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Noncanonical Wannier-Stark ladders and surface state quantization in finite crystals subjected
to a homogeneous electric field
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In the one-particle single band approximation, which is the basis of the original Wannier result, commonly
referred to as the Wannier-Stark ladder~WSL!, we have extended the concept by predicting the existence of
noncanonical WSLs which are a set of evenly spaced levels~in the middle of the tilted band! with noncanoni-
cal level spacingequal to the Plank constant times (122m8/m)21 times Bloch oscillation frequency. To
observe a particular WSL, the certain voltage must be applied. The latter is related to the numbersm
53,4, . . . andm851,2, . . .,m/2. We also show that, if the electrostatic energy due to applied voltage is
larger than the zero-field band width, the quantization of surface localized states smoothly changes from the
Airy type ~at the spectrum edges! to the Wannier-Stark type with a pronounced energy interval in between,
where the level spacing doubles that of canonical WSL. Analytical results are derived within the exactly
solvable model of finite tilted tight-binding band. Their experimental implications and further-to-go directions
are addressed to dielectric crystalline layers and superlattices, whose thickness~length! admits the direct
tunneling.

DOI: 10.1103/PhysRevB.63.235410 PACS number~s!: 73.21.2b, 73.61.2r, 73.90.1f
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I. INTRODUCTION

Since a notion of the Stark ladder was proposed by W
nier in 1960~Ref. 1! and after many years of debates a
controversy, the quantization of electronic band states
constant electric field@the Wannier-Stark ladder~WSL!#
should have developed into one of basic concepts of s
state. During last decade an impressive progress has
achieved in the understanding of Wannier-Stark~WS! quan-
tization and related phenomena such as Zener tunneling2 and
Franz-Keldysh effect,3 especially, in superlattices,4–7 see
also reviews in Refs. 8–10, and driven optical lattices,11 see
also references therein.

Along with models approaching various aspects of r
systems~multiband structure, electron-electron and electro
phonon interactions, edge effects, etc.! the one- and two-
band tight-binding approximation has been widely used
discussions of WSLs.12–16 Even the one band model reflec
salient essentials of real systems, admits obtaining analy
results and may serve, therefore, as a starting point for m
accurate theories. It is also often used for checking and
terpreting numerical results which are dominant in the fi
because of the problem complexity.

One band tight-binding model of aninfinite crystal sub-
jected to a constant electric field was solved exactly
Hacker and Obermair9 to prove that the eigenvalues do for
WSL while the corresponding eigenfunctions are localiz
within the tilted band. The electron state localization is th
shifting in space along the field. Using the same model
for a finite crystal Saitoh10 pointed out that for a WSL to
appear, the potential energy of the applied voltage must
ceed some critical value shown likely to be~but not proved!
the band width. The coexistence of the Airy-type a
0163-1829/2001/63~23!/235410~10!/$20.00 63 2354
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Wannier-type spectra in finite crystals was also discussed
neither of these has been derived consistently from the b
Schrödinger equation. For open boundaries the existence
WSL was explicitly demonstrated by Stay and Gusman14 on
the basis of the exact formal solution to the Schro¨dinger
problem. However, they left out of focus the surface st
spectrum and, as is shown below, their estimate of the b
states energies~that is WSLs in finite crystals! needs to be
corrected.

Fukuyamaet al.15 and in a more recent work Yakovenk
and Goan17 have obtained both the Airy and Wannier-Sta
spectra from one and the same equation for a semi-infi
tight-binding chain. For this reason~see details in Sec. VI!
their results are limited only to the case, where the to
electrostatic energy is larger than the electron band wid
The Airy-type quantization has been obtained for the v
edge of the spectrum. Thus it is not representative for
most of edge states. As to the bulk states spectrum, b
works just repeated the earlier result obtained for infin
systems.

The current presentation removes the above mentio
weaknesses. It offers a more detailed and, in certain asp
more accurate description of bulk and surface states, whic
based on the mentioned above exactformal solution of the
spectral problem for a finite tight-binding chain. Under t
conditions not limiting its applicability much, that solution
advanced further to an explicit form of eigenvalues for
number of cases of interest. The obtained conclusions
valid for practically any crystal thickness and applied volta
attainable in real experiments.

Recently, some of our findings have been briefly
ported.18 The aim of this article is to give a complete class
fication of electronic states subjected to a constant elec
©2001 The American Physical Society10-1
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ALEXANDER ONIPKO AND LYUBA MALYSHEVA PHYSICAL REVIEW B 63 235410
field in a one-particle single band approximation with
emphasis on explicit analytical results and their experime
implications. We predict the existence of WSLs with nonc
nonical level spacing controlled by the applied voltage a
new types of quantization for surface states, namely, w
Wannier and doubled Wannier level spacing.

The article is organized as follows. An exact secular eq
tion for the problem in focus is introduced in Sec. II. Th
analysis of bulk states spectrum at low and high voltage
performed in Secs. III and IV, respectively. Section V cla
sifies surface localized states and gives explicit express
for the eigenvalues in different energy intervals. The res
obtained for a finite crystal thickness at high voltages
rederived for a semi-infinite crystal in Sec. VI, which al
links our results with previous studies. Section VII summ
rizes the main findings of the work, outlines the conditio
for their experimental verification, and points to directio
for their further usage.

II. PROBLEM STATEMENT AND BASIC EQUATIONS

The gross structure of a single band spectrum in prese
of a constant electric field can readily be understood in te
of a finite tilted band represented in Fig. 1. The middle a
lower diagrams distinguish, respectively, the cases oflow
@the electrostatic energy differenceeV is smaller than the
unperturbed band widthEbw

0 (eV,Ebw
0 )] and high (eV

.Ebw
0 ) applied voltages; while the upper exhibits the unp

turbed band (eV50).
We consider a symmetric tight-binding band under

influence of a constant electric field. Since the spectrum
the system is symmetric with respect to its center~denoted in
Fig. 1 asEc) it is convenient to useEc as the energy refer
ence point. Equivalently, one can assume that the elec
static potential energy varies symmetrically with respect
the crystal center and use the zero energy as the refer
point. With the latter choice, the Hamiltonian matrix has t
form

Hmn52eFaS N11

2
2nD dm,n1bd um2nu,1 , ~1!

wheren,m51,N, Na is the crystal thickness~see Fig. 1!,
ande, F, anda are, respectively, the absolute value of ele
tron charge, electric field strength, and lattice constant;b is
the energy of electron resonance transfer between neigh
ing sites; the electron site energy in zero field is set equa
zero. In what follows,b serves as the energy unit, notatio
E5eFa/b stands for the field parameter,Ebw

0 54, andeV
5E(N21) is the energy of electrostatic potential applied
the bounding surfaces which are supposed to be perpen
lar to one of the crystal principal axes.

It has been shown by many authors13–16,19that finding the
eigenvalues of matrixHmn , which are given by zeros of th
determinant

DN ~E!5uEdm,n2b21Hmnu50, ~2!
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can be reduced to the solution of a certain transcendent e
tion. For the matrix defined in Eq.~1!, the functional form of
the determinant is represented by the equation19

DN ~E!5Jm1(N11)/2~z!Ym2(N11)/2~z!

2Ym1(N11)/2~z!Jm2(N11)/2~z!, ~3!

wherem[E/E, z[2/E, andJm(z) andYm(z) are the Besse
functions of the first and second kind, respectively. For ot
forms of Eqs.~2! and ~3! see, e.g., Refs. 13–16.

Our main purpose is to give~with a minimal loss of ac-
curacy! a more clear form of Eq.~3! which admits obtaining
analytical solutions to Eq.~2!. This is done under the condi
tion E!1 and N@1 covering most cases of interest. A
underlying derivations are based on the standard approx
tions of Bessel functions with large arguments and smal
large orders. The particular approximation to be used
pends on the energy interval. Basically our approach is si
lar to that used in Ref. 15. However, as it will be seen ve

FIG. 1. Untilted~upper! and tilted~middle and lower! bands of
electronic levels in a crystal of finite thickness. The crystal area
the direction of electric field is occupied byN monoatomic layers.
In the division of the band spectrum at a particular voltageV, the
center of the spectrumEc serves as a reference point. AtV50 all
states within the band are extended from the left-hand side of
crystal to the right-hand side. These states form a band ofextended
statesor es band which is indicated by shaded rectangles in
upper and middle diagrams. The zero-field band widthEbw

0 54 in
units of the electron resonance transfer energy. AteVmin,eV,4,
see Eq.~26!, in addition to the~narrowed! es band, two bands of
surface localized states emerge (sls bands indicated by shaded tr
angles!. At eV.4 the es band shrinks to zero and the Wannie
Stark band appears instead~WS band is indicated by a shaded pa
allelogram!. Index t ~top! labels the highest possible energy with
the es (Ees

t 522eV/2), WS- (EWS
t 5eV/222), and sls band

(Esls
t 521eV/2).
0-2
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NONCANONICAL WANNIER-STARK LADDERS AND . . . PHYSICAL REVIEW B63 235410
soon, an analytical description of electric field effect on t
electron spectrum goes far beyond the previous results.

For the low and high voltages, as is specified above,
resulting equations for the bulk electronic states have dif
ent properties. Also the bulk~extended or Wannier-Stark!
and surface states are distinct. Therefore, the cases of
states at low voltages, at high voltages, and surface state
considered separately. In the two next sections, we con
trate at the bulk states spectrum.

III. BULK STATES, LOW VOLTAGES SPECTRUM

If eV,4 and 0,E,22eV/2, any part of the crystal is
classically accessible for electrons. But it is not so, if
2eV/2,E,21eV/2, in which case the upper sloped line
Fig. 1 ~mid diagram! divides classically accessible~shaded!
and forbidden~unshaded! areas. In the former energy inte
val, the electron states are extended over the entire lengtN,
the crystal thickness and, in the latter, they have a tende
to be preferably localized near the right hand side of
crystal. Correspondingly, the lower-energy interval is app
priate to refer as anextended statesband oresband, whereas
the upper interval will be calledsurface localized statesband
or sls band. Because of the spectrum symmetry, only po
tive energies and positive sign of the field parameter will
discussed, i.e., only the upper half of thees band ~or
Wannier-Stark band at high voltages! and the uppersls
band.

By making use of well-known properties of Bessel fun
tions,20 which appear in Eq.~3!, and restricting ourselves b
energies not too close to the top of thees band 0,E,2
2eV/22E ~the excludedE interval contains one or no level
at all! the expression of determinant~3! can be transformed
into the following:

DN~E!'
E
p
A 1

sinj sinj8
sinH j1j82

2

E ~Fj2Fj8!J ,

~4!

where

2 cosj5E1
eV

2
, Fj5sinj2j cosj ~5a!

and

2 cosj85E2
eV

2
, Fj85sinj82j8cosj8. ~5b!

Represented in Fig. 2 energy dependence of determinan~4!
shows that significant distinctions from the exact depende
DN(E) are observed only in the excludedE interval near the
top of es band.

From Eqs.~2! and~4! it is obvious that within theesband
the eigenvalues are given by solutions to equation

sin$~N11!jes%50, ~6!

where
23541
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1

N11 H j1j82
2

E ~Fj2Fj8!J . ~7a!

Equation ~6! is formally identical to that determines th
quantized values of the quasi-impulsej (0) in an unperturbed
~untilted! tight-binding band, sin$(N11)j (0)%50. Thus, in
presence of a constant electric field thees band states may
be classified by a field-dependentpseudo-quasi-impulsejes

which is quantized exactly in the same way, as the qu
impulse in zero field. It lists only those electronic state
which are within thees band

jn
es5

pn

N11
,

n5F1

2
~N11!G ,F1

2
~N11!G21, . . . ,F1

2
~N11!G2nes11.

~7b!

Here ~and in subsequent expressions! square brackets indi
cate the integer part of the argument. The maximal poss
value ofjes is equal or close top/2. The minimal possible
value of jes is controlled by the applied voltage. It dete
mines the number of states in a half ofes bandnes5@(N
11)/2#112(N11)jes(E522eV/2)/p ~see a more con-
venient definition ofnes in Sec. V!.

FIG. 2. Exact dependenciesDN(E) ~solid lines! and their ap-
proximations~dashed lines! calculated from Eq.~4! for theesband,
and from equation sinjsls50 for the sls band. In calculationsN
531, E50.05 (eV51.5, upper curves!, andE50.1 (eV53, lower
curves!. The level energies are determined by intersections with
horizontal axis. The number of states in thesls band (nsls58 for
E50.05 andnsls513 for E50.1) coincides with that calculated
from Eq. ~24a!. Approximate values of energy levels~27! and~28!
are marked by filled squares and triangles, respectively. Fi
circles correspond to approximationEn52 cosj n

es, where jn
es is

given by Eq.~9!.
0-3
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A. Extended states spectrum, perturbative treatment

From the definitions given above it follows that in ge
eral, the pseudo-quasi-impulsejes can be represented eithe
by a function of a single energy variableE or by a function
of two quasi-impulsesj andj8 defined in Eqs.~5a! and~5b!.
In zero field, both quantitiesj and j8 coincide with the
quasi-impulsej (0) which is related to the untilted-band en
ergy by the dispersion relationE(0)52 cosj(0). It is clear that
at sufficiently low voltagesjes must be related toj (0). To
find the relation, let us pass fromj andj8 in Eqs.~5a! and
~5b! to a single quasi-impulsej̄ such thatE52 cosj̄. Then,
expandingj̄ andFj̄ in powers ofeV up to (eV)3 and sub-
stituting the result in Eq.~7!, one can obtain in the lowes
approximation

jes'j̄2
~eV!2

96

cosj̄

sin3j̄

N15

N11
. ~8!

Now using Eq.~8! in Eq. ~6! and solving the latter in linea
approximation with regard to (eV)2, we get

jn
es'jn

(0)1~eV!2
N15

96~N11!

cosjn
(0)

sin3jn
(0)

, ~9!

wherejn
(0)5pn/(N11) stands for the solution to Eq.~6! in

zero field. In Fig. 2, the values ofEn52 cosjn
es are marked

by filled circles.
It can be seen from the above equation that the field ef

on es-band energies is different for the inner (E is close to
thees-band center, whereE50) and outer (E is close to the
es-band edgeE5Ees

t 522eV/2) levels. If, for example,N
is an odd numberN52N11, the inner levels arejn8

(0)

5p/22pn8/@2(N11)#, where n851, 2, . . . , and is re-
stricted by the conditionn8/(N11)!1. In this case, we
have from Eq.~9!

jn8
es

5
p

2 H 12
n8

N11 S 12
~eV!2

96

N15

N11D J , ~10!

showing that the shift of inner levels by the field istowards
the band center anddoes not dependon the level number.
Thus thedecreaseof level spacing in the middle of thees
band is mostly controlled by the crystal thickness. ForN
@1, the correction to the zero-field value ofjn8

es is smaller
than, or of the order of 1% up toeV51. Interestingly~and
not at all self-obviously!, the applied voltage makes the mid
band states more densely packed, though as a whole,esband
plus sls band, the spectrum widens.

In contrast to inner levels, the field effect on the ou
levels of es band does depend on the level number. Ag
the general tendency is adecreaseof the level spacing by the
field. The condition of the applicability of Eq.~9! for the
outer levels (jn

(0)!1) requires much lower voltages, sinc
as is seen from that equation, the second term in its r
hand side can be regarded as small only ifE
!4A6p2n2/N 3. The rigorous estimate of the accuracy
Eq. ~9!, which is based on its derivation, gives even a m
demanding conditionE!3.2p2n2/N 3. Hence, strictly speak
23541
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ing, if the electrostatic potential energy is of the order
larger than 30/N 2, to describe accurately the outeres-band
levels, one has to use Eq.~7!. However, it appears that eve
wheneV is of the order of 30/N 2, approximation~9! works
reasonably well, see Fig. 2.

B. Nonperturbative treatment, noncanonical WSLs

In this section, the smallness of the field parameter is
used. Under the only conditionN@1, some explicit solution
to Eq. ~2! will be found for eV,4. As it has been reported
recently,18 at the particular values of energyEn5nE with n
(!N) an integer, determinant~3! is accurately approximated
by the expression

D2N11~En!'~21!N1n11
E
p

sin$2n arccos~EN/2!%

sin$arccos~EN/2!%
,

~11!

whereN is set to be odd. The case of evenN52N is treated
similarly.

It follows from Eq. ~11! that if eV,4 ~i.e., EN/2,1),
some~or none! of electronic states have the energies wh
are exactly equal tonE. Moreover, for the voltages
2n arccos(EN/2)5pk, k50,1,2, . . . , some of electronic
states do have the energynE. The voltage~electric field
strength! required forD2N11(En)50 is thus equal to

eVm8/m5~N21!Em8/m54 cosS p
m8

m D , ~12!

wherem53,4, . . . ; m851,2, . . .,m/2; andm and m8 are
relatively prime numbers, i.e., they do not have any comm
divisor.

An analysis of the above condition leads to a conclus
that there exist sequences of eigenvalues~specific series!
Ej5 jE, where j 50,m,2m, . . . , if m is odd, and j
50,m/2,m, . . . , if m is even. It may be convenient to distin

guish these as oddEj
o$(m21)/2,m8% (m is odd! and even

Ej
e$(m22)/2,m8% (m is even! series. As is seen from Eq.~12!,

the odd seriesEj
o(1,1) appears ateV1/352 (E1/351/N) with

the level spacing equal to 3E1/353/N. This odd series lists al
levels in the middle part of thees band. The same is true
about the even seriesEj

e(1,1)52 jE1/4, which appears at

eV1/452A2.eV1/3. In general, the odd seriesEj
o$(m21)/2,m8%

will coincide with each (m22m8)th spectrum level, wherea

the energiesEj
e$(m22)/2,m8% will coincide with each (m/2

2m8)th spectrum level. For instance, the odd seriesEj
o(2,1) ,

Ej
o(3,1) , and so on~which appear at ever higher voltage! will

coincide with each third, fifth, and so on spectrum lev
Some of odd and even series are compared with exact l
energies in Fig. 3.

Next observation makes the spectrum regularities just
scribed especially simple. The comparison with the ex
spectrum shows that between levelsEj and Ej 61, an ap-
proximation of equidistant levels is appropriate, unless
level energies are not too far from the spectrum center.
instance, when seriesEj

o(2,1) and Ej
o(2,2) appear, the level

spacing in the band middle is~approximately! equal to
0-4
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5E5/1/3 and 5E5/2, respectively. Using the equidistant a
proximation, it can be shown that for the voltages defined
Eq. ~12! the middle part of one-electron spectrum has a W
form

El5 l
1

122m8/m
Em8/m , l 50,1,2, . . . , ~13!

but with noncanonical level spacing.
Thus a proper tuning of the applied voltage (eV,4)

should give rise to anoncanonicalWSL. Depending on the
applied potential, the level spacing within such WS
can be, in particular, of double, triple, or fractional (.1)
value of that would be in the corresponding WSL in a hyp
thetic infinite crystal. Changing the tuning~i.e., changingm,
m8) should result in a predictable replacement of o
noncanonical WSL by the other. Let, for instance,
the given voltageV, E5eV/(N21), a double-E spaced
WSL is observed, i.e., there are levels with energies 0,62E,
64E, 66E, . . . . Then, according to Eq.~12! m54,
m851. If we decrease the voltage to the value ofV8 such
that arccos(eV8/4)/arccos(eV/4)54/3, a triple-E spaced
WSL @0,63E8,66E8,69E8, . . . ,E85eV8/(N21)# has to
emerge instead.

The established property of thees band is a reminiscenc
of approximately equidistant levels~with the spacing equa
to p/N) near the center of zero-field band. The electric fie
changes the level spacing but not the spectrum symme
Hence the equidistant middle spectrum is expected ra
than surprising. We just found the values of the applied v
age needed for the level spacing to be equal to a ‘‘cer
amount ofE.’’

FIG. 3. Exact dependenceDN(E) ~solid lines! for N5401 and
different values of applied potentialeV54 cosp/m, where ~from
top to bottom! m53,5,7 ~to the left! and m54,6,8 ~to the right!.
The odd and even seriesEj

o$(m21)/2,1%5 jmE and Ej
e$(m22)/2,1%

5 j (m/2)E, j 50,1,2, . . . , respectively, are indicated by filled
circles.
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Similar results can be obtained forN52N. In this case,
the noncanonical WSLs are described by Eq.~13!, wherel is
replaced byl 11/2, andEm8/m is determined by the equality
NEm8/m52 cos@p(m8/m)#.

IV. HIGH VOLTAGES, WANNIER-STARK SPECTRUM

If the electrostatic potential energy is larger thaneV54
@at which thees band shrinks toone(N is odd! or no (N is
even! states#, the extension of all tilted-band states is smal
than the crystal thickness, see lower diagram in Fig. 1. T
middle part of the tilted band is separated from both sides
the crystal by classically forbidden regions. The correspo
ing energy interval of the spectrum 0,E,eV/222 will be
referred henceforth as the Wannier-Stark band or WS ba
To simplify further discussion, we assume thatN is an odd
positive integer. However, all the conclusions of this sect
remain valid also forN52N.

At high voltages and for energiesE5nE we have instead
of Eq. ~11! ~Ref. 18!

D2N11~nE!'~21!N1n11
E
p

sinh$2n cosh21~EN/2!%

sinh$cosh21~EN/2!%
,

~14!

implying that the energy levels within the WS-band arenot
described exactlyby equationEn5nE. Hence the WSL in
finite systems must always be understood in an asympt
sense. This point has been emphasized by Stey
Gusman,14 who showed that corrections to the WS energ
in finite crystals are exponentially small, ifN@1. Below we
obtain a fully determined expression of the correction ter

For the WS-band energy interval, the second summan
Eq. ~3! is dominating for anyE, i.e.,

D2N11~E!'2Y(E1NE)/E11S 2

ED J(E2NE)/E21S 2

ED . ~15!

In terms of the positive orders of the Bessel functions
above equation may be rewritten as

D2N11~E!'~21!NY(E1NE)/E11S 2

ED
3H J(NE2E)/E11S 2

ED cosS pE

E D
1Y(NE2E)/E11S 2

ED sinS pE

E D J . ~16!

Thus the roots ofD2N11(E) are given by

J(NE2E)/E11S 2

ED cosS pE

E D1Y(NE2E)/E11S 2

ED sinS pE

E D50.

~17!

Using in the above relation the Debay asymptotics of Bes
functions,20 we arrive at

tanS pE

E D5
1

2
expS 2

4Fd8
E 22d8D , ~18!
0-5
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whered5cosh21$(NE2E)/2%, andFd85d8coshd82sinhd8.
For the energies, which satisfy the conditionFd8@E, the

solution to the above equation reads

E5En5nE1
E

2p
expS 2

4Fd
n8

E 22dn8D , ~19!

where dn85cosh21$E(N2n)/2%. The above expression ap
pears to be accurate except the energies close to the val
eV/222. If, in addition, E(N2n)@1 (2 coshdn8'expdn8),
Eq. ~19! takes an especially simple form

E5En5nE1
2E

p~eV22En!2 H e

E~N2n!J 2(N2n)

, ~20!

giving another explicit expression of corrections to the Wa
nier energiesE5nE.

Unlike the related result of Stey and Gusman,14 Eqs.~19!
and~20! are derived in a straightforward manner and do
contain an undefined constant, as does Eq.~47! in the cited
work. Moreover, the exponential correcting term in Ref.
lacks the necessary restrictionE(N2n).e.

V. SURFACE LOCALIZED STATES BAND z2ÀeVÕ2zËEË2
¿eVÕ2

As distinct from the bulk states spectrum discussed so
the treatment of thesls-band spectrum is performed ident
cally in the cases of low and high voltages. Within the e
ergy interval u22eV/2u1E,E,21eV/22E, determinant
~3! takes the form

DN~E!'
E
p
A 1

sinj8 sinhd
cosS 2Fj8

E 1j82
p

4 D
3expS 2Fd

E 1d D , ~21!

where

2 coshd5E1
eV

2
, Fd5d coshd2sinhd. ~22!

Notice that the energy in thesls band E52 coshd2eV/2
corresponds to an imaginary value of quasi-impulsej5 id,
which is defined by Eq.~5a!. The latter transforms into Eq
~22! under replacementsj→ id and Fj→ iF id . It also de-
serves emphasizing that, in contrast to the bulk states, w
are classified by the pseudo-quasi-impulse at low volta
and by canonical WSLs at high voltages, the quantization
sls-band energies is determined by one and the same q
tity.

As it follows from Eq.~21!, the quantum numbers ofsls
band statesjn

sls5pn, n51,2, . . . ,nsls21, nsls, are given by
solutions to equation

jsls[
2

E Fj81j81
p

4
5pn, n51,2, . . . ,nsls, ~23!
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where the number of states in thesls band is defined as
pnsls5jsls(E5u22eV/2u).

At low voltages (eV,4), we have

nsls5F 2

pE HAeVS 12
eV

4 D2S 12
eV

2 D
3arccosS 12

eV

2 D J 1
1

p
arccosS 12

eV

2 D1
1

4G .
~24a!

For oddN, the E50 level is included in the above defin
tion. Therefore the number of states in both upper and lo
sls bands is equal to 2nsls21. The quantitiesnes and nsls

must satisfy the identitynsls1nes5@(N11)/2# ~the state
number conservation! which, in particular, can be used t
check the accuracy of the above description.

Equation~24a! tells us that the number of states in thesls
band is controlled by both the crystal thickness and fi
strength. For instance, at very low voltageseV!1, to the
first approximation

nsls5F2N
3p

AeVG , ~24b!

i.e., nsls depends on the crystal thickness more strongly th
on the field strength.

At high voltages~when thesls-band levels are within the
energy intervaleV/222,E,eV/212), thesls band is of
the maximal width. The latter is equal to the unperturb
band width. In this casejsls(E5eV/222)52p/E15p/4, so
that instead of Eq.~24a!, we now have

nsls5F2

E 1
5

4G , ~24c!

which contains an extra term 5/4 as compared to the re
obtained for a semi-infinite crystal by Yakovenko an
Goan.17 Thus for eV.4, the number ofsls-band states is
fully controlled by the field strength. A simple comparison
the latter equation with Eq.~24b! clearly indicates that the
manifestation of electric field effects in thin crystals may
very much different from that is learned from semi-infini
models.

A. Analytical solutions for eigenvalues insls bands

In certain energy intervals Eq.~23! or, equivalently, equa-
tion sinjsls50 can be solved analytically. To proceed wi
finding such solutions, we first answer a relevant questi
which minimal voltageVmin is to be applied for the first
localized state~on either side of thees band! to appear?

Note that, if then51 on-site energy in Eq.~1! were fixed
at zero value andE is positive, the lower edge of the spe
trum would be field independent and has the energyE85
22. On the other hand, it is well known that a perturbati
of band states results in the appearance of a local state w
ever the corresponding secular equation has a solution
side the band, in the given case, foruE8u<2. Thus to find
Vmin , we have to solve the secular equation with respect tE
at the band edgeE852. Alternatively, with the choice of the
0-6
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energy reference point used throughout the discussion,
have to find the solution to Eq.~2! with E522eV/2. This is
equivalent to solving the equation

2

E
~eV!3/2

3
1AeV5

3p

4
, ~25!

which follows from Eq.~23! under conditionsnsls51 and
eV!1. The only real root of the above equation is w
approximated by

eVmin'~3/4!31/3~pE!2/32E. ~26!

Now we restrict ourselves to the energy intervals near
bottom, middle, and top ofsls band. These are~1! Esls

t 2E
!1; ~2! uE2eV/2u!1 (eV.2); and ~3! E2EWS

t !1 (eV
.4). Clearly, the latter of the indicated intervals exists on
in the case of high voltages.

~1! Esls
t 2E!1. Under the conditionj8'AEsls

t 2E!1,
Fj8 can be expanded in powers ofj8. Using the expansion
in Eq. ~23! yields

Esls
t 2En5H 3

2
pS n2

1

4D EJ 2/3

2E ~27!

which is nothing but the Airy spectrum, see, e.g., Ref. 21
Because of the condition of its derivation, Eq.~27! is

applicable only tosls-band top levels; a comparison wit
exact solutions to Eq.~2! is represented in Fig. 2~b!. As was
shown by Fukuyamaet al.,15 the same relation also can b
obtained for a semi-infinite tight-binding band, see below
is more familiar for the free electron or effective ma
approximation.22 To get a more common representation
Eq. ~27!, one has to replace in Eq.~27! the energy scaleb by
its equivalent in the continuous limit:b→\2/(2m* a2), m*
is the electron effective mass.

~2! uE2eV/2u!1, eV.2. For the energies close toeV/2
we find that equation

Em'
eV

2
12ES 2

pE 1
3

4
2F 2

pE 1
3

4G D12Em, ~28!

wherem50,61,62, . . . , umu!1/(2E), gives the eigenval-
ues of matrix~1! with a good accuracy. Thus, for energ
levels lying above (m is zero or positive! and below (m is
negative! E5eV/2, the level spacing is equal to thedoubled
spacing in the corresponding~canonical! WSL.

~3! E2EWS
t !1 (eV.4). In this case, it is easy to se

from Eq.~23! thatE2EWS
t 522E(n25/4), wheren is of the

order of nsls defined by Eq.~24c!. This gives the Wannier
quantization rule

En112En5E. ~29!

However, here it refers to the bottom ofsls band having a
triangular shape. We stress that the validity of Eq.~29! for
energies outside, though close to the WS band, is not a
obvious.

As is mentioned in the introduction, for a semi-infini
crystal Eq.~27! was repeatedly derived earlier by differe
23541
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techniques.13,15,17At the same time, Eqs.~28! and~29! have
never been reported in the given context, at least to the
of our knowledge.

VI. SEMI-INFINITE TILTED TIGHT-BINDING BAND

The main purpose of this section is to establish the re
tionship between electric field effects on the electronic sp
trum in finite and semi-infinite crystals, and to make cle
links with previous results. For a semi-infinite crystal, t
energy reference used in all above derivations is irrelev
With the n51 site energy fixed atE50, Hamiltonian~1!
takes the formb21Hnm5E(n21)1d un2mu,1 , and the eigen-
value equation~2! can be rewritten as

DN~E!5Jm11~z!Ym2N~z!2Ym11~z!Jm2N~z!50.
~30!

In the limit N→` taken atE.0, one electron levels are
determined by

J2m21~2/E!50, ~31!

and fill a semi-infinite intervalE.22.
Equation ~31! ~or its equivalents! has been used for a

description of electric field effect on the electronic spectru
by Fukuyamaet al.15 and in subsequent publications. In te
minology of present discussion, Eq.~31! is relevantonly to
the high voltage case, sinceeV→` as N→`. As is intu-
itively expected, all principal results regarding thesls band
~the high voltage case! and WS band must be possible
obtain from Eq.~31!. The following confirms the expectatio
and thus, links our results with previous studies.

As in the case of a finiteN, the explicit expression of
solutions to Eq.~31! depends on which part of the spectru
is described. By analogy with the preceding discussion,
set of electronic levels within the energy interval22,E
,2 is referred to as thesls band, and the remaining~infi-
nite! part of the spectrum is called the WS band.

First we consider the energy interval22,E,2E, i.e.,
the lower half of thesls band. For these energies

J2m21~2/E!5JuE1Eu/E~2/E!

'A E
p sinj

cosF2

E ~sinj2j cosj!2
p

4 G ,
~32!

where cosj5uE1Eu/2. Note that Eq.~32! coincides with Eq.
~2.8! from Ref. 15 to within the multiplier and the energ
reference point. The substitution of Eq.~32! in Eq. ~31!
yields

2

E ~sinj2j cosj!1
p

4
5pn, n51,2, . . . , ~33!

which, if compared with Eq.~23!, lacks a linear term inj.
Such a term would be present, if then51 on-site energy
were equal not to zero butE.
0-7
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Near the bottom of thesls band (E12!1) we havej2

5E121E!1, under which condition the electronic leve
can be approximated by the expression

21En5F3E
2

pS n2
1

4D G2/3

2E, n51,2, . . . . ~34!

The above reconfirms Eq.~27!. The accuracy of the approxi
mation is illustrated in Fig. 4, where the values ofEn are
indicated by filled squares.

In the middle of thesls bandj5p/22a with a!1. As a
result, foruEu!1 the solution to Eq.~31! may be represente
as

En52pH 12A12
4E
p S 2

pE 1
p

4
2nD J 2E, ~35!

where n5n1 , n161, n162, . . . , and n15@2/(pE)1 1
4 #.

The respective energies are indicated as filled triangle
Fig. 4.

By the condition of the above derivation, the square r
in Eq. ~35! must be close to unit. One can see therefore,
except the energy reference pointEn1

, the obtained relation
is essentially the same as that given in Eq.~28!. It turns out
that approximation~35! is surprisingly accurate far beyon
the limit of its applicability, see Fig. 4.

Consider now the energy interval2E,E,22E, which
represents the positive half of thesls band. Under the restric
tion indicated, andE!1, the Bessel function in Eq.~31! can
be expressed in the form~32! but with the summand (E
1E)p/E added to the cosine argument. Equation~33! is thus
replaced by

2

E ~sinj2j cosj!1
p

4
1

~E1E!p

E 5pn. ~36!

FIG. 4. Exact dependence ofJ2E/E21(2/E) on E ~solid lines! for
E50.1 ~upper curve! andE50.2 ~lower curve!. Approximate values
of eigenenergies given by Eqs.~34!, ~35!, ~37! and En5En are
marked by filled squares, triangles, circles, and diamonds, res
tively.
23541
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At the top of thesls band 22E2E!1, Eq. ~36! simplifies
to

En'22E2j25~n21!E2
E
4

, ~37!

which is similar to Eq.~29!.
Finally, for the semi-infinite intervalE.22E ~WS band!

J2m21~2/E!'A E
p sinhdS 1

2
e2(2/E)(d coshd2sinhd)

3cos
p~E1E!

E

1e(2/E)(d coshd2sinhd)sin
p~E1E!

E D , ~38!

where 2 coshd5E1E. As a result, Eq.~31! takes the form

tanS pE

E D52
1

2
expH 2

4

E ~d coshd2sinhd!J , ~39!

which is to be compared with Eq.~18!. Under the condition
4(d coshd2sinhd)@E, andEn@1, the solution to~39! can
be approximated by

E5En5nE2
E

2p H e

E~n11!J 2(n11)

, ~40!

showing that for energies of the order or larger thane, edge
effects on the WSL are negligible.

VII. SYNOPSIS

This work is addressed, first of all, to dielectric crystallin
layers ~and superlattices!, whose thickness~length! reaches
the edge of the direct tunneling. On the other hand, fr
below ten to fifteen atomic layers~wells! are required, to
meet the conditionN@1. One-particle, single band approac
implies that in a full scale, the obtained results are applica
only to empty bands which are weakly mixing with the ot
ers in the actual voltage region. Furthermore, the condit
of a symmetric zero-field band is likely to be crucial for th
existence of canonical, as well as noncanonical WSLs. In
most of relevant real systems such symmetry is rather not
case. However, the band asymmetry is often small and, in
first approximation, can be neglected. Even though
model assumptions used explicitly or implicitly in the abo
derivations are quite demanding, there is a certain Heuri
value of obtained results highlighting the main trends
electric field effects on the surface and bulk electronic sta
which always coexist in real systems.

The results of the above analysis of field effects on o
electron spectrum are summarized in Fig. 5 which expo
quantum mechanical content of classical diagrams in Fig
A constant electric field increases an average interlevel s
ration in a nontrivial way and redistributes electronic leve
over the band. In zero field, the density of states is minim
in the band center, while it is maximal at the band edges.
high voltages, the level distribution is just reversed. In
obvious limit eV@Ebw

0 ~not considered here!, the E-spaced

c-
0-8
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levels are distributed homogeneously throughout the sp
trum.

The following lists main transformations of the ban
spectrum in response to an increase of the applied voltage~i!
At eV52.3E 2/32E the first two surface localized state
appear, above and below thees band. At higher voltages
two sls bands emerge.~ii ! At certain voltages, which sat
isfy Eq. ~12!, the middle part of the spectrum consists
evenly spaced levels forming a noncanonical WSL with
level spacing equal toE times integer or fractional numbe
(.1 and dependent on the applied voltage!. For experimen-
tal observations, however, the WSLsEl5 l $112m8/(m
22m8)%E, where the second summand in brackets is not
small, may be most meaningful. The level spacing 3E is
expected ateV5Ebw

0 /2. The increase of the applied voltag
by A2 should result in a new level spacing equal to t
doubled dimensionless field parameter. Equations~12! and
~13! suggest a number of other tests for validating non
nonical WSLs experimentally.~iii ! When eV5Ebw

0 , the
spectrum consists of twosls bands, and at higher voltage
the WS-band emerges. AteV.Ebw

0 the band spectrum
gradually changes its character from the canonical WSL
the middle to the Airy type at the edge parts of the spectru
This changing is such that in the middle of thesls bands, the

FIG. 5. Band levels~vertical lines! calculated forN551 and
electrostatic energy difference~from top to bottom! eV50, eV
52, eV54 cosp/5'3.24, andeV55. Arrows mark levels within
specific series; accented ticks indicate the top of WS~lower dia-
gram! and es band. Airy spectrum refers to levels given by E
~27!.
23541
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level spacing equals to the doubled Wannier spacing,
Fig. 5. It is worth stressing that the related~and often used!
semi-infinite model is just unable to describe the elec
field effects, when the electrostatic energy is smaller, th
the zero-field band width. The model of finite and tilte
tight-binding band is thus shown to be much more rich a
fertile physically, than is commonly thought.

From the experimental point of view, the most straig
forward application of our results is seen in the field dep
dence of peaks of through tilted band tunneling probabil
Due to the band states, an electron with properly tuned
netic energy can be transmitted across a thin crystal laye
superlattice by means of resonance tunneling. The pos
of peaks in the transmission spectrum@i.e., the dependence
of resonance tunneling probability on energyT(E)# can be
controlled by the applied voltage, as is explained in
above discussion. Precisely, noncanonical WSLs can be
served in the case of low voltages and weak coupling of
tunnel region~modeled by the tilted band! with the source
and drain of electrons. Such WSLs will manifest themsel
as evenly spaced central peaks in the transmission spec
Similarly, in the region ofsls-assisted tunneling, peaks wit
E-, double-E-, and Airy-type spacing can be observed. Pro
ably, ballistic-electron-emission microscopy that can pro
heterostructure transmission spectra in a nondestruc
manner23 is the most suitable but not the only technique f
the purpose.

Methodologically, the use of the above approach can
straightforwardly extended to the analysis of the transm
sion spectrum dependence on the field, energy, and leng
tunneling region. Further usage is envisioned in a descrip
of the Franz-Keldysh effect which reflects changes of
band spectrum induced by a constant electric field. T
through gap Zener tunneling also associates with field
fected electron states. Signatures of the Wannier-Stark e
in Zener tunneling and Franz-Keldysh absorption, which
volve at least two bands, are expected but not well und
stood yet. Even within the relevant zero-approximati
model, which is two noninteracting bands influenced by
constant electric field, the above mentioned processes
not received an adequate theoretical treatment. Some
liminary results have been reported24 and work in this direc-
tion is in progress.
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