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As predicted by Wannier in 1960, band states quantization in a constant electrig fielwbnstt n&, where
n=0,1,2 ..., and¢is proportional to the strength of electric fidlthis kind of spectrum is commonly referred
as the Wannier-Stark laddenSL)], implies that the probability of tunneling through a tilted band should have
£ spaced peaks, at least, under the weak coupling of the band states to the source and drain electrodes. It has
been discovered howevEPhys. Rev. B63, 235 410(2001)] that in finite-width crystals, the appearance of the
canonical WSL is preceded by WSL's with other level spacing, nan&ly,,/(1—2m’'/m), wherem and
m’<m/2 are positive integers determined by the applied voltage. In the current article, the W8lusling
field-induced surface stateare discussed in the context of the electron quantum transport. On the basis of the
tight-binding formalism and Green function technique we have developed a nonperturbative description of
tunneling through a spatially finite tilted band. In this case, a resonance-type structure of the transmission
spectrum of tunneling through a tilted band and its exponential dependence on the electric field strength are
expected from physical arguments supported by earlier related studies. We have derived an explicit expression
of the tunneling probability as a function of the energy of the tunneling electron, electric field strength and
applied voltage. This exhibits some features of the tunneling process in the presence of the electric field, which
have been missed in previous studies. The experimental implications of the results obtained are also outlined.
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[. INTRODUCTION field parameter as small or large is equally inappropriate for
their description.

In 1960 Wannier introduced the concept of the Wannier- In the early 1970'’s it was realized that the tight-binding
Stark laddefWSL), associated with the spectrum of electron model presents a unique opportunity to investigate the field
band states in a constant electric fitl@ihis gave rise to a effects in solids on a rigorous basis of the exact formal so-
vast number of publications aimed at developing an in-deptfution of the Schrdinger equatior®='° The corresponding
understanding of the electric field effects in solids. In theGreen function problem can also be solved without any re-
1990's this activity resulted in several reports on the experistriction on the field parametét-?> Though a number of
mental observation of the Wannier-Stdkl'S) effect, Bloch  important results have been obtained in this Way: the
oscillations, and related coherent phenom®falt also  fundamental changes of the band spectrum of finite-thickness
stimulated the appearance of new ideas such as, e.g., dgrystals in a constant electric field have not been elucidated
namic localizatioh and quasienergy band collapse in time- completely.

dependent electric fields® The invention of optically In our recent work* which henceforth will be quoted as
driven lattices has uncovered new possibilities for studyingoaper 1, the full spectrum of a single tilted band has been
quantum field effects: classified in terms of a band of the bulk states affected by the

In its canonical form, the WSL represents a spectrum ofield merging into two(lower and upper bands of field-
evenly spaced electronic leves,=consttné, where n induced surface states. The former is termed @ktended
=0,1,2..., and€ (the level spacing proportional to the states(es band, if the total electrostatic energy of the ap-
strength of the electric fieJds equal to the Plank constant plied voltageeV is smaller than the zero-field band width
times Bloch oscillation frequency. In the tight-binding for- E,, . At higher voltagese V>E,,,, the term Wannier-Stark
malism, this kind of spectrum is readily expect@df the  (WS) band seems to be appropriate. Tésband width de-
constant shif€ of the electron on-sitéatomig energy along creases with the increase el and shrinks to zero aV
the electric field is comparable to the widg,, of the parent =E,,. Under certain voltages, thes levels form WSL's
zero-field band of Bloch electron states. Such an extremwith the noncanonical level spacirgf, whereq (>1) is
case of the WSL is of little, if any, physical interest though it controlled byeV and can be an integer as well as a fractional
is easy to think about. In most cases the perturbed band statember. The WS band, which openseat=E,,,, increases
spectrum emerges as a result of the delicate interplay of thigs width proportionally toeV. The finite-thickness correc-
electric field and interatomic interaction effects. Treating thetions to the WSL levels in infinite crystals are exponentially
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—_— —_ . special interest for present consideration will be discussed
— —— ]A"y below in more detail.

- o— - The Wannier-Stark effect is intimately interconnected
e — ‘ q€ with two other fundamental electric field effects in solids:

: : — Zener tunnelin@® and Franz-Keldysh absorptiéhBoth of
——— 2 them involve at least two bands affected by the electric field.
— — JAiry Long ago an exponential dependence on the field parameter

was shown to be a distinctive feature of both effects. A
widely used expression of the exponential factor in the Zener

— —— tunneling probability has been given by McAfeeal?” and
E— — Keldysh?® and rederived by Kan€.A similar factor in the

: : — P interband transition probability has been deduced by
o Keldysh?® All the derivations cited imply a small value of

! ! — eV in comparison with the band gap and band widths of the
S —— zones in question that is not the case in most experiments. In
— — | & this sense the original works?® and subsequent
— —_ publications®=33 treated the electrostatic energ@V as a
small perturbatiorf*

! ! — ¥ In the nonperturbational approach, this energy, the band
- - gap and band widths have to be considered on an equal foot-
i — | Airy ing. However, the use of basis sets for an infinite crystal and

particularly the basis wave functions subjected to periodic
FIG. 1. The WSL as it appears from the infinite and semi-boundary conditionswhich are in a natural conflict with the

infinite crystal modelsto the lefy and its developmen(Ref. 24 (to  €lectric field effect breaking the system periodigiepmpli-

the right; in the upper pareV=0.5E,, in the lower partev  cates if not precludes the development of a consistent non-
=2.5E,,,; Airy=Airy-type spectrum. Vertical dashed lines mark perturbative technique. With the use of such basis sets, a
the crystal area; thick, thinner and thin horizontal lines indicate thegood deal of mastership and unique physical intuition are
band edges, subdivision of the band istsandesor WS band, and required to obtain correct results regarding electric field ef-
one-electron levels, respectively; blank spaces correspond to thfects. These were certainly present in the classical works
energy intervals, where the spectrum does not have a simple expliaifited. In their later developments, which are too vast to be
expression. To include surfaces states, the WSL concept is undetovered here, the functional form of the exponential factor
stood as a one-electron band spectrum determined by the only fieldas never been questioned. This makes it all the more impor-

parametet. tant to go beyond the Keldysh and Kane approximations
without the loss of readability of classical analytical results.
small but not zero. A fundamental difference betweenebe An approach based on the exact Green function of the

and WS-band states is that the former is extended from thiéght-binding model, which is the method we use in paper |
one side of the crystal to the opposite one, while the latter isnd the present work, is free from the above mentioned dif-
separated from both crystal sides by the potential barriers dfculties. An obvious advantage is that once the model is
a triangular shapéin an infinite crystal, these barriers are of defined, neither of characteristic parameters is treated as a
infinite width). perturbation. Another advantage is that each principal step of
As distinct from the WS states, the field-induced surfacethe analytical analysis can be unambiguously controlled by
states are only separated from the other side of the crystal lgxact computer calculations. So instead of believing or dis-
a triangular barrier. They form what has been called the bantelieving the derived results, one may just compare them
of surface localized statdsls) in the lower and upper parts with what a computer says. Now and then such a check has
(with respect to the bulk-state bandf the spectrum. It has been illustrated in paper I, and we continue to do so in
been shown that the WSL actually merges intoslebands  present consideration.
so that thef spacing is characteristic not only for the WS A consistent description of Zener tunneling and Franz-
band but also for the neighboring regions of #le bands. Keldysh absorption is a hard task even for reasonably sim-
Away from the WS band, the level spacing increases. In th@lified models. Both effects may be thought to include tun-
middle of thesls bands, the electron levels are quantizedneling through a tilted bantmore precisely a bent bahds
with doubled Wannier quantuméwhile closer to the spec- a certain stage of the process. Here therefore we concentrate
trum edges, thesls level quantization behaves in a similar on a detailed analytical description of this stage which is a
way to the zeroes of the Airy function. single-band problem. Its solution is also valuable in itself.
These and other results have been derived in paper | frorihe tunneling through a single tilted band occurs when, for
the above mentioned exact solution for the tight-bindinginstance, electrons are transmitted through a superlattice and
model with a linear dependence of site energies on the fieldoth the electron tunneling energy and the electrostatic en-
Our findings regarding the band spectrum structure of finiteergy of the applied voltage do not much exceed the width of
width crystals influenced by the electric field are schematithe lowest miniband. This is the most obvious example but
cally illustrated in Fig. 1. Those of the results which are ofnot the only one, where the present model is straightfor-
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wardly applicable on a full scale.

The main contribution of this work is seen in obtaining an
explicit expression of the tunneling probability through a
spatially finite tilted band. It reveals the resonance structure
of the transmission spectrum and its dependence on the chat
acteristic parameters of the system. To a certain extent, de:
tails of this dependence are model dependent. Most of the
conclusions, however, are of a wide significance. In particu-
lar, the resonance structure is shown to have distinctive regu-
larities within thees, sls, and WS-band energy intervals.
Except in the case of thesband, the tunneling probability is
governed by an exponential factor. The functional form of
the exponent does not depend on how an electron happens t©
go in and come out of the tunneling region. This has enabled
us to find the exponential factors which describe tunneling
through thesls and WS bands, by using a simple but some-
whatad hocprocedure®® One purpose of this work is also to
give a rigorous proof of these factors. But above all the
present analysis of tunneling through a single tilted band
opens the door to a nonperturbative analytical description of
more complex tunneling phenomena. The Zener tunneling
will be addressed next. FIG. 2. Upper part: potential energy profile of AAwell super-

This presentation is organized as follows. In Secs. Il andattice and its two lowest minibands appearing due to the inter-well
11, the model system of sourcgunneling-regiondrain and ~ tunneling. For a superlattice (&b ASAl«Ga_x«AS)y with
basic equations for its description are briefly introducedthe well width w,,=100 A, barier widthw,=40 A, barrier
Equation (3) for the transmission coefficient and a set of N€ight=0.3 eV, and electron effective mas8.066n., the lowest
Green functions in Eqg5) and (6) are most important for Miniband width (for A>1) E;,=3.7 meV, which is 24 times
the rest of discussion. Each of the two has a long story of it§T/1€r than the band gaef. 7. Lower part: The lowest mini-
own and the both of them belong to the established results i and tilted by the applied potential, which is smaller(up) and
the respective field. Nevertheless a mass of different apf:1 rger (down) than By,
proaches, methods, physical contexts, notations, etc. maﬁl ti I th I i . tized. Due t
make it difficult to see the links between our starting equa- nement in a well, the well spectrum 1S quantized. Due 1o

tions, and the initial Schtinger problem with the scattering tnneling between neighboring wells, the discréae its

boundary conditions. It seems worth mentioning thereforéOWer par} spectrum of an i§olated well splits into minibands
that our two earlier work&3 contain all the major steps of of allowed electron energies that are separated by energy

the derivation of Eq(3), and Eqs.(5) and (6). The model gaps, yvhich do not cpntain electron states._Since the_ h_eight
exact expression (?f(tr)we trans%is(si)on co(e?ficiémhich is a'i‘d width Of. the bar rers can b.e freely engineered W|th|_n.a
given in Eq.(3) and also used to be called the tunnelingw'de range, it is definitely possible to have the _Iowest mini-

probability] is examined for the energy regions of bulk elec- band separated from the others by an energy interval much

tron states at low voltage8n Sec. V), surface localized exceeding its band widtky,. An example of this kind is

: : ted in Fig. 2.
states(in Sec. V}, and bulk electron states at high voItagesreF’resen P . .
(in Sec. V). Section VIl represents the case of tunneling Under a restriction that the electrostatic potential drop

outside the band spectrum, and Sec. VIl outlines oL ACross the superlattice does not much exceed the magnitude

main findings and the possibilities of their experimentalOf Eow, t.he description of the electron t.rans.port a'°.”9 the
verification. superlattice can be started from the Hamiltonian matrix for a

single band
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Il. MODEL
Hun =N = (N+ 1)/2] 8 00+ Sl 1 D

We have chosen to discuss the electric field effects on o
tunneling through a spatially finite and energetically re-where(see Fig. 2indicesn,n’ =1, number the wells in the
stricted band of electron states in the context of ballisticsuperlattice;f=eFa/3; e, F, and a are, respectively, the
charge transport in superlattices, where the lowest minibandlectron charge absolute value, electric field strength, and
can be artificially made separate. However, our model isuperlattice periodicitya=w,,+w,; the energy of electron
equally applicable to any thin dielectric monolayer whoseresonance transfer between neighboring wglserves as an
electron spectruniin the direction of the electric fieJdcon-  energy unit; the zero-field energy of the lowest level in the
tains a well defined unfilled band which mixes weakly with noninteracting wellgthe electron on-site enerpis set equal
the other bands in the actual range of the applied voltage. to zero.

The profile of anV-well supperlattice model potential is The eigenvalues of the Hamiltonian mat(i¥ lie within
shown by a dashed line in Fig. 2. Due to the electron conthe (dimensionlessenergy interval which is equal t&,,
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separable and that the field is directed along one of the prin-
drain source cipal axes. Then, .the electron ener@yaap be broken into a
sum of two nonmixing components which correspond to the

energy of electron motion paralleE() and perpendicular
(E,) to the electric field and the superlattice growth direc-
tion. In such a system, an electron wave having the engrgy

== —FN— and propagating freely in the source electrode towards the

—TB— drain electrode, will be transmitted through the superlattice

— with the probabilityT(E,E, ). For the model outlined above,
finding the transmission probability is a one-dimensional
problem.

energy (E)

Ill. BASIC EQUATIONS

Due to the Landauer-Biiker theory’=3° and earlier
works?° the transmission probability is directly related to the
current-voltage relation. Several established methods can be
used to calculatel (E,E,), see, e.g., Ref. 41. The Green
function technique is known to be particularly useful for the
development of efficient computational schemes and analyti-
E— no levels —— cal analysis.
filled levels filled levels Probably it was Carolét al*? who first proposed describ-
ing tunnel current in metal-insulator-metal heterostructures

FIG. 3. Energy diagrams of lead-superlattice-lead heterostruc- . .
ture. The electron spectrum of the superlattice is modeled by [ the Green function language. Later on their treatment has

single tilted band. At low voltagesV<E,, (upper diagramthe  2€€MN reform_ulated in a number of physical contexts to exam-
electron energy can be tuned ésband (resonance tunneling, RT 'N€: 1N ‘E)Sa_ztécular, the quantum conductance of molecular
arrow), slsband(Fowler-Nordheim type tunneling, FN arrgpor it~ WIr€s- Although the methodology of the electron
can be out of the tilted band spectruthrough trapezoid barrier transport theory is well developed, it seems to be instrumen-
tunneling, TB arrow. The high voltage case is distinct only by that tal in outlining the derivation of the transmission coefficient

tunneling through the mid-part of the tilted band is assisted bywhich then serves as a starting point of the original analysis.
Wannier-Stark state@VS arrow. In the framework of the Green function formalism,

T(E,E,) is conveniently expressible in terms of the Green
i - o , functions referring the noninteracting source and drain leads
+eV, witheV=¢E(N-1), andEp,=4 in units of 3. Exclud- 44 the scattering region, which here is the superlattice. For

ing classically inaccessible regions in ik “coordinates,”  the model specified in the preceding section, the transmission
one obtains a tilted band of electron states. Such a band [§opability can be represented as

shown in Fig. 2 for two voltagesV<E,,, and eV>E,,.
The sloped lines on the band diagrams indicatentte (un-

shadeglregions, where the probability of finding an electron 1 2
with the given energy in a welt (=1,2,... N) is propor-  [EE )=4 Im(iD)lllm(is)N% (f> J 7
tional to the tailing part of the corresponding squared eigen- El-H-3P-3S
function of H,,,,. As seen from the figure, if the applied . (2)

potential is smaller than the miniband width in the zero field,
eV<E,,, the band spectrum can be divided into @s®and ) o .~
and twosls bands: at higher voltagesV>E,,,, theesband ~Where the matrix of Hamiltonian operato is
is replaced by a WS band. given in Eqg. (1), the self-energy operator is defined as
Let us assume that from its opposite boundary layers, thexP®) . =68, 18,1V B)GPO(EE, ,eV), and
superlattice is contacted homogeneously to ideal semiGPS(E E, ,eV) is the surface diagonal matrix element of
infinite drain and source electrodes and that the interactiothe drain(source lead. Notice that Eq(2) is nothing but a
between its first {/th) well and the drair(source lead can particular case of the exact general expression which relates
be described by a single parametérThe latter means the the transmission probability to the Green function of the
electron resonance transfer energy from an atom on the metapen systerfi! Details of the derivation of Eq(2) can be
surface to the first{/th) terminal well of the superlattice. found in Ref. 36.
Furthermore according to the model, the electrostatic poten- The real and imaginary parts of self-energy determine the
tial energy inside the leads is constétfiough differentand  shift and broadening of superlattice levels as a result of their
drops from the source to drain by the magnitudeedf en-  interaction with the metal pads. In general, they are energy
tirely in the region occupied by the superlattice, see energglependent. However the miniband width and the range of
diagrams in Fig. 3. Also suppose that the spatial variables ofhanges oV are far much smaller than the Fermi energy
the Hamiltonian of the system drain-superlattice source ar&g of the contacting leads. On the other hand, for small
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variations of energy and applied voltage, the local surfacehe real part of the same diagonal matrix element. It is there-
density of statesr™*Im GP9(E,E, ,eV) differs only neg-  fore justifiable to set¥P),,=(55) yy=i(V?/8)Im G°(E;)
ligibly from its value at the Fermi energy * Im GP(Ey). =i(V?B)ImGS(Eg)=iA. With these simplifications, Eq.
Moreover, the imaginary part is normally much larger than(2) takes the form

~ 4A%GE\(E)
" [1+A2G,(E) 12+ AZ[G14(E) — Grn( E) ]2+ 4A2G2,(E)

T(E) 3

whereG,(E)=G;1(E)G NME)—GfN(E) and the(superlat- two cases stems from the fact that the electron states ex-
tice) Green function obeys the equation tended over the entire superlattice can exist at low voltages,
but not at high voltages, when tlesband is closed and the
N WS band opens inste&d.
,Z (Ednnw—Hnw)Grrn (E) = 6y - (4) Contrary to extended states, which “connect” the source
=t and drain electrodes, the electron states located within either
Hence the matrix elemen@,, (E) are the only quantities in  of the two triangular areas are separated from the other side
Eg. (3) which have to be found. They depend solely®n  of the superlattice by a triangular barrier, see Fig. 3. This
and so does the transmission coefficient. Therefore in Eqsmplies that the eigenstates of Hamiltoniél), whose ener-
(3), (4) and henceforth the subscript as well as the indi- gies are within the shaded triangles, have the amplitude
cation of the Green function and the transmission coefficientvhich decays exponentially witm (lower triangle or N
dependence on the field and width of the tunneling region;—n (upper trianglg, if the corresponding pair of coordinates
are omitted for brevity. n-E or (M—n)-E is outside the shaded area. This justifies
As mentioned in the introduction, Eq4) has an exact the use of the term “surface localized state¢The field
analytical solution. Its derivation is very similar to the exactinducedsls do exist, if £=12.2/\.2% Similarly two trian-
formal solution of the corresponding Schinger problem gular barriers from both sides of the WS band make the WS
H¥=EW, found by Stay and Gusm&hfor the open-ends states localized. These states decay exponentially away from
boundary conditions which are used here, and by SHifon  the shaded parallelogram.
the periodic boundary conditions. The solution involves It is thus obvious that depending on the applied voltage
rather cumbersome algebra and can be represented in sevedH energy of electrons being transmitted through the super-
equivalent forms. For the conventions regarding the sitdattice, the electron flux may encounter no barriers at all, one
numbering and energy reference point accepted in(Eg. triangular barrier, two triangular barriers, or a trapezoid bar-
expressions 06 4(E) = — G (— E) andG,,(E) are given rier, as exemplified by arrows labeled in Fig. 3 by RT, FN,
by?? WS, and TB. Correspondingly, we distinguish between
physically different cases @fsassisted or resonance tunnel-
DME,OG1(E) =3+ wv-1)A DY - (v 1) 2) ing (arrow RT), sls-assisted or Fowler-Nordheim-type tun-
neling (arrow FN), WS states assisted tunnelitarow WS,
Y1222, 6) gpg through trapezoid barrier tunnelitgrrow TB).
Tunneling through trapezoid and triangular barriers has
DMEE) =t w1y DY - (v 12(2) been extensively studied in the WKB approximatf6rsuch
(6) an approach is inapplicable for the description of the present
discrete finite band model. In particular it fails to reproduce
and D,(E,§)G\(E)=&lm, where u=E/&, z=2/E, and  the resonance structure @{E), which might be expected
J,.(2) and Y ,(z) are the Bessel functions of the first and for the sls-assisted tunneling, that is tunneling through a tri-
second kind, respectively. angular well. Concerning the resonance tunneling transmis-
Before going into a detailed discussion B(E) depen-  sion, the energy and length dependence& @) in zero field
dence on energy, field strength, and superlattice length, song=0 has been examined previousfyHowever as is shown
relevant remarks might be useful. As is mentioned above thin paper |, the presence of an electric field gives rise to the
n-E areas of different shape, which are classically accessibleoncanonical WSL which should be specifically reflected in
for electrons(shaded in Figs. 2 and) &re distinct in their  the transmission spectrum. The expected resonance structure
physical properties. Depending on whether the electrostatiof sls- and WS-assisted tunneling probability is of the same
energy is smaller or larger than the zero-field band width, wenature as the oscillations predicted for the Zener tunneling
have either a rectangular or parallelogram in between tw@robability®®>*” and absorption coefficierit-33“® However,
triangles. The voltages restricted by the conditiod¥  no conclusive analytical results have been obtained so far for
<Eyp, andeV>E,,, will be referred as low and high volt- the tunneling through a finite tilted band. In the following
ages, respectively. The qualitative difference between theections, the transmission spectrum will be examined in the

=Yt v 02D I vy 2),
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RT, FN, WS, and TB energy intervals, where accurate ex-+2m’'/(m—2m’) with a not too small second summand. It
plicit expressions off(E) can be derived from the model should be also noticed that E) is accurate only for suf-
exact equation$3), (5), and(6). ficiently large values ofV. For some voltages the correspon-
dence between the approximate WSL energies and exact ei-
genvaluegsolutions toD,(E,£)=0] can be seen in Fig. 4,
IV. TUNNELING ASSISTED BY EXTENDED STAT es where the former and the latter are indicated by circles and
) ) stars, respectively. In our exampl&’=101; the increase or
The noncanonical WSL's which represent energy levels ofjecrease of\” will improve or worsen the accuracy of Eq.
extended states lying in the middle of the band spectrunyg,
have been introduced and studied in paper I. As already em- T4 expose noncanonical WSL's in the transmission spec-
phasized, this kind of level quantization is characteristic onlyrym, we obtain an approximation of the Green function ma-
for the spectrum midpart and appears at the voltagegiy elements at the energi,=né with n equal to a posi-

€V im= (V= 1) im<Epy satisfying the condition tive integer subjected to the condition<\V. Using these
m’ restrictions in Eqs(5) and(6), and performing algebra which
(N=1)Ewm=4 COS< WF) , (7) s quite in the spirit of the derivation of Eq&) and(8),%* we
et
wherem and m’<m/2 are positive integeran=34, ... . 9 T (on—1
For these values of field paramet&y ., the eigenenergies G.(E.)~ M 9
. . ll( n) f ’ ( a)
of Hamiltonian(1) form a WSL sin(2ny)
| 1 sin(2n+1) x|
= —_, Gu(Ey)~— ————, 9b
El ‘|+1/2}1_2m,/m8m /m> (8) N/\/( n) S|n(2nX) ( )
with the upper(lower) factor standing for an oddv=2N siny
+1 (evenAN'=2N) number of wells in the superlattice. GiMEn)~(— 1)N+"+1M, (90

It is seen that the level spacing in E@) is equal to&
times a numerical factog=1/(1—2m’/m) which is larger  wherey=arccos€N/2). Unlike the exact expressions for the
than unity and takes either an integer or fractional valueGreen function matrix elements, Eq®a), (9b), and (9¢)
Thus unlike the canonical WSL, the equidistant spectt@m make sense only for large values .bf (set to be ody and
holds true only forcertainvalues of the field parameter. Any only for the indicated energies. The substitution of the above
of the noncanonical WSLs can be obtained only at a uniquexpressions in Eq.3) yields
voltage. For instance the WSL with triptedevel spacing

should appear when the electrostatic energy is exactly equa_l_(E 6 4A? sirfy
to E,/2 if AVis odd, or toE,,/2—¢&, if Nis even. =ne)~——— , PV
From the experimental point of view, the spectrum of the 4A% sir?y +sinf(2ny)[1+2 cog2x) A +(?0]a)
type (8) E;=I1q€ is clearly distinguishable from the WS
spectrum E,=n&, especially if g=2,3,... or gq=1 or, equivalently,
|
A?(4—E?N?)
T(n&) (10b)

- A%(4— E2N?) +sirf[2narccosEN/2) [(1— A?)2+ A2E2N?]

Note that Eq.(10a is also valid for high voltages in which produce the observed decrease of transmission peak maxima
case y=cosh }(éN/2), and siny and cosy should be re- away from the spectrum center. As well seen in Fig. 4, such
placed by sinky and cosly, respectively. a decrease is a pronounced tendency of the exact dependence
According to Eq.(10b), if the applied potential satisfies of the transmission probability on energy. It reflects a general
Eq. (7), the transmission coefficient is equal to unity r trend of resonance tunneling phenomena implying that the
=n& with n divisible by m, if mis odd, or bym/2, if it is  total transmission is only possible in totally symmetric sys-
even. This result makes it obvious tHB{E) has a resonan- tems. In the given case, the system symmetry is broken by
celike structure which means that at a fixed voltage, thehe applied potential. The increase @ results in an in-
transmission spectrum as a function of energy has maximareasing suppression of the transmission peaks close to the
Alternatively at a fixed energy, it exhibits maxima as a func-esband edges. A similar effect of suppressing the electron
tion of the applied voltage. The noncanonical WSL's are thugransmission by the applied potential is known in conven-
exposed in the transmission spectr(gee Fig. 4 as almost  tional barrier-well-barrier heterostructurés.
equidistant peaks. The level spacing is in good agreement Figure 4 also reveals a specific property of noncanonical
with formula (8). However, approximatiof10) does not re- WSL's that is in apperant seeming conflict with physical ar-
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FIG. 4. Miniband transmission spectrum evolution under increasing voltage: from bottom &3/tef.00, 2.83, 3.24, 3.46, and 3.60;
N=101. The exact level energies, i.e., solution®tE,£) =0, are indicated by stars. WSLs with noncanonical level spaciig 32,4,
2&us, 316, andL&, ), are labeled by open circles.

guments. The comparison of the peak positions for evewithin the slsband energy interval|(E,,—eV)/2|+ E<E
larger potential(from bottom to top shows that the peak <(Ey,+eV)/2—¢& by the following relations:
spacingdecreasesvith the increaseof £. This is a reflection

of the predicted increase of the density of states in the mid-
DME,$)

part of the spectrum in response to voltage increase within

the range @eV< Ebw-24 Such behavior makes the nonca- DME,E)Gy4(E) %‘%Texp<2¢,§)
nonical WSL's even more easily distinguishable from those ysingsinhé €

DME,E)Cp(E)

predicted by Wannier because for the latter, the level spacing
and hence peak spacing increases with

Finally for illustrative purposes Fig. 4 represents trans-
mission spectra of thesassisted tunneling for a smalléo
the righ) and larger value of the effective superlattice-to-
lead coupling|A|. With the increase of this parameter, the
transmission peaks broaden which is a kind of behavior ex-
pected from other resonance tunneling structures.

N\
e($

( 2(1) [
cos = (2+§

-~

S(ZCD T

24)775
RS VR

e

V. TUNNELING ASSISTED BY SURFACE LOCALIZED

(11)
STATES

where 2 cosld=E+eV2, ® ;= 5coshé—sinhé, 2 cosé=E
By using the standard approximations of Bessel functions-eV2 (0= é=< ), and®,.=siné—£&cosé. Note that the ex-
with large arguments and small or large ord@rit, can be  cluded € intervals cannot contain more than osks level
shown that the exact expressions®f,(E), G\\(E), and  each.
G \(E) [see Egs.(5) and (6)] are accurately reproduced Using the above expressions in E§), we get

4A2sinhésiné exp(—26)

T(E)=
(1+A%e™2%)

2 2(1) T
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—_
o

tunneling probability (T)

energy (E-eV/2) energy (E-eV/2)

FIG. 5. Transmission spectrum sis-assisted tunneling through the lowest miniband of a 51-well superlatficEhe miniband is tilted
by the electrostatic potential differene&/ of (up to down) 0.5E,,,, 1.5E,,,, and ZE,,,; |A|=0.1 (weak coupling. Open and filled circles
indicate &- and 2-spaced peaks; and those peaks, which follow the Airy spectrara\82— E,=[3m(n— 1/4)£/2]?°— & (Ref. 24 are
indicated by squares. Dashed envelopes represeriiLBqwith Eﬁ's replaced byE. (b) T(E) is calculated from Eq(3) (solid lineg and Eq.
(12) (dashed lingfor eV=0.5E,, and|A|=0.1 (weak coupling, 1 (intermediate coupling and 100(strong coupling In both figures(a)
and (b), stars indicate the values @{ES'").

exhibiting a resonancelike structure modulated by a functiomegion. It does not depend therefore on a particular model of

exp(—4ds/E) that decays exponentially with the increase ofthe interface and connection to the leads. The reason for this

energy. is that thesls-assisted tunneling is controlled by the expo-
For the energies of thelsband levelsES'S, given by so-  nential tailing of thesls wave function in the classically for-

lutions to equation Dy(E,E)~cos(2b./E—m/4+£)=0  bidden region.

within the energy interval(Epy,— e V)/2], (Epy+ e V) /2.2 ex- The exponential decay of the probability of tgnneling
pression(12) simplifies to through thesls band can be evaluated from the ratio of the
probabilities to find an electron with, say, the eneliﬂ'/S in
4 sinhé,, exp(— 25, 4 the first and last wells of the isolated supperlattice. Such
T(ESS,&)=— xp( - =0 ) an approach, which is much more simple technicéiynce
sin&[1+AZexp(—26,)] e the leads and connection to them are not considemides

13 a reasonable result everggor the Pre-exponential factor of
. ) Sls m T .

where 8,=cosh }ESY2+eV/4) and &,=arccosES'S2 the enveloping functiont T(E, ",£)=(sinhéy/sinéy)
—eV/4). In the case of weak superlattice-to-lead couplingxeXp(_?5”)eXp(_4®5n/5)' which differs from the correct
A2<1, Eq. (13) determines local maxima of (E). Thus  expressior(13) only by factor of 4.
with the replacemeriES'>—E, the right-hand sidéRHS) of To make Eqs(12) and(13) easy readable, one can use an
Eq. (13) gives a function that envelops the peaks of trans2PProximate expression
mission spectrum in the region efs-assisted tunneling. ov/2)32 V<E

As seen in Fig. 5, except a sméllinterval above the top 3P ~ (E—i/Z) » EVSEpw (14)
of theesor WS band, an explicit analytical description of the o (E+eVi2)%2 eV>Ey,,
sls-assisted tunneling given by E@L2) is indistinguishable — ) ) )
from exact calculations. This is a central result of the sectionhereeV=|eV—Ey,] is the excess of electrostatic potential
It might be worth emphasizing that the details of the reso-energy over zero-field band width, aed/2 means the top
nance structure 6 (E), e.g., the width and intensity of the Of the esband (WS band for the low (high) voltages. The
peaks, are model dependent. The factor exsbs/E) pre- above approximation reproduces the exact dependence rea-
scribes an exponentiaglecreasewith the increase of energy Ssonably well up teeV of the order ofE,,,, see Fig. 6.
(counted from the spectrum centemd an exponentigh- With the use of Eq(14) in Egs.(12) and(13), the expo-
creasewith the increase of electric field strength for thle-  nential factor exp¢4®d,4/&) in the latter equations can be
assisted tunneling probability. This is characteristic for thereplaced by exp-4(E—eV2)%%(3&)] if eV<Ey,,. A simi-
linear drop of the electrostatic potential within the scatteringlar factor appears in the Fowler-Nordheim theory of field
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o eriergy o

FIG. 6. Exact(solid line9 and approximatédashed linesdependencie® s(E) and® s (E) as they are represented in the text. Function
® 4(E) is specified in Eqs(11) (exac) and(14) (approximatg @ 4 (E) is represented in Eq16), and its approximate expression is given
by Eg.(20). The three upper graphs correspond to shlsband. In the two lower graphs for the WS band, the rising and descending lines
representb 5(E) and® 5 (E), respectively; ®T"=(eV/2)*?, 3dT>= (eV)*2 Functionsh*=® ;+d 5 are plotted by dotted lines.

emissiorr! A qualitative difference in our result is that the effective coupling, the resonance structure is smeared out.
exponent turns out to be dependentevt At high voltages This is indeed true for the case of resonance tunneling as
the factor ex[r4(E+a/)3/2/(3g)] does not have any semi- €xamined above. By contrast, as can be readily seen from
classical analogy. In some more details, the interrelation beEd. (12), such an expectation is not justified for tisés:
tween Eq.(13) and the WKB expression of the tunneling assisted tunneling. The peak positions and their sharpness are
probability through a triangular barrier is discussed in Refessentially determined by two cosine terms in the denomina-
35. tor of RHS in Eq.(12). In the absence of either of the two,
Effects of coupling on the transmission spectrum of the slghe transmission spectrum would contain infinitely high reso-
band. The superlattice-to-lead connection is dependent onrances. This means that in both the extreme cases of weak
number of factors. In E¢(3) and subsequent equations, it is coupling (A~0) and strong A?>1) coupling, theslstrans-
represented by a single paramefewhich signifies the ef- mission spectrum should have a well pronounced resonance
fective coupling®® It may vary by orders of magnitude in the structure. For the weak and strong couplings thus specified,
relevant heterostructures. Therefore it is of interest to tracéhe transmission peaks will be either at #lgenergiesES's
the dependence of thsés-band transmission spectrum on this or at zeros of cos@®,/E— 7/4).
parameter. If the coupling is weak, the peak spacing repeats the level
In the discussion abowgsassisted tunneling, a common spacing within thesls band. In turn the latter is approxi-
expectation has been mentioned that with the increase imately equal tof, 2&, and ruled by the poles of the Airy
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function within the corresponding parts of teks band, see appearance of peaks (E) with the spacing governed by
Fig. 1. These regularities can thus be observed inslke the following regularities. FoeV<E,,/2, the peak spacing
band transmission spectrum, as illustrated in Fi@) By is close to that of the Airy spectrum. F&;,/2<eV<E,,,
open circles £ spacing, filled circles (Z£ spacing, and the Airy type peak spacing gradually changes to the dogible
squareqAiry type spectrum peak spacing characteristic fdd,, eigenvalues in the
For A>1, the position of the peaks iM(E) is deter- middle of the maximum-widthsls band. Finally foreV
mined by the zeros of the second summand of the denomi>E,,,, there is a third characteristic energy inter(@bse to

nator in Eq.(12) so that we have instead of E(.3) the top of the WS bandwhere the peaks of the transmission
) probability are£ spaced. The latter spacing is commonly
T(E 5):4 ?'”h5p exr{ _ fq)é ) (15 regarded as the WSL trademark.
P sing, g %)’

where the values oE, are given by solutions to equation
cos(2b,/E— w/4)=0. These are shifted with respect sts
energiesEf,'S, and can be shown to obey the same regulari-
ties as those observed for the eigenvalues. The height of the |n the energy interval of bulk statége., in the middle of
peaks does not differ much in the cases of strong and weake full spectrum, see Fig.)1switching from low to high
coupling, as can be seen from the comparison of EtR).  voltages results in an even more profound restructuring of
and(15). At the same time, ifA| is large, the wells between the transmission spectrum. This can be expected sincesthe
peaks are approximatey? times deeper. Hence in the case band, the states of which directly connect the source and
of sls-assisted tunneling, the strong coupling with the leadsirain leads, is replaced by the WS band, where the electronic
makes the resonance structure of the transmission spectrustates are localized between two mutually inverse triangular
even more pronounced than that would be expected for thearriers. Tunneling through thes band was already dis-
weak coupling. On the other hand, when the effective coucussed in Sec. IV. The treatment of WS-state assisted tunnel-
pling is neither strong nor weakA|~1), Eq.(12) does not  ing, which refers to the energy intervek e VI2— &, is simi-
yield any pronounced structure. This unusual behavior of thggr to the analysis of thels-band transmission spectrum.
slsband transmission spectrum is illustrated by calculations | the present case however, the explicit expressions of
of T(E) for different coupling constan{#\|<1, |A[=1,and  the Green function matrix elements for largéare different

|A[>1 in Fig. 5b). One can see that with the increase in thefor the WSL energie€,~n&(N=2N+1) and forE+E,,.
interaction between the leads and tilted band, the transmissgr the latter case we have

sion spectrum at first loses its resonance structure and then
acquires it again with roughly interplaced peaks and wells, DE,&)

VI. TUNNELING ASSISTED BY WANNIER-STARK
STATES

and deepened wells. DUE,E)GH(E) b ~ (~D"Esin(E/E) eXF{E(I)Jr)
Summarizing the above analysis, the tunneling assisted by m+/sinhS sinhé’ &
field-induced surface localized states, which appear as a re- DME,E)CaME)
sult of the band tilting by the applied voltage, is character- Y
ized by a kind of uniqugor at least not often observed €
dependence of the transmission spectrum on the coupling to xXq e ¢, (16)
electron reservoirs involved. Some minimal voltage is re- 5
quired for the firstslsto appear. This makess-assisted tun- €
neling possible. A further increase in the applied potentialwhere 2 cosld’ =eVI2—E, ® =D ;+ D5, andd 4
results in thesls-band opening up to its maximal widy,, . =6’ coshd’ —sinh¢§'. The use of Eq(16) in Eq. (3) yields
The increase of thels-band width is accompanied by the an explicit expression
|
4A%sinhssinh &’ p( 4 +)
~ exp — = , (17)
sSir?(wE/E){[exp( 8+ 6') — A?]?+ A®(expS+expd’)?} €

which provides an accurate description of the tunneling/vhere@rj:cbﬁn—d)ﬁr, 2 coshs,=eVI2+n¢, and 2 cosls,
probability within the WS band, except the above indicafed —eV2—né "
interval and energies close to valuesn#f, see Fig. 7. For '

the WSL energies, instead of EQL7) we have ing for the WS band, as E413) has for theslsband. Under
4 sinhs, exd —2(8,— 81)] % 4 the replacementné—E (hence é,,6,,P,—4,6",P
exp —
&

- > —cb;), (19 = ;— D, respectively the functionT(E) defined in Eq.
sinh [ 1+ A exp(—24,)] (18) envelops the transmission spectrum over its local

In the case of weak coupling, E@.8) has the same mean-

T(nE, &)~
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eV=6 eV=8
10° 10°
FIG. 7. Transmission spectrum

— of WS-states assisted tunneling
) 10 1070 through the lowest miniband of a
2 10° 10° 51-well superlattice. The solid and
= dashed oscillating lines represent
= - exact and approximate expressions
2 of T(E) given in Egs.(3) and
; (18), respectively. The maxima en-
£ . velope corresponds to Eq.18)
P 102 1070 with n€ replaced by E, and
g 100 100 minima envelope corresponds to
= EQ.(19). In upper partA|=0.1; in

_ the middle, |A|=1; and for two

lower graphs|A|=100.
|
:A‘
102 ' 107 ‘
0 05 1 0 1 2
energy (E) energy (E)

maxima. The envelope is reproduced equally well by Eq. An extremely sharp resonance structure, exhibited by the
(109 with the replacement of the trigonometric functions transmission spectrum of the WS-state assisted tunneling,
which appear in expressidi0a, by their hyperbolic coun- has the same nature as the well-known phenomenon of reso-
terparts. nance tunneling through a barrier-well-barrier structure. In

By analogy the expression of the transmission coefficientihe given case, the barriers are of a triangular shape. The
that follows from Eq.(17) at the energie€,=(n+1/2)  structure is only totally symmetri@nd the transmission co-
(for odd V), may be called the minima envelope. Its expres-efficient is equal or close to unity for odd and evaf re-
sion is given by spectively at the middle of the spectrul=0. The increase

or decrease in energy strongly suppresses the local maxima

4A2 sinhssinhs’ of electron transmission because of the increasing system
T(E)~ asymmetry. In contrast, because the total length of the two
[exp(5+ 8") — A®]?+ A%(exps+expd’)? barriers is independent of energy, the minima envelope of
4 T(E) does not depend on energy so strongly.
xex% - E¢+)' (19 As can be concluded from Eqgl8) and (19) and is ex-

emplified in Fig. 7, the sharpness of the resonance structure
The maxima- and minima-enveloping functions shown inin the case of .ejlectron transmis;ion through the. WS band is
Fig. 7 exhibit a striking difference in their dependence onl@rgely insensitive to the coupling strength unlike tsle-
energy. The reason for this can be clarified by using approxi@Ssisted tunneling. Hence tunneling through the midpart of a
mation (14) and its analog forb tited band may serve as a nearly ideal energy filter. The
anomalous sharpness and exponential decrease of the equi-
— 3 distant peaks can also be regarded as a distinctive signature
305 ~(eVi2—E)"%, (20) of Bloch oscillations in tunneling through the tilted band and
the accuracy of which is illustrated in Fig. 6. The exponentg€/ated phenomena such as Zener tunneling through a third
of the enveloping functions are thus defined simply as a ditband” and Franz-Keldysh oscillatioris.
ference (4 /€) and a sum (@ */£) of two FN-type expo-
nents 4eV/2+E)%?%(3&) and 4eVi2—E)¥%(3¢). It is no-
ticeable that Eqs(li) and (20) meet the requiremeni® ~ VII. TUNNELING THROUGH THE TRAPEZOID BARRIER
=0, @ =207"=eV¥(3,2) at the middle of the WS In this section we briefly consider the case of tunneling
bandE=0, and®*=® " =d7*=eV*%3 at the top of the indicated in Fig. 3 by the TB arrow. The energy is thus sup-
WS bandE=eV/2. These estimates make it easily quantifi- posed to be outside the tilted bamkd>(E,+eV)/2. For
able that there is a huge difference between the maxima arldrge A" and small&, the use of approximate expressions
minima envelopes in the middle of the WS band. similar to Eq.(16) in the transmission probabilit{3) gives
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16A2 sinha sinhdexf —2(a+ 6)] 4
T(E): expg — _(q)ﬁ_q)a) ’ (21)
1+Aexp—2a)+exp —28)]+A%exd —2(a+8)] g
|
where 2 cosle=E—eV2. The definition of« differs from 16A2 sinP 8 exp — 26)
that of 8’ only by an interreplacemer«eV/2, see Eq. Twke(E)= > 5
(16) [1+A EX[X—Z(S)]
Under the restrictions indicated above, the energy and eV
field dependence described by Eg1) (solid lines in Fig. 8 Xexr{ _25% 1— _2) ) (22)
is in excellent agreement with the model exact Eg). A 46

divergence is only appreciable for the energies which ar
close to thesls band. For this latter region E¢R21) predicts

a somewhat different probability of tunneling if compared
with the exact values of (E) (the difference is not seen in

On the other hand, in the zero-field limit, E@1) transforms
into

_ 16A%sint? 5 @exp(—25')

Fig. 8). TO(E) exp(— 28N,
Equation (21) and particularly, the exponential factor [1+AZexp —26©)]?
exd —4(®s—d,)/&] looks very much distinct from the usual (23

WKB expression of the tunneling probability through a trap-

ezoid barrier. Nevertheless the equivalence of @q) and in the exponent, Eq22) as a function of8 coincides with
WKEB result for eV<Ey,, can be proved by passing to the o 10 field expressiof®3) as a function ofs®; & and

continuous limit. This can be done in the same way as theyo) signify the imaginary electron wave vector within the
Fowler-Nordheim-type exponential factor has been deriveg),rier.

from Eq. (13).%° Skipping rather tedious calculations, here  This result proves the identity Gfyys(E) with Eq. (21)

we only present the final result for the WKB equivalent of j, 5 zero-field limit. Moreover up to the values e¥/ com-

Eq. (21) (dashed line in Fig. B parable withEy,,, the WKB expressior{22) describes tun-
neling through a trapezoid barrier reasonably well, see Fig.
8, but it fails in the case of high voltages. It is worth recalling
that we are discussing trapezoid barriers capped by a tilted
band, and not by an unbounded free electron spectrum.

So Egs.(21), (12), and(17) give an accurate explicit de-
scription of electron tunneling specified in Fig. 3 by TB, FN,
and WS arrows, respectively. Equati@v) corresponds to a
purely quantum case of WS-states assisted tunneling and
therefore it does not have a semiclassical analog, as do Eqs.
(12) and(22).

where 2 cosldP=E. It is seen that without the second term

VIIl. CONCLUSION

The transmission probability, describing electron ballistic
transport between two leads connected electronically via a
single tilted band, is presented as an explicit function of the
0.6 electron energy, the electric field parameter, the thickness of

the contact(given by a superlattice, dielectric layer, or rel-
10 evant item and the parameter of lead effective coupling to
-10 the contacting region. The derived expressions bring to light
all the characteristic dependencies of the tunnel event, facili-
02 tating the understanding of every point that one would like to
know about this particular model of electric field effects on
10 tunneling. A number of conclusions are made throughout the
discussion and their manifold physical and experimental im-
energy (E-2-eV/2) plications are illustrated in various ways. No doubt all of
them were to some extent present in numerous related stud-

FIG. 8. Tunneling probability abovéor below the tilted band,  i€s but had never been elucidated with the present degree of
calculated from Eqs(21) and (22) for different voltagegas indi-  explicitness and completeness covering all the typical situa-
cated, is represented by solid and dashed lines, respectively. Ifions consistent with the model.
calculations A'=51, |A|=0.1. An experimental verification of our results requires a

tunneling probability (T)
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technique which allows one to measure the energy deperturve is also strongly dependent on the zero-field position of
dence of the electron transmission coefficient directly and athe Fermi energies in the contacting leads and the portion of
different applied voltages. This is a challenging experimentathe total electrostatic potential which drops linearly along the
problem which can be solved by means of ballistic-electrontunneling region. Therefore modeling 6fV relations only
emission microscopy or other specially designed tech- makes sense in the context of specified samples and experi-
nigues. For more traditional and less informative methods ofental conditions. This goes beyond the scope of the present
the tunneling-current spectroscopy, the observation of preanalysis.

dicted effects seems to be more problematic. The current Further generalization of the presented results, to cover
response to a change in the applied voltage is contributed tine two-band processes such as Zener tunneling and Franz-
by a combination of all electron states within the correspondKeldysh effect, looks highly desirable. In this respect, the
ing energy interval near the Fermi energy. The summation ofinderstanding and methodology developed are helpful but
the contributions, that is the integration of the transmissiomot sufficient to attain the goal. Work in this direction is
coefficient preserves some structure ledn-V dependence currently in progress.

which is incomparably less pronounced than that of the
transmission spectrum. However, the predicted exponential
dependencies remain easily recognizable and can be used for
the interpretation of the current spectroscopy experiments.
The obtained explicit forms of the transmission coefficient
make it easy to predict what kind of theV relation should
be expected. At the same time the particular form ofl (8
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