The former is termed theextended
states~es! band, if the total electrostatic energy of the a
plied voltageeV is smaller than the zero-field band widt
Ebw . At higher voltageseV.Ebw , the term Wannier-Stark
~WS! band seems to be appropriate. Thees band width de-
creases with the increase ofeV and shrinks to zero ateV
5Ebw . Under certain voltages, thees levels form WSL’s
with the noncanonical level spacingqE, whereq (.1) is
controlled byeV and can be an integer as well as a fraction
number. The WS band, which opens ateV5Ebw , increases
its width proportionally toeV. The finite-thickness correc
tions to the WSL levels in infinite crystals are exponentia
©2001 The American Physical Society31-1
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ALEXANDER ONIPKO AND LYUBA MALYSHEVA PHYSICAL REVIEW B 64 195131
small but not zero. A fundamental difference between thees-
and WS-band states is that the former is extended from
one side of the crystal to the opposite one, while the latte
separated from both crystal sides by the potential barrier
a triangular shape.~In an infinite crystal, these barriers are
infinite width!.

As distinct from the WS states, the field-induced surfa
states are only separated from the other side of the crysta
a triangular barrier. They form what has been called the b
of surface localized states~sls! in the lower and upper part
~with respect to the bulk-state band! of the spectrum. It has
been shown that the WSL actually merges into thesls bands
so that theE spacing is characteristic not only for the W
band but also for the neighboring regions of thesls bands.
Away from the WS band, the level spacing increases. In
middle of thesls bands, the electron levels are quantiz
with doubled Wannier quantum 2E while closer to the spec
trum edges, thesls level quantization behaves in a simila
way to the zeroes of the Airy function.

These and other results have been derived in paper I f
the above mentioned exact solution for the tight-bind
model with a linear dependence of site energies on the fi
Our findings regarding the band spectrum structure of fin
width crystals influenced by the electric field are schem
cally illustrated in Fig. 1. Those of the results which are

FIG. 1. The WSL as it appears from the infinite and sem
infinite crystal models~to the left! and its development~Ref. 24! ~to
the right!; in the upper parteV50.5Ebw , in the lower parteV
52.5Ebw ; Airy5Airy-type spectrum. Vertical dashed lines ma
the crystal area; thick, thinner and thin horizontal lines indicate
band edges, subdivision of the band intoslsandesor WS band, and
one-electron levels, respectively; blank spaces correspond to
energy intervals, where the spectrum does not have a simple ex
expression. To include surfaces states, the WSL concept is un
stood as a one-electron band spectrum determined by the only
parameterE.
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special interest for present consideration will be discus
below in more detail.

The Wannier-Stark effect is intimately interconnect
with two other fundamental electric field effects in solid
Zener tunneling25 and Franz-Keldysh absorption.26 Both of
them involve at least two bands affected by the electric fie
Long ago an exponential dependence on the field param
was shown to be a distinctive feature of both effects.
widely used expression of the exponential factor in the Ze
tunneling probability has been given by McAfeeet al.27 and
Keldysh,28 and rederived by Kane.29 A similar factor in the
interband transition probability has been deduced
Keldysh.26 All the derivations cited imply a small value o
eV in comparison with the band gap and band widths of
zones in question that is not the case in most experiment
this sense the original works26–29 and subsequen
publications,30–33 treated the electrostatic energyeV as a
small perturbation.34

In the nonperturbational approach, this energy, the b
gap and band widths have to be considered on an equal
ing. However, the use of basis sets for an infinite crystal a
particularly the basis wave functions subjected to perio
boundary conditions~which are in a natural conflict with the
electric field effect breaking the system periodicity! compli-
cates if not precludes the development of a consistent n
perturbative technique. With the use of such basis set
good deal of mastership and unique physical intuition
required to obtain correct results regarding electric field
fects. These were certainly present in the classical wo
cited. In their later developments, which are too vast to
covered here, the functional form of the exponential fac
has never been questioned. This makes it all the more im
tant to go beyond the Keldysh and Kane approximatio
without the loss of readability of classical analytical resul

An approach based on the exact Green function of
tight-binding model, which is the method we use in pape
and the present work, is free from the above mentioned
ficulties. An obvious advantage is that once the mode
defined, neither of characteristic parameters is treated
perturbation. Another advantage is that each principal ste
the analytical analysis can be unambiguously controlled
exact computer calculations. So instead of believing or d
believing the derived results, one may just compare th
with what a computer says. Now and then such a check
been illustrated in paper I, and we continue to do so
present consideration.

A consistent description of Zener tunneling and Fran
Keldysh absorption is a hard task even for reasonably s
plified models. Both effects may be thought to include tu
neling through a tilted band~more precisely a bent band! as
a certain stage of the process. Here therefore we concen
on a detailed analytical description of this stage which i
single-band problem. Its solution is also valuable in itse
The tunneling through a single tilted band occurs when,
instance, electrons are transmitted through a superlattice
both the electron tunneling energy and the electrostatic
ergy of the applied voltage do not much exceed the width
the lowest miniband. This is the most obvious example
not the only one, where the present model is straight
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SIGNATURES OF WANNIER-STARK AND SURFACE . . . PHYSICAL REVIEW B 64 195131
wardly applicable on a full scale.
The main contribution of this work is seen in obtaining

explicit expression of the tunneling probability through
spatially finite tilted band. It reveals the resonance struct
of the transmission spectrum and its dependence on the c
acteristic parameters of the system. To a certain extent,
tails of this dependence are model dependent. Most of
conclusions, however, are of a wide significance. In parti
lar, the resonance structure is shown to have distinctive re
larities within thees-, sls-, and WS-band energy interval
Except in the case of theesband, the tunneling probability is
governed by an exponential factor. The functional form
the exponent does not depend on how an electron happe
go in and come out of the tunneling region. This has enab
us to find the exponential factors which describe tunnel
through thesls and WS bands, by using a simple but som
whatad hocprocedure.35 One purpose of this work is also t
give a rigorous proof of these factors. But above all t
present analysis of tunneling through a single tilted ba
opens the door to a nonperturbative analytical description
more complex tunneling phenomena. The Zener tunne
will be addressed next.

This presentation is organized as follows. In Secs. II a
III, the model system of source-~tunneling-region! drain and
basic equations for its description are briefly introduc
Equation ~3! for the transmission coefficient and a set
Green functions in Eqs.~5! and ~6! are most important for
the rest of discussion. Each of the two has a long story o
own and the both of them belong to the established resul
the respective field. Nevertheless a mass of different
proaches, methods, physical contexts, notations, etc.
make it difficult to see the links between our starting eq
tions, and the initial Schro¨dinger problem with the scatterin
boundary conditions. It seems worth mentioning theref
that our two earlier works22,36 contain all the major steps o
the derivation of Eq.~3!, and Eqs.~5! and ~6!. The model
exact expression of the transmission coefficient@which is
given in Eq. ~3! and also used to be called the tunneli
probability# is examined for the energy regions of bulk ele
tron states at low voltages~in Sec. IV!, surface localized
states~in Sec. V!, and bulk electron states at high voltag
~in Sec. VI!. Section VII represents the case of tunneli
outside the band spectrum, and Sec. VIII outlines
main findings and the possibilities of their experimen
verification.

II. MODEL

We have chosen to discuss the electric field effects
tunneling through a spatially finite and energetically
stricted band of electron states in the context of ballis
charge transport in superlattices, where the lowest minib
can be artificially made separate. However, our mode
equally applicable to any thin dielectric monolayer who
electron spectrum~in the direction of the electric field! con-
tains a well defined unfilled band which mixes weakly w
the other bands in the actual range of the applied voltag

The profile of anN-well supperlattice model potential i
shown by a dashed line in Fig. 2. Due to the electron c
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finement in a well, the well spectrum is quantized. Due
tunneling between neighboring wells, the discrete~in its
lower part! spectrum of an isolated well splits into miniband
of allowed electron energies that are separated by en
gaps, which do not contain electron states. Since the he
and width of the barriers can be freely engineered within
wide range, it is definitely possible to have the lowest mi
band separated from the others by an energy interval m
exceeding its band widthEbw . An example of this kind is
represented in Fig. 2.

Under a restriction that the electrostatic potential dr
across the superlattice does not much exceed the magn
of Ebw , the description of the electron transport along t
superlattice can be started from the Hamiltonian matrix fo
single band

Hnn85E@n2~N11!/2#dn,n81d un2n8u,1 , ~1!

where~see Fig. 2! indicesn,n851,N number the wells in the
superlattice;E5eFa/b; e, F, and a are, respectively, the
electron charge absolute value, electric field strength,
superlattice periodicitya5ww1wb ; the energy of electron
resonance transfer between neighboring wellsb serves as an
energy unit; the zero-field energy of the lowest level in t
noninteracting wells~the electron on-site energy! is set equal
to zero.

The eigenvalues of the Hamiltonian matrix~1! lie within
the ~dimensionless! energy interval which is equal toEbw

FIG. 2. Upper part: potential energy profile of anN-well super-
lattice and its two lowest minibands appearing due to the inter-w
tunneling. For a superlattice (AlxGa12xAsAlx* Ga12x* As)N with
the well width ww5100 Å , barrier width wb540 Å , barrier
height50.3 eV, and electron effective mass50.066me , the lowest
miniband width ~for N@1! Ebw53.7 meV, which is 24 times
smaller than the band gap~Ref. 7!. Lower part: The lowest mini-
band tilted by the applied potentialeV, which is smaller~up! and
larger ~down! thanEbw .
1-3
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ALEXANDER ONIPKO AND LYUBA MALYSHEVA PHYSICAL REVIEW B 64 195131
1eV, with eV5E(N21), andEbw54 in units ofb. Exclud-
ing classically inaccessible regions in then-E ‘‘coordinates,’’
one obtains a tilted band of electron states. Such a ban
shown in Fig. 2 for two voltageseV,Ebw and eV.Ebw .
The sloped lines on the band diagrams indicate then-E ~un-
shaded! regions, where the probability of finding an electro
with the given energy in a welln (51,2, . . . ,N) is propor-
tional to the tailing part of the corresponding squared eig
function of Hnn8 . As seen from the figure, if the applie
potential is smaller than the miniband width in the zero fie
eV,Ebw , the band spectrum can be divided into oneesband
and twosls bands; at higher voltageseV.Ebw , theesband
is replaced by a WS band.

Let us assume that from its opposite boundary layers,
superlattice is contacted homogeneously to ideal se
infinite drain and source electrodes and that the interac
between its first (Nth) well and the drain~source! lead can
be described by a single parameterV. The latter means the
electron resonance transfer energy from an atom on the m
surface to the first (Nth) terminal well of the superlattice
Furthermore according to the model, the electrostatic po
tial energy inside the leads is constant~though different! and
drops from the source to drain by the magnitude ofeV, en-
tirely in the region occupied by the superlattice, see ene
diagrams in Fig. 3. Also suppose that the spatial variable
the Hamiltonian of the system drain-superlattice source

FIG. 3. Energy diagrams of lead-superlattice-lead heterost
ture. The electron spectrum of the superlattice is modeled b
single tilted band. At low voltageseV,Ebw ~upper diagram! the
electron energy can be tuned toes-band~resonance tunneling, RT
arrow!, slsband~Fowler-Nordheim type tunneling, FN arrow!, or it
can be out of the tilted band spectrum~through trapezoid barrie
tunneling, TB arrow!. The high voltage case is distinct only by th
tunneling through the mid-part of the tilted band is assisted
Wannier-Stark states~WS arrow!.
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separable and that the field is directed along one of the p
cipal axes. Then, the electron energyE can be broken into a
sum of two nonmixing components which correspond to
energy of electron motion parallel (Ei) and perpendicular
(E') to the electric field and the superlattice growth dire
tion. In such a system, an electron wave having the energE
and propagating freely in the source electrode towards
drain electrode, will be transmitted through the superlatt
with the probabilityT(E,E'). For the model outlined above
finding the transmission probability is a one-dimension
problem.

III. BASIC EQUATIONS

Due to the Landauer-Bu¨ttiker theory37–39 and earlier
works,40 the transmission probability is directly related to th
current-voltage relation. Several established methods ca
used to calculateT(E,E'), see, e.g., Ref. 41. The Gree
function technique is known to be particularly useful for t
development of efficient computational schemes and ana
cal analysis.

Probably it was Caroliet al.42 who first proposed describ
ing tunnel current in metal-insulator-metal heterostructu
in the Green function language. Later on their treatment
been reformulated in a number of physical contexts to exa
ine, in particular, the quantum conductance of molecu
wires.36,43–45 Although the methodology of the electro
transport theory is well developed, it seems to be instrum
tal in outlining the derivation of the transmission coefficie
which then serves as a starting point of the original analy

In the framework of the Green function formalism
T(E,E') is conveniently expressible in terms of the Gre
functions referring the noninteracting source and drain le
and the scattering region, which here is the superlattice.
the model specified in the preceding section, the transmis
probability can be represented as

T~E,E'!54 Im~ŜD!11 Im~ŜS!NNUS 1

EÎ2Ĥ2ŜD2ŜSD
1N
U2

,

~2!

where the matrix of Hamiltonian operatorĤ is
given in Eq. ~1!, the self-energy operator is defined

(ŜD(S))nn85dn,n8dn,1(N)(V 2/b)GD(S)(E,E' ,eV), and
GD(S)(E,E' ,eV) is the surface diagonal matrix element
the drain~source! lead. Notice that Eq.~2! is nothing but a
particular case of the exact general expression which rel
the transmission probability to the Green function of t
open system.41 Details of the derivation of Eq.~2! can be
found in Ref. 36.

The real and imaginary parts of self-energy determine
shift and broadening of superlattice levels as a result of th
interaction with the metal pads. In general, they are ene
dependent. However the miniband width and the range
changes ofeV are far much smaller than the Fermi ener
EF of the contacting leads. On the other hand, for sm

c-
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y
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variations of energy and applied voltage, the local surf
density of statesp21 Im GD(S)(E,E' ,eV) differs only neg-
ligibly from its value at the Fermi energyp21 Im GD(S)(EF).
Moreover, the imaginary part is normally much larger th
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ethe real part of the same diagonal matrix element. It is the

fore justifiable to set (ŜD)115(ŜS)NN5i (V 2/b)Im GD(EF)
5 i (V 2/b)Im GS(EF)[ iA. With these simplifications, Eq
~2! takes the form
T~E!5
4A2G1N

2 ~E!

@11A2GD~E!#21A2@G11~E!2GNN~E!#214A2G1N
2 ~E!

, ~3!
ex-
es,
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whereGD(E)5G11(E)GNN(E)2G1N
2 (E) and the~superlat-

tice! Green function obeys the equation

(
n951

N
~Ednn92Hnn9!Gn9n8~E!5dnn8 . ~4!

Hence the matrix elementsGnn8(E) are the only quantities in
Eq. ~3! which have to be found. They depend solely onEi
and so does the transmission coefficient. Therefore in E
~3!, ~4! and henceforth the subscripti , as well as the indi-
cation of the Green function and the transmission coeffic
dependence on the field and width of the tunneling regi
are omitted for brevity.

As mentioned in the introduction, Eq.~4! has an exact
analytical solution. Its derivation is very similar to the exa
formal solution of the corresponding Schro¨dinger problem
ĤC5EC, found by Stay and Gusman17 for the open-ends
boundary conditions which are used here, and by Saitoh18 for
the periodic boundary conditions. The solution involv
rather cumbersome algebra and can be represented in se
equivalent forms. For the conventions regarding the
numbering and energy reference point accepted in Eq.~1!,
expressions ofG11(E)52GNN(2E) andG1N(E) are given
by22

DN~E,E!G11~E!5Jm1(N21)/2~z!Ym2(N11)/2~z!

2Ym1(N21)/2~z!Jm2(N11)/2~z!, ~5!

DN~E,E!5Jm1(N11)/2~z!Ym2(N11)/2~z!

2Ym1(N11)/2~z!Jm2(N11)/2~z!, ~6!

and DN(E,E)G1N(E)5E/p, where m[E/E, z[2/E, and
Jm(z) and Ym(z) are the Bessel functions of the first an
second kind, respectively.

Before going into a detailed discussion ofT(E) depen-
dence on energy, field strength, and superlattice length, s
relevant remarks might be useful. As is mentioned above
n-E areas of different shape, which are classically access
for electrons~shaded in Figs. 2 and 3! are distinct in their
physical properties. Depending on whether the electrost
energy is smaller or larger than the zero-field band width,
have either a rectangular or parallelogram in between
triangles. The voltages restricted by the conditionseV
,Ebw and eV.Ebw will be referred as low and high volt
ages, respectively. The qualitative difference between
s.

t
,

t

eral
e

e
e
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two cases stems from the fact that the electron states
tended over the entire superlattice can exist at low voltag
but not at high voltages, when theesband is closed and the
WS band opens instead.24

Contrary to extended states, which ‘‘connect’’ the sour
and drain electrodes, the electron states located within ei
of the two triangular areas are separated from the other
of the superlattice by a triangular barrier, see Fig. 3. T
implies that the eigenstates of Hamiltonian~1!, whose ener-
gies are within the shaded triangles, have the amplit
which decays exponentially withn ~lower triangle! or N
2n ~upper triangle!, if the corresponding pair of coordinate
n-E or (N2n)-E is outside the shaded area. This justifi
the use of the term ‘‘surface localized states.’’~The field
inducedsls do exist, if E>12.2/N 3.24! Similarly two trian-
gular barriers from both sides of the WS band make the
states localized. These states decay exponentially away
the shaded parallelogram.

It is thus obvious that depending on the applied volta
and energy of electrons being transmitted through the su
lattice, the electron flux may encounter no barriers at all, o
triangular barrier, two triangular barriers, or a trapezoid b
rier, as exemplified by arrows labeled in Fig. 3 by RT, F
WS, and TB. Correspondingly, we distinguish betwe
physically different cases ofes-assisted or resonance tunne
ing ~arrow RT!, sls-assisted or Fowler-Nordheim-type tun
neling ~arrow FN!, WS states assisted tunneling~arrow WS!,
and through trapezoid barrier tunneling~arrow TB!.

Tunneling through trapezoid and triangular barriers h
been extensively studied in the WKB approximation.46 Such
an approach is inapplicable for the description of the pres
discrete finite band model. In particular it fails to reprodu
the resonance structure ofT(E), which might be expected
for the sls-assisted tunneling, that is tunneling through a t
angular well. Concerning the resonance tunneling transm
sion, the energy and length dependence ofT(E) in zero field
E50 has been examined previously.43 However as is shown
in paper I, the presence of an electric field gives rise to
noncanonical WSL which should be specifically reflected
the transmission spectrum. The expected resonance stru
of sls- and WS-assisted tunneling probability is of the sa
nature as the oscillations predicted for the Zener tunne
probability30,47 and absorption coefficient.31–33,48 However,
no conclusive analytical results have been obtained so fa
the tunneling through a finite tilted band. In the followin
sections, the transmission spectrum will be examined in
1-5
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ALEXANDER ONIPKO AND LYUBA MALYSHEVA PHYSICAL REVIEW B 64 195131
RT, FN, WS, and TB energy intervals, where accurate
plicit expressions ofT(E) can be derived from the mode
exact equations~3!, ~5!, and~6!.

IV. TUNNELING ASSISTED BY EXTENDED STAT es

The noncanonical WSL’s which represent energy levels
extended states lying in the middle of the band spectr
have been introduced and studied in paper I. As already
phasized, this kind of level quantization is characteristic o
for the spectrum midpart and appears at the volta
eVm8/m5(N21)Em8/m,Ebw satisfying the condition

~N21!Em8/m54 cosS p
m8

m D , ~7!

where m and m8,m/2 are positive integers,m53,4, . . . .
For these values of field parameterEm8/m , the eigenenergies
of Hamiltonian~1! form a WSL

El5H l

l 11/2J 1

122m8/m
Em8/m , ~8!

with the upper~lower! factor standing for an oddN52N
11 ~evenN52N) number of wells in the superlattice.

It is seen that the level spacing in Eq.~8! is equal toE
times a numerical factorq51/(122m8/m) which is larger
than unity and takes either an integer or fractional val
Thus unlike the canonical WSL, the equidistant spectrum~8!
holds true only forcertainvalues of the field parameter. An
of the noncanonical WSLs can be obtained only at a uni
voltage. For instance the WSL with triple-E level spacing
should appear when the electrostatic energy is exactly e
to Ebw/2 if N is odd, or toEbw/22E, if N is even.

From the experimental point of view, the spectrum of t
type ~8! El5 lqE is clearly distinguishable from the WS
spectrum En5nE, especially if q52,3, . . . or q51
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12m8/(m22m8) with a not too small second summand.
should be also noticed that Eq.~8! is accurate only for suf-
ficiently large values ofN. For some voltages the correspo
dence between the approximate WSL energies and exac
genvalues@solutions toDN(E,E)50# can be seen in Fig. 4
where the former and the latter are indicated by circles
stars, respectively. In our example,N5101; the increase o
decrease ofN will improve or worsen the accuracy of Eq
~8!.

To expose noncanonical WSL’s in the transmission sp
trum, we obtain an approximation of the Green function m
trix elements at the energiesEn5nE with n equal to a posi-
tive integer subjected to the conditionn!N. Using these
restrictions in Eqs.~5! and~6!, and performing algebra which
is quite in the spirit of the derivation of Eqs.~7! and~8!,24 we
get

G11~En!'
sin@~2n21!x#

sin~2nx!
, ~9a!

GNN~En!'2
sin@~2n11!x#

sin~2nx!
, ~9b!

G1N~En!'~21!N1n11
sinx

sin~2nx!
, ~9c!

wherex5arccos(EN/2). Unlike the exact expressions for th
Green function matrix elements, Eqs.~9a!, ~9b!, and ~9c!
make sense only for large values ofN ~set to be odd!, and
only for the indicated energies. The substitution of the abo
expressions in Eq.~3! yields

T~E5nE!'
4A2 sin2x

4A2 sin2x1sin2~2nx!@112 cos~2x!A21A4#
~10a!

or, equivalently,
T~nE!'
A2~42E 2N2!

A2~42E 2N2!1sin2@2narccos~EN/2!#@~12A2!21A2E 2N2#
. ~10b!
xima
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ral
the
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Note that Eq.~10a! is also valid for high voltages in which
casex5cosh21(EN/2), and sinx and cosx should be re-
placed by sinhx and coshx, respectively.

According to Eq.~10b!, if the applied potential satisfie
Eq. ~7!, the transmission coefficient is equal to unity forE
5nE with n divisible by m, if m is odd, or bym/2, if it is
even. This result makes it obvious thatT(E) has a resonan
celike structure which means that at a fixed voltage,
transmission spectrum as a function of energy has max
Alternatively at a fixed energy, it exhibits maxima as a fun
tion of the applied voltage. The noncanonical WSL’s are th
exposed in the transmission spectrum~see Fig. 4! as almost
equidistant peaks. The level spacing is in good agreem
with formula ~8!. However, approximation~10! does not re-
e
a.
-
s

nt

produce the observed decrease of transmission peak ma
away from the spectrum center. As well seen in Fig. 4, su
a decrease is a pronounced tendency of the exact depend
of the transmission probability on energy. It reflects a gene
trend of resonance tunneling phenomena implying that
total transmission is only possible in totally symmetric sy
tems. In the given case, the system symmetry is broken
the applied potential. The increase ofeV results in an in-
creasing suppression of the transmission peaks close to
es-band edges. A similar effect of suppressing the elect
transmission by the applied potential is known in conve
tional barrier-well-barrier heterostructures.49

Figure 4 also reveals a specific property of noncanon
WSL’s that is in apperant seeming conflict with physical a
1-6
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FIG. 4. Miniband transmission spectrum evolution under increasing voltage: from bottom to topeV52.00, 2.83, 3.24, 3.46, and 3.60
N5101. The exact level energies, i.e., solutions toDN(E,E)50, are indicated by stars. WSLs with noncanonical level spacing 3E1/3, 2E1/4,
5
3 E1/5, 3

2 E1/6, and 7
5 E1/7 are labeled by open circles.
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guments. The comparison of the peak positions for e
larger potential~from bottom to top! shows that the peak
spacingdecreaseswith the increaseof E. This is a reflection
of the predicted increase of the density of states in the m
part of the spectrum in response to voltage increase wi
the range 0,eV,Ebw .24 Such behavior makes the nonc
nonical WSL’s even more easily distinguishable from tho
predicted by Wannier because for the latter, the level spa
and hence peak spacing increases witheV.

Finally for illustrative purposes Fig. 4 represents tran
mission spectra of thees-assisted tunneling for a smaller~to
the right! and larger value of the effective superlattice-t
lead couplinguAu. With the increase of this parameter, th
transmission peaks broaden which is a kind of behavior
pected from other resonance tunneling structures.

V. TUNNELING ASSISTED BY SURFACE LOCALIZED
STATES

By using the standard approximations of Bessel functi
with large arguments and small or large orders,50 it can be
shown that the exact expressions ofG11(E), GNN(E), and
G1N(E) @see Eqs.~5! and ~6!# are accurately reproduce
19513
r

-
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e
g
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s

within the sls-band energy intervalu(Ebw2eV)/2u1E,E
,(Ebw1eV)/22E by the following relations:

H DN~E,E!

DN~E,E!G11~E!

DN~E,E!GNN~E!
J '

E/p

Asinj sinhd
expS 2

E FdD

35
cosS 2

E Fj2
p

4
1j Ded

cosS 2

E Fj2
p

4
1j D

cosS 2

E Fj2
p

4 Ded
6 ,

~11!

where 2 coshd5E1eV/2, Fd5d coshd2sinhd, 2 cosj5E
2eV/2 (0<j<p), andFj5sinj2j cosj. Note that the ex-
cluded E intervals cannot contain more than onesls level
each.

Using the above expressions in Eq.~3!, we get
T~E!5
4A2 sinhd sinj exp~22d!

~11A2e22d!Fcos2S 2

E Fj2
p

4
1j D1A2 cos2S 2

E Fj2
p

4 D G expS 2
4

E FdD , ~12!
1-7
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FIG. 5. Transmission spectrum ofsls-assisted tunneling through the lowest miniband of a 51-well superlattice.~a! The miniband is tilted
by the electrostatic potential differenceeV of ~up to down! 0.5Ebw , 1.5Ebw , and 2Ebw ; uAu50.1 ~weak coupling!. Open and filled circles
indicateE- and 2E-spaced peaks; and those peaks, which follow the Airy spectrum 21eV/22En5@3p(n21/4)E/2#2/32E ~Ref. 24! are
indicated by squares. Dashed envelopes represent Eq.~13! with En

sls replaced byE. ~b! T(E) is calculated from Eq.~3! ~solid lines! and Eq.
~12! ~dashed line! for eV50.5Ebw and uAu50.1 ~weak coupling!, 1 ~intermediate coupling!, and 100~strong coupling!. In both figures~a!
and ~b!, stars indicate the values ofT(En

sls).
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exhibiting a resonancelike structure modulated by a func
exp(24Fd /E) that decays exponentially with the increase
energy.

For the energies of thesls-band levelsEn
sls , given by so-

lutions to equation DN(E,E);cos(2Fj /E2p/41j)50
within the energy intervalu(Ebw2eV)/2u,(Ebw1eV)/2,24 ex-
pression~12! simplifies to

T~En
sls ,E!5

4 sinhdn exp~22dn!

sinjn@11A2 exp~22dn!#
expS 2

4

E FdnD ,

~13!

where dn5cosh21(En
sls/21eV/4) and jn5arccos(En

sls/2
2eV/4). In the case of weak superlattice-to-lead coupl
A2!1, Eq. ~13! determines local maxima ofT(E). Thus
with the replacementEn

sls→E, the right-hand side~RHS! of
Eq. ~13! gives a function that envelops the peaks of tra
mission spectrum in the region ofsls-assisted tunneling.

As seen in Fig. 5, except a smallE interval above the top
of theesor WS band, an explicit analytical description of th
sls-assisted tunneling given by Eq.~12! is indistinguishable
from exact calculations. This is a central result of the sect
It might be worth emphasizing that the details of the re
nance structure ofT(E), e.g., the width and intensity of th
peaks, are model dependent. The factor exp(24Fd /E) pre-
scribes an exponentialdecreasewith the increase of energ
~counted from the spectrum center! and an exponentialin-
creasewith the increase of electric field strength for thesls-
assisted tunneling probability. This is characteristic for
linear drop of the electrostatic potential within the scatter
19513
n
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region. It does not depend therefore on a particular mode
the interface and connection to the leads. The reason for
is that thesls-assisted tunneling is controlled by the exp
nential tailing of thesls wave function in the classically for
bidden region.

The exponential decay of the probability of tunnelin
through thesls band can be evaluated from the ratio of t
probabilities to find an electron with, say, the energyEn

sls in
the first and last wells of the isolated supperlattice. Su
an approach, which is much more simple technically~since
the leads and connection to them are not considered!, gives
a reasonable result even for the pre-exponential facto
the enveloping function35 T(En

sls ,E)5(sinhdn /sinjn)
3exp(22dn)exp(24Fdn

/E), which differs from the correct
expression~13! only by factor of 4.

To make Eqs.~12! and~13! easy readable, one can use
approximate expression

3Fd'H ~E2eV/2!3/2, eV<Ebw,

~E1eV/2!3/2, eV.Ebw,
~14!

whereeV5ueV2Ebwu is the excess of electrostatic potenti
energy over zero-field band width, andeV/2 means the top
of the es band ~WS band! for the low ~high! voltages. The
above approximation reproduces the exact dependence
sonably well up toeV of the order ofEbw , see Fig. 6.

With the use of Eq.~14! in Eqs.~12! and ~13!, the expo-
nential factor exp(24Fd /E) in the latter equations can b
replaced by exp@24(E2eV/2)3/2/(3E)# if eV,Ebw . A simi-
lar factor appears in the Fowler-Nordheim theory of fie
1-8
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FIG. 6. Exact~solid lines! and approximate~dashed lines! dependenciesFd(E) andFd8(E) as they are represented in the text. Functi
Fd(E) is specified in Eqs.~11! ~exact! and~14! ~approximate!; Fd8(E) is represented in Eq.~16!, and its approximate expression is give
by Eq. ~20!. The three upper graphs correspond to thesls band. In the two lower graphs for the WS band, the rising and descending
representFd(E) andFd8(E), respectively; 3Fd

min5(eV/2)3/2, 3Fd
max5(eV)3/2. FunctionsF65Fd6Fd8 are plotted by dotted lines.
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emission.51 A qualitative difference in our result is that th
exponent turns out to be dependent oneV. At high voltages
the factor exp@24(E1eV)3/2/(3E)# does not have any sem
classical analogy. In some more details, the interrelation
tween Eq.~13! and the WKB expression of the tunnelin
probability through a triangular barrier is discussed in R
35.

Effects of coupling on the transmission spectrum of the
band. The superlattice-to-lead connection is dependent
number of factors. In Eq.~3! and subsequent equations, it
represented by a single parameterA which signifies the ef-
fective coupling.36 It may vary by orders of magnitude in th
relevant heterostructures. Therefore it is of interest to tr
the dependence of thesls-band transmission spectrum on th
parameter.

In the discussion aboutes-assisted tunneling, a commo
expectation has been mentioned that with the increas
19513
e-

f.

ls
a

e

in

effective coupling, the resonance structure is smeared
This is indeed true for the case of resonance tunneling
examined above. By contrast, as can be readily seen f
Eq. ~12!, such an expectation is not justified for thesls-
assisted tunneling. The peak positions and their sharpnes
essentially determined by two cosine terms in the denom
tor of RHS in Eq.~12!. In the absence of either of the two
the transmission spectrum would contain infinitely high re
nances. This means that in both the extreme cases of w
coupling (A'0) and strong (A2@1) coupling, thesls trans-
mission spectrum should have a well pronounced resona
structure. For the weak and strong couplings thus specifi
the transmission peaks will be either at thesls energiesEn

sls

or at zeros of cos(2Fj /E2p/4).
If the coupling is weak, the peak spacing repeats the le

spacing within thesls band. In turn the latter is approxi
mately equal toE, 2E, and ruled by the poles of the Airy
1-9
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ALEXANDER ONIPKO AND LYUBA MALYSHEVA PHYSICAL REVIEW B 64 195131
function within the corresponding parts of thesls band, see
Fig. 1. These regularities can thus be observed in thesls-
band transmission spectrum, as illustrated in Fig. 5~a! by
open circles (E spacing!, filled circles (2E spacing!, and
squares~Airy type spectrum!.

For A2@1, the position of the peaks inT(E) is deter-
mined by the zeros of the second summand of the deno
nator in Eq.~12! so that we have instead of Eq.~13!

T~Ep ,E!5
4 sinhdp

sinjp
expS 2

4

E FdpD , ~15!

where the values ofEp are given by solutions to equatio
cos(2Fj /E2p/4)50. These are shifted with respect tosls
energiesEn

sls , and can be shown to obey the same regul
ties as those observed for the eigenvalues. The height o
peaks does not differ much in the cases of strong and w
coupling, as can be seen from the comparison of Eqs.~13!
and~15!. At the same time, ifuAu is large, the wells between
peaks are approximatelyA2 times deeper. Hence in the ca
of sls-assisted tunneling, the strong coupling with the lea
makes the resonance structure of the transmission spec
even more pronounced than that would be expected for
weak coupling. On the other hand, when the effective c
pling is neither strong nor weak (uAu'1), Eq.~12! does not
yield any pronounced structure. This unusual behavior of
sls-band transmission spectrum is illustrated by calculati
of T(E) for different coupling constantsuAu!1, uAu51, and
uAu@1 in Fig. 5~b!. One can see that with the increase in t
interaction between the leads and tilted band, the trans
sion spectrum at first loses its resonance structure and
acquires it again with roughly interplaced peaks and we
and deepened wells.

Summarizing the above analysis, the tunneling assiste
field-induced surface localized states, which appear as a
sult of the band tilting by the applied voltage, is charact
ized by a kind of unique~or at least not often observed!
dependence of the transmission spectrum on the couplin
electron reservoirs involved. Some minimal voltage is
quired for the firstsls to appear. This makessls-assisted tun-
neling possible. A further increase in the applied poten
results in thesls-band opening up to its maximal widthEbw .
The increase of thesls-band width is accompanied by th
in
d
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appearance of peaks inT(E) with the spacing governed b
the following regularities. ForeV,Ebw/2, the peak spacing
is close to that of the Airy spectrum. ForEbw/2,eV,Ebw ,
the Airy type peak spacing gradually changes to the doubE
peak spacing characteristic forHnn8 eigenvalues in the
middle of the maximum-widthsls band. Finally for eV
.Ebw , there is a third characteristic energy interval~close to
the top of the WS band!, where the peaks of the transmissio
probability areE spaced. The latter spacing is common
regarded as the WSL trademark.

VI. TUNNELING ASSISTED BY WANNIER-STARK
STATES

In the energy interval of bulk states~i.e., in the middle of
the full spectrum, see Fig. 1!, switching from low to high
voltages results in an even more profound restructuring
the transmission spectrum. This can be expected since thes
band, the states of which directly connect the source
drain leads, is replaced by the WS band, where the electr
states are localized between two mutually inverse triang
barriers. Tunneling through thees band was already dis
cussed in Sec. IV. The treatment of WS-state assisted tun
ing, which refers to the energy intervalE,eV/22E, is simi-
lar to the analysis of thesls-band transmission spectrum.

In the present case however, the explicit expressions
the Green function matrix elements for largeN are different
for the WSL energiesEn'nE(N52N11) and forEÞEn .
For the latter case we have

H DN~E,E!

DN~E,E!G11~E!

DN~E,E!GNN~E!
J '

~21!NE sin~pE/E!

pAsinhd sinhd8
expS 2

E F1D

3H ed1d8

ed8

2ed
J , ~16!

where 2 coshd85eV/22E, F15Fd1Fd8 , andFd8
5d8 coshd82sinhd8. The use of Eq.~16! in Eq. ~3! yields
an explicit expression
T~E!'
4A2 sinhd sinhd8

sin2~pE/E!$@exp~d1d8!2A2#21A2~expd1expd8!2%
expS 2

4

E F1D , ~17!
-

cal
which provides an accurate description of the tunnel
probability within the WS band, except the above indicateE
interval and energies close to values ofnE, see Fig. 7. For
the WSL energies, instead of Eq.~17! we have

T~nE,E!'
4 sinhdn exp@22~dn2dn8!#

sinhdn8@11A2 exp~22dn!#
expS 2

4

E Fn
2D , ~18!
gwhereFn
25Fdn

2Fd
n8
, 2 coshdn5eV/21nE, and 2 coshdn8

5eV/22nE.
In the case of weak coupling, Eq.~18! has the same mean

ing for the WS band, as Eq.~13! has for theslsband. Under
the replacementnE→E ~hence dn ,dn8 ,Fn

2→d,d8,F2

5Fd2Fd8 , respectively! the functionT(E) defined in Eq.
~18! envelops the transmission spectrum over its lo
1-10
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FIG. 7. Transmission spectrum
of WS-states assisted tunnelin
through the lowest miniband of a
51-well superlattice. The solid and
dashed oscillating lines represe
exact and approximate expressio
of T(E) given in Eqs. ~3! and
~18!, respectively. The maxima en
velope corresponds to Eq.~18!
with nE replaced by E, and
minima envelope corresponds t
Eq. ~19!. In upper partuAu50.1; in
the middle, uAu51; and for two
lower graphs,uAu5100.
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maxima. The envelope is reproduced equally well by E
~10a! with the replacement of the trigonometric functio
which appear in expression~10a!, by their hyperbolic coun-
terparts.

By analogy the expression of the transmission coefficie
that follows from Eq.~17! at the energiesEn5(n11/2)E
~for oddN), may be called the minima envelope. Its expre
sion is given by

T~E!'
4A2 sinhd sinhd8

@exp~d1d8!2A2#21A2~expd1expd8!2

3expS 2
4

E F1D . ~19!

The maxima- and minima-enveloping functions shown
Fig. 7 exhibit a striking difference in their dependence
energy. The reason for this can be clarified by using appr
mation ~14! and its analog forFd8

3Fd8'~eV/22E!3/2, ~20!

the accuracy of which is illustrated in Fig. 6. The expone
of the enveloping functions are thus defined simply as a
ference (4F2/E) and a sum (4F1/E) of two FN-type expo-
nents 4(eV/21E)3/2/(3E) and 4(eV/22E)3/2/(3E). It is no-
ticeable that Eqs.~14! and ~20! meet the requirementsF2

50, F152Fd
min5eV3/2/(3A2) at the middle of the WS

bandE50, andF15F25Fd
max5eV3/2/3 at the top of the

WS bandE5eV/2. These estimates make it easily quant
able that there is a huge difference between the maxima
minima envelopes in the middle of the WS band.
19513
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An extremely sharp resonance structure, exhibited by
transmission spectrum of the WS-state assisted tunne
has the same nature as the well-known phenomenon of r
nance tunneling through a barrier-well-barrier structure.
the given case, the barriers are of a triangular shape.
structure is only totally symmetric~and the transmission co
efficient is equal or close to unity for odd and evenN, re-
spectively! at the middle of the spectrumE50. The increase
or decrease in energy strongly suppresses the local ma
of electron transmission because of the increasing sys
asymmetry. In contrast, because the total length of the
barriers is independent of energy, the minima envelope
T(E) does not depend on energy so strongly.

As can be concluded from Eqs.~18! and ~19! and is ex-
emplified in Fig. 7, the sharpness of the resonance struc
in the case of electron transmission through the WS ban
largely insensitive to the coupling strength unlike thesls-
assisted tunneling. Hence tunneling through the midpart
tilted band may serve as a nearly ideal energy filter. T
anomalous sharpness and exponential decrease of the
distant peaks can also be regarded as a distinctive signa
of Bloch oscillations in tunneling through the tilted band a
related phenomena such as Zener tunneling through a
band47 and Franz-Keldysh oscillations.31

VII. TUNNELING THROUGH THE TRAPEZOID BARRIER

In this section we briefly consider the case of tunneli
indicated in Fig. 3 by the TB arrow. The energy is thus su
posed to be outside the tilted bandE.(Ebw1eV)/2. For
large N and smallE, the use of approximate expressio
similar to Eq.~16! in the transmission probability~3! gives
1-11
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T~E!5
16A2 sinha sinhd exp@22~a1d!#

11A2@exp~22a!1exp~22d!#1A4 exp@22~a1d!#
expF2

4

E ~Fd2Fa!G , ~21!
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where 2 cosha5E2eV/2. The definition ofa differs from
that of d8 only by an interreplacementE↔eV/2, see Eq.
~16!.

Under the restrictions indicated above, the energy
field dependence described by Eq.~21! ~solid lines in Fig. 8!
is in excellent agreement with the model exact Eq.~3!. A
divergence is only appreciable for the energies which
close to thesls band. For this latter region Eq.~21! predicts
a somewhat different probability of tunneling if compar
with the exact values ofT(E) ~the difference is not seen i
Fig. 8!.

Equation ~21! and particularly, the exponential facto
exp@24(Fd2Fa)/E# looks very much distinct from the usua
WKB expression of the tunneling probability through a tra
ezoid barrier. Nevertheless the equivalence of Eq.~21! and
WKB result for eV!Ebw can be proved by passing to th
continuous limit. This can be done in the same way as
Fowler-Nordheim-type exponential factor has been deri
from Eq. ~13!.35 Skipping rather tedious calculations, he
we only present the final result for the WKB equivalent
Eq. ~21! ~dashed line in Fig. 8!

FIG. 8. Tunneling probability above~or below! the tilted band,
calculated from Eqs.~21! and ~22! for different voltages~as indi-
cated!, is represented by solid and dashed lines, respectively
calculations,N551, uAu50.1.
19513
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TWKB~E!5
16A2 sinh2d exp~22d!

@11A2 exp~22d!#2

3expF22dNS 12
eV

4d2D G . ~22!

On the other hand, in the zero-field limit, Eq.~21! transforms
into

T(0)~E!5
16A2 sinh2d (0)exp~22d (0)!

@11A2 exp~22d (0)!#2
exp~22d (0)N!,

~23!

where 2 coshd(0)5E. It is seen that without the second ter
in the exponent, Eq.~22! as a function ofd coincides with
the zero-field expression~23! as a function ofd (0); d and
d (0) signify the imaginary electron wave vector within th
barrier.

This result proves the identity ofTWKB(E) with Eq. ~21!
in a zero-field limit. Moreover up to the values ofeV com-
parable withEbw , the WKB expression~22! describes tun-
neling through a trapezoid barrier reasonably well, see F
8, but it fails in the case of high voltages. It is worth recallin
that we are discussing trapezoid barriers capped by a t
band, and not by an unbounded free electron spectrum.

So Eqs.~21!, ~12!, and~17! give an accurate explicit de
scription of electron tunneling specified in Fig. 3 by TB, FN
and WS arrows, respectively. Equation~17! corresponds to a
purely quantum case of WS-states assisted tunneling
therefore it does not have a semiclassical analog, as do
~12! and ~21!.

VIII. CONCLUSION

The transmission probability, describing electron ballis
transport between two leads connected electronically vi
single tilted band, is presented as an explicit function of
electron energy, the electric field parameter, the thicknes
the contact~given by a superlattice, dielectric layer, or re
evant item! and the parameter of lead effective coupling
the contacting region. The derived expressions bring to li
all the characteristic dependencies of the tunnel event, fa
tating the understanding of every point that one would like
know about this particular model of electric field effects
tunneling. A number of conclusions are made throughout
discussion and their manifold physical and experimental
plications are illustrated in various ways. No doubt all
them were to some extent present in numerous related s
ies but had never been elucidated with the present degre
explicitness and completeness covering all the typical sit
tions consistent with the model.

An experimental verification of our results requires
In
1-12
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technique which allows one to measure the energy dep
dence of the electron transmission coefficient directly and
different applied voltages. This is a challenging experimen
problem which can be solved by means of ballistic-electr
emission microscopy52 or other specially designed tech
niques. For more traditional and less informative methods
the tunneling-current spectroscopy, the observation of p
dicted effects seems to be more problematic. The cur
response to a change in the applied voltage is contribute
by a combination of all electron states within the correspo
ing energy interval near the Fermi energy. The summation
the contributions, that is the integration of the transmiss
coefficient preserves some structure ofI-on-V dependence
which is incomparably less pronounced than that of
transmission spectrum. However, the predicted exponen
dependencies remain easily recognizable and can be use
the interpretation of the current spectroscopy experime
The obtained explicit forms of the transmission coefficie
make it easy to predict what kind of theI -V relation should
be expected. At the same time the particular form of theI (V)
:

ys

.
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s.
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curve is also strongly dependent on the zero-field position
the Fermi energies in the contacting leads and the portio
the total electrostatic potential which drops linearly along
tunneling region. Therefore modeling ofI -V relations only
makes sense in the context of specified samples and ex
mental conditions. This goes beyond the scope of the pre
analysis.

Further generalization of the presented results, to co
the two-band processes such as Zener tunneling and F
Keldysh effect, looks highly desirable. In this respect, t
understanding and methodology developed are helpful
not sufficient to attain the goal. Work in this direction
currently in progress.
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