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In the one-particle single band approximation, which is the basis of the original Wannier result, commonly
referred to as the Wannier-Stark ladd@vSL), we have extended the concept by predicting the existence of
noncanonical WSLs which are a set of evenly spaced ldirekthe middle of the tilted bandvith noncanoni-
cal level spacingequal to the Plank constant times<2m’/m) ! times Bloch oscillation frequency. To
observe a particular WSL, the certain voltage must be applied. The latter is related to the nambers
=3,4,... andm'=1,2,...<m/2. We also show that, if the electrostatic energy due to applied voltage is
larger than the zero-field band width, the quantization of surface localized states smoothly changes from the
Airy type (at the spectrum edge#o the Wannier-Stark type with a pronounced energy interval in between,
where the level spacing doubles that of canonical WSL. Analytical results are derived within the exactly
solvable model of finite tilted tight-binding band. Their experimental implications and further-to-go directions
are addressed to dielectric crystalline layers and superlattices, whose thicleregh admits the direct
tunneling.
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[. INTRODUCTION Wannier-type spectra in finite crystals was also discussed but
neither of these has been derived consistently from the basic
Since a notion of the Stark ladder was proposed by WanSchralinger equation. For open boundaries the existence of a
nier in 1960 (Ref. 1) and after many years of debates andWSL was explicitly demonstrated by Stay and Gustfiam
controversy, the quantization of electronic band states in ¢he basis of the exact formal solution to the Schinger
constant electric fieldthe Wannier-Stark ladde(WSL)] problem. However, they left out of focus the surface state
should have developed into one of basic concepts of solidpectrum and, as is shown below, their estimate of the bulk
state. During last decade an impressive progress has bestates energie@hat is WSLs in finite crystajsneeds to be
achieved in the understanding of Wannier-StafkS) quan-  corrected.
tization and related phenomena such as Zener tunrfiedimgy Fukuyamaet al® and in a more recent work Yakovenko
Franz-Keldysh effect, especially, in superlatticés’ see and Goah’ have obtained both the Airy and Wannier-Stark
also reviews in Refs. 8—10, and driven optical lattitesee  spectra from one and the same equation for a semi-infinite
also references therein. tight-binding chain. For this reasdigee details in Sec. VI
Along with models approaching various aspects of reatheir results are limited only to the case, where the total
systemgmultiband structure, electron-electron and electron-electrostatic energy is larger than the electron band width.
phonon interactions, edge effects, gtthe one- and two- The Airy-type quantization has been obtained for the very
band tight-binding approximation has been widely used inedge of the spectrum. Thus it is not representative for the
discussions of WSLY 16 Even the one band model reflects most of edge states. As to the bulk states spectrum, both
salient essentials of real systems, admits obtaining analyticalorks just repeated the earlier result obtained for infinite
results and may serve, therefore, as a starting point for morgystems.
accurate theories. It is also often used for checking and in- The current presentation removes the above mentioned
terpreting numerical results which are dominant in the fieldweaknesses. It offers a more detailed and, in certain aspects,
because of the problem complexity. more accurate description of bulk and surface states, which is
One band tight-binding model of anfinite crystal sub- based on the mentioned above ex@rmal solution of the
jected to a constant electric field was solved exactly byspectral problem for a finite tight-binding chain. Under the
Hacker and Obermaito prove that the eigenvalues do form conditions not limiting its applicability much, that solution is
WSL while the corresponding eigenfunctions are localizedadvanced further to an explicit form of eigenvalues for a
within the tilted band. The electron state localization is thusnumber of cases of interest. The obtained conclusions are
shifting in space along the field. Using the same model buvalid for practically any crystal thickness and applied voltage
for a finite crystal Saitol’ pointed out that for a WSL to attainable in real experiments.
appear, the potential energy of the applied voltage must ex- Recently, some of our findings have been briefly re-
ceed some critical value shown likely to Heut not provedd  ported® The aim of this article is to give a complete classi-
the band width. The coexistence of the Airy-type andfication of electronic states subjected to a constant electric
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field in a one-particle single band approximation with an eV=0 E
emphasis on explicit analytical results and their experimental
implications. We predict the existence of WSLs with nonca-
nonical level spacing controlled by the applied voltage and
new types of quantization for surface states, namely, with
Wannier and doubled Wannier level spacing.

The article is organized as follows. An exact secular equa-
tion for the problem in focus is introduced in Sec. Il. The .
analysis of bulk states spectrum at low and high voltages is 2
performed in Secs. lll and 1V, respectively. Section V clas- g
sifies surface localized states and gives explicit expressions
for the eigenvalues in different energy intervals. The results
obtained for a finite crystal thickness at high voltages are
rederived for a semi-infinite crystal in Sec. VI, which also
links our results with previous studies. Section VIl summa-
rizes the main findings of the work, outlines the conditions
for their experimental verification, and points to directions
for their further usage.

crystal area ‘

Il. PROBLEM STATEMENT AND BASIC EQUATIONS [ [

The gross structure of a single band spectrum in presence 1 2 3 N-1 N
0; a (]E.Or.]tsmt‘.?tt zl%ctrlg field can ;egd'llyFb'e u; d_(l?tr]stoo%g: terrr:js FIG. 1. Untilted(upped and tilted(middle and lower bands of
ol a finite tiited band represented in Fig. L. 1he MIddie anty e qyonic levels in a crystal of finite thickness. The crystal area in
lower diagrams distinguish, respectively, the casedoof

> 5 ! the direction of electric field is occupied by monoatomic layers.
[the electrostatic energy differeneeV is smaller than the |, the division of the band spectrum at a particular voltagehe

unperturbed band widttEp, (eV<Ep,)] and high (eV  center of the spectrurl, serves as a reference point. ¥&=0 all

>Ep,) applied voltages; while the upper exhibits the unper-states within the band are extended from the left-hand side of the

turbed band ¢ V=0). crystal to the right-hand side. These states form a barexteinded
We consider a symmetric tight-binding band under thestatesor es band which is indicated by shaded rectangles in the

influence of a constant electric field. Since the spectrum ofipper and middle diagrams. The zero-field band wiif=4 in

the system is symmetric with respect to its cerftiemoted in  units of the electron resonance transfer energyeX,,<ev<4,

Fig. 1 asE.) it is convenient to us&, as the energy refer- See Eq.(26), in addition to the(narrowed es band, two bands of

ence point. Equivalently, one can assume that the electr@urface localized states emergﬂs(pands indicated by shaded Fri-

static potential energy varies symmetrically with respect tc®ngles. At eV>4 the es band shrinks to zero and the Wannier-

the crystal center and use the zero energy as the referenci?rk band appears inste@dS band is indicated by a shaded par-

point. With the latter choice, the Hamiltonian matrix has the2/lelogram. Indext (top) labels the highest possible energy within
form the es (EL=2-eVI2), WS- E},=eV/2—2), and sls band

(ELs=2+eVi2).

B N+1 can be reduced to the solution of a certain transcendent equa-
Hma=—eFg ——-=n Smnt BS|m—n|,1; (D tion. For the matrix defined in E@1), the functional form of
the determinant is represented by the equation

wheren,m=1,N, Na is the crystal thicknesésee Fig. 1, D (E)=J 2)Y ) 2
ande, F, anda are, respectively, the absolute value of elec- MEV= s e yd2)Y v 1 2)

tron charge, electric field strength, and lattice constant =Y DI w1y 2), €)]

the energy of electron resonance transfer between neighbor- B B

ing sites: the electron site energy in zero field is set equal t§/Nerex=E/&, =2/, andJ,(z) andY ,(2) are the Bessel
zero. In what follows,3 serves as the energy unit, notation functions of the first and second kind, respectively. For other
E=eFalB stands for the field parameteE), =4, andeV forgs of Eqs.(Z) and(3) \:,ee,_e.gzihRefs.'l_S—lI?. f
=&(WN—1) is the energy of electrostatic potential applied to ur main purpose is to givewith a minimal loss of ac-

- : ._curacy a more clear form of Eq.3) which admits obtaining
Itgftgogr?gIggtﬁgr];?;:tsarvg]rli%r;izﬁ z)tzggosed to be perpendlcgnalytical solutions to Eq2). This is done under the condi-

It has been shown by many authbrd®°that finding the tion £<1 and A>1 covering most cases of interest. All

eigenvalues of matri¥ ,,,, which are given by zeros of the qnderlylng denvatlon_s are k?ased on the standard approxima-
determinant tions of Bessel functions with large arguments and small or

large orders. The particular approximation to be used de-
pends on the energy interval. Basically our approach is simi-
Dy (E)=|ESmn—B *Hm =0, (2)  lar to that used in Ref. 15. However, as it will be seen very
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soon, an analytical description of electric field effect on the es-band sls-band
electron spectrum goes far beyond the previous results.
For the low and high voltages, as is specified above, the

resulting equations for the bulk electronic states have differ- |
ent properties. Also the bulkextended or Wannier-Stark ~ NN\ L
and surface states are distinct. Therefore, the cases of bulk ARV V

states at low voltages, at high voltages, and surface states are
considered separately. In the two next sections, we concen-
trate at the bulk states spectrum. 0 ‘ 125

—_
(=]
w
[
~1
W

Ill. BULK STATES, LOW VOLTAGES SPECTRUM ﬂ

If eV<4 and 0<E<2-eV/2, any part of the crystal is /‘\\
classically accessible for electrons. But it is not so, if 2 .
—eV/2<E<2+eV/2, in which case the upper sloped line in / V
Fig. 1 (mid diagram divides classically accessiblehadegl = J
and forbidden(unshadegareas. In the former energy inter-
val, the electron states are extended over the entire lexigth 0 0.5 0.5 3.5
the crystal thickness and, in the latter, they have a tendency energy

to be preferably localized near the right hand side of the . - i
crystal. Correspondingly, the lower-energy interval is appro- FIG. t?' E);aCthdZﬁ.endenf'dlsf\tK?f(SOI'E I'Ze? atr;]d thet;r ag-
priate to refer as aextended statdsand oresband, whereas proximations(dashed lingscalculated from Eg4) for theesband,

. . . and from equation sig®*=0 for the sls band. In calculations\’
the upper interval will be calledurface localized statdsand =31, £=0.05 (eV=1.5, upper curvésand£=0.1 (eV=3, lower

‘?r sls banP'- Because.c.)f thef SpeCtrum.Symmetry’ only _pos'burves). The level energies are determined by intersections with the

tive energies and positive sign of the field parameter will b&,grizontal axis. The number of states in tis band (15=8 for

discussed, i.e., only the upper half of tles band (or  ¢=0.05 andns's=13 for £=0.1) coincides with that calculated

Wannier-Stark band at high voltageand the uppersls  from Eq.(24a. Approximate values of energy leve7) and (28)

band. are marked by filled squares and triangles, respectively. Filled
By making use of well-known properties of Bessel func-circles correspond to approximatid,=2 cos¢E®, where £2° is

tions2° which appear in Eq(3), and restricting ourselves by given by Eq.(9).

energies not too close to the top of the band O<E<2

—eV/2— £ (the excluded interval contains one or no levels 1 2

at all) the expression of determina(8) can be transformed = e+ E — (D= D). (79

into the following: N+1 €

™ Vsinésing’

5 Equation (6) is formally identical to that determines the
E+E—Z(O—D,) |, quantized values of the quasi-impuls®) in an unperturbed
g (untilted) tight-binding band, siff\V+1)¢®}=0. Thus, in
(4)  presence of a constant electric field #agband states may
be classified by a field-dependerg e ud equasi-impulset©s

where which is quantized exactly in the same way, as the quasi-
oV impulse in zero field. It lists only those electronic states,
2 cosé=E+ > ®,=sin¢— ¢ cost (59  Which are within thees band
and es. TN
NN+
eV
2cost’'=E——-, ®y=sing’'—¢&'cosé’.  (Sb)
2 1 1 1
o n=[—(]\/+1) ,[—(N'Fl) -1,... ,[—(/\f+1)}—nes+1.
Represented in Fig. 2 energy dependence of determidant 2 2 2
shows that significant distinctions from the exact dependence (7b)
D(E) are observed only in the excludédnterval near the _ ] o
top of es band. Here (and in subsequent expressiprssjuare brackets indi-
From Eqs(2) and(4) it is obvious that within thesband ~ cate the integer part of the argument. The maximal possible
the eigenvalues are given by solutions to equation value of £°° is equal or close tar/2. The minimal possible
value of £°° is controlled by the applied voltage. It deter-
Sin{(N+1) &% =0, (6) ~ Mines the number of states in a half @ bandn®*=[(\
+1)/2]+1—(N+1)E(E=2—-eVI2)/7 (see a more con-
where venient definition ofn®sin Sec. V.
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A. Extended states spectrum, perturbative treatment

From the definitions given above it follows that in gen-

eral, the pseudo-quasi-impulg€® can be represented either
by a function of a single energy variabteor by a function
of two quasi-impulseg and¢’ defined in Eqs(5a) and(5h).

In zero field, both quantitieg and &' coincide with the
quasi-impulset(®) which is related to the untilted-band en-
ergy by the dispersion relatid®d® =2 cos&. It is clear that
at sufficiently low voltagest®s must be related t@(®. To
find the relation, let us pass froghand ¢’ in Egs. (58 and
(5b) to a single quasi-impulsé such thatE =2 cosé. Then,
expandingé and @7 in powers ofeV up to eV)® and sub-

stituting the result in Eq(7), one can obtain in the lowest
approximation

s — (V) cosé N+5
£ g sirfg N+1°

8

Now using Eq.(8) in Eqg. (6) and solving the latter in linear
approximation with regard toe(V)?, we get

N+5  coséd)
9B(N+1) sinPg®”

=+ (eV)? 9
where&®= 7n/(N+1) stands for the solution to E¢g) in
zero field. In Fig. 2, the values d&,= 2 cosé&:® are marked
by filled circles.

It can be seen from the above equation that the field effect

on es-band energies is different for the innek (s close to
thees-band center, wheré=0) and outer E is close to the
esband edgeE=EL=2—eV/2) levels. If, for example\/
is an odd numbertV=2N+1, the inner levels are?
=a/2—mn'/[[2(N+1)], wheren'=1, 2, ., and is re-
stricted by the conditiom’/(N+1)<1. In this case, we
have from Eq.(9)

’ 2
T n _(e\/) N+5) , 10

es_ " o
§ﬂ’_z[l N+l 1T Te6 AL

showing that the shift of inner levels by the fieldtvards
the band center andoes not dependn the level number.
Thus thedecreaseof level spacing in the middle of thes
band is mostly controlled by the crystal thickness. Ror
>1, the correction to the zero-field value &}’ is smaller
than, or of the order of 1% up teV=1. Interestingly(and
not at all self-obviously, the applied voltage makes the mid-
band states more densely packed, though as a waslteand
plus sls band, the spectrum widens.
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ing, if the electrostatic potential energy is of the order or
larger than 30X?, to describe accurately the outes-band
levels, one has to use E). However, it appears that even
wheneV is of the order of 302, approximation(9) works
reasonably well, see Fig. 2.

B. Nonperturbative treatment, noncanonical WSLs

In this section, the smallness of the field parameter is not
used. Under the only conditioh™> 1, some explicit solution
to Eq. (2) will be found foreV<4. As it has been reported
recently'® at the particular values of enerds,=né& with n
(<N) an integer, determinaii8) is accurately approximated
by the expression

& sin{2n arcco$éN/2)}
~( — N+n+1_—
Dona(BEp)=(—1) m sinfarcco$EN/2)}

11

where N is set to be odd. The case of ev&f= 2N is treated
similarly.

It follows from Eq. (11) that if eV<4 (i.e., EN/2<1),
some(or nong of electronic states have the energies which
are exactly equal ton& Moreover, for the voltages
2narccos€N/2)=mwk, k=0,1,2..., some of electronic
states do have the energ¢. The voltage(electric field
strength required forD,y . 1(E,) =0 is thus equal to

m/
™,
m)

wherem=3,4,...:m'=1,2,...<m/2; andm andm’ are
relatively prime numbers, i.e., they do not have any common
divisor.

An analysis of the above condition leads to a conclusion
that there exist sequences of eigenval(ggecific series
E;=j¢& where j=0m,2m, ..., if m is odd, and j
=0,m/2m, ..., if mis even. It may be convenient to distin-
guish these as od@&®(™ 2™} (m is odd and even

Ef{(m’z)’zm'} (m is even series. As is seen from E@12),
the odd serie€"") appears aeVi;z=2 (£3=1/N) with
the level spacing equal taf33= 3/N. This odd series lists all
levels in the middle part of thes band. The same is true
about the even serieE™"=2j¢&,,, which appears at
eVy=2\2>eVys. In general, the odd serig{(m~1/2m"}
will coincide with each (h—2m’)th spectrum level, whereas
the energiesEf! (™ 272"} will coincide with each (/2
—m’)th spectrum level. For instance, the odd seE@@’l),
E°GY and so onwhich appear at ever higher voltageill

e Vi ym=(N— 1)5m’/m:4co< (12)

In contrast to inner levels, the field effect on the outercoincide with each third, fifth, and so on spectrum level.
levels ofes band does depend on the level number. AgainSome of odd and even series are compared with exact level

the general tendency isdecreasef the level spacing by the
field. The condition of the applicability of Eq9) for the

outer levels Eff”«l) requires much lower voltages, since,

energies in Fig. 3.
Next observation makes the spectrum regularities just de-
scribed especially simple. The comparison with the exact

as is seen from that equation, the second term in its rightpectrum shows that between levéls and E;. 1, an ap-

hand side can be regarded as small only &

proximation of equidistant levels is appropriate, unless the

<4.\J67n?%IN3. The rigorous estimate of the accuracy of level energies are not too far from the spectrum center. For
Eq. (9), which is based on its derivation, gives even a moreinstance, when serie®?% and E®?? appear, the level

demanding conditiog<3.27%n%/ 3. Hence, strictly speak-

spacing in the band middle isapproximately equal to
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odd series even series Similar results can be obtained faf=2N. In this case,
the noncanonical WSLs are described by Bd@), wherel is

replaced byl +1/2, and&,,,,, is determined by the equality
W NE, /=2 CO$ m{(m'/m)].

IV. HIGH VOLTAGES, WANNIER-STARK SPECTRUM

If the electrostatic potential energy is larger thavi=4

[at which thees band shrinks t@ne (N is odd or no (N is
%%W even state$, the extension of all tilted-band states is smaller
than the crystal thickness, see lower diagram in Fig. 1. The

middle part of the tilted band is separated from both sides of
the crystal by classically forbidden regions. The correspond-

ing energy interval of the spectrum<E<eV/2—2 will be

referred henceforth as the Wannier-Stark band or WS band.

To simplify further discussion, we assume thidtis an odd

positive integer. However, all the conclusions of this section
0 0.1 02 0 0.1 02

remain valid also for\V=2N.
: At high voltages and for energiés=n¢& we have instead
energy of Eq. (11) (Ref. 18

FIG. 3. Exact dependen@®,(E) (solid lineg for A’=401 and . 1
different values of applied potenti@V=4 cosn/m, where (from Dons1(NE)~(— 1)N+n+1£ sinh{2n cosh “(EN/2)} ,
top to bottom m=3,5,7 (to the lefy and m=4,6,8 (to the righj. ™ sinh{cosh‘l(gN/Z)}

The odd and even serieBX{(™ D/2U=jm¢e and EX(M- 224 (14)
=j(m/2)&, j=0,1,2..., respectively, are indicated by filled
circles.

implying that the energy levels within the WS-band a
described exactloy equationE,=n&. Hence the WSL in
finite systems must always be understood in an asymptotic
sense. This point has been emphasized by Stey and
rbusmanl,4 who showed that corrections to the WS energies
I'in finite crystals are exponentially small,Af>1. Below we

5&4/3 and &5, respectively. Using the equidistant ap-
proximation, it can be shown that for the voltages defined i
Eqg. (12) the middle part of one-electron spectrum has a WS

. obtain a fully determined expression of the correction term.
1 For the WS-band energy interval, the second summand in
E=l —&wm, 1=012..., (13 Eq. (3) is dominating for anyE, i.e.,
1-2m’'/m 5 5
but with noncanonical level spacing D2N+1(E)~—Y(E+Ng),g+1<z)J(E_Na,g_l(z). (15

Thus a proper tuning of the applied voltageM<4)
should give rise to aoncanonicaWSL. Depending on the In terms of the positive orders of the Bessel functions the
applied potential, the level spacing within such WSLsgpq e equation may be rewritten as
can be, in particular, of double, triple, or fractionat ()
value of that would be in the corresponding WSL in a hypo- 2
thetic infinite crystal. Changing the tunirige., changingm, Dons1(E) = (=DM (e, Na/5+1(z)
m’) should result in a predictable replacement of one

noncanonical WSL by the other. Let, for instance, at 2 7E
the given voltageV, £=eV/(N—1), a doublef spaced X1 Ine-pyve+1| £/C08§ -
WSL is observed, i.e., there are levels with energies ¢,
+4€, +6E, .... Then, according to EQ.12 m=4, Ly 2\ . [7E 16
m’=1. If we decrease the voltage to the value\f such (Ne-E)/e+1| g sin z (16)
that arccoséV'/4)/arccos€V/4)=4/3, a triple€ spaced .
WSL [0,23€',+6€,+9¢', ... £ =eV/(N—1)] has to Thus the roots o, 1(E) are given by
emerge instead. 2 —E 2 +E
The established property of tless band is a reminiscence J(Ne—E)/£+1<§ cos(? +Y(ne- E)/‘f”(z) sin(?) =0.

of approximately equidistant levelsvith the spacing equal 17
to w/N) near the center of zero-field band. The electric field

changes the level spacing but not the spectrum symmetryJsing in the above relation the Debay asymptotics of Bessel
Hence the equidistant middle spectrum is expected rathdunctions?’ we arrive at

than surprising. We just found the values of the applied volt-

age needed for the level spacing to be equal to a “certain tar( WE) 1 %_4(1)5' _25,>

amount ofé€.” 2% I3

&

(18
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where §=cosh Y{(NE—E)/2}, and® 5 =6’ coshs’ —sinh&'. where the number of states in tlsés band is defined as
For the energies, which satisfy the conditidry, >&, the — 7ns'S=¢£'S(E=|2—eV/2)).
solution to the above equation reads At low voltages €V<4), we have

2 / eV eV
£ 4q)§r’] sls—| = S N O
E=E,=n&+ —Wexp(— —25r’,>, (19 n [775[ e\/(l 4) (1 2

2 &
where 8, =cosh {&(N—n)/2}. The above expression ap- X arcco% 1— ev J + iarcco% 1— ev + 1 .
pears to be accurate except the energies close to the value of 2 ™ 2 4
eV/i2—2. If, in addition, E(N—n)>1 (2 coshy,~expé,), (243

Eq. (19) takes an especially simple form For odd.\, the E=0 level is included in the above defini-

r(Nn) tion. Therefore the number of states in both upper and lower

. (200 Slsbands is equal to#"*—1. The quantities1** and n®'®
must satisfy the identityns'S+n®S=[(N+1)/2] (the state
. . ) ) number conservatigrwhich, in particular, can be used to
giving ano_ther explicit expression of corrections to the Wanneck the accuracy of the above description.
nier energies==n¢. Equation(243 tells us that the number of states in i
Unlike the related result of Stey and Gusm&&as.(19  pang is controlled by both the crystal thickness and field

and(20) are derived in a straightforward manner and do nOtstrength. For instance, at very low voltage¥<1, to the
contain an undefined constant, as does (B@) in the cited gt approximation ’ '

work. Moreover, the exponential correcting term in Ref. 14
lacks the necessary restrictiéN—n)>e.

E=E,=né+ 2& 1 ©
= :n
" m(eV—2&n)2 | E(N—n)

2N
ns's=[§\/e_\/ , (24b)

i.e., n%'s depends on the crystal thickness more strongly than
on the field strength.

As distinct from the bulk states spectrum discussed so far, At high voltagesiwhen theslshand levels are within the
the treatment of thels-band spectrum is performed identi- €nergy intervakeVi2—2<E<eV/2+2), thesls band is of
cally in the cases of low and high voltages. Within the en-the maximal width. The latter is equal to the unperturbed
ergy interval |2—eV/2| + E<E<2+eVi2—&, determinant band width. In this casg™S(E=eV/2—2)=2x/£+5m/4, s0
(3) takes the form that instead of Eq(24a, we now have

-+

| 2 5
D/\/(E) £ 1 §<2q)§, +§’ ’77) nS S—
~—/ co ——
™ N sin¢’ sinhé & 4

V. SURFACE LOCALIZED STATES BAND [2—eV/2|<E<2
+eV/2

: (240

E 4
which contains an extra term 5/4 as compared to the result
2P obtained for a semi-infinite crystal by Yakovenko and
><ex;<7+§ : (21)  Goan!’ Thus foreV>4, the number ofls-band states is
fully controlled by the field strength. A simple comparison of
where the latter equation with Eq24b) clearly indicates that the
manifestation of electric field effects in thin crystals may be

eV i very much different from that is learned from semi-infinite
2coshé=E+ —, ds=45coshé—sinhs. (220  models.

2
Notice that the energy in thels band E=2 coshé—eW/2 A. Analytical solutions for eigenvalues insls bands
corresponds to an imaginary value of quasi-impulsei 6, In certain energy intervals E@3) or, equivalently, equa-

which is defined by Eq(5a)._The latter trlansforms into EA. tion sin £5=0 can be solved analytically. To proceed with
(22) under replacement§—ié and @, —i®;,. It also de- finding such solutions, we first answer a relevant question:
serves emphasizing that, in contrast to the bulk states, whiclyhich minimal voltageV,,;, is to be applied for the first
are classified by the pseudo-quasi-impulse at low voltageg,cgjized statdon either side of thes band to appear?

and by canonical WSLs at high voltages, the quantization of Note that, if then=1 on-site energy in Eq(1) were fixed
sls-band energies is determined by one and the same quag zero value and is positive, the lower edge of the spec-
tity. trum would be field independent and has the endEgy:

As it f°"°"|"s from Eq.(21), the guantum numbers 1S _5 on the other hand, it is well known that a perturbation
band stateg;°=mn, n=12, ... n**~1,n°* are given by  of hand states results in the appearance of a local state when-
solutions to equation ever the corresponding secular equation has a solution out-

) side the band, in the given case, {&’'|<2. Thus to find
sls— < T _ sls Vmin,» We have to solve the secular equation with respeét to
&= E(Df'+§ * - ™ n= 12,0 (29 at the band edgg’ =2. Alternatively, with the choice of the
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energy reference point used throughout the discussion, wechniques3!®1’At the same time, Eqg28) and (29) have
have to find the solution to E@2) with E=2—eV/2. Thisis  never been reported in the given context, at least to the best

equivalent to solving the equation of our knowledge.
2 (e\/)3/2
5 44/ V— (25) VI. SEMI-INFINITE TILTED TIGHT-BINDING BAND

_ N as The main purpose of this section is to establish the rela-
which follows from Eq.(23) under conditionsn®*=1 and  tionship between electric field effects on the electronic spec-
eV<1. The only real root of the above equation is well trum in finite and semi-infinite crystals, and to make clear

approximated by links with previous results. For a semi-infinite crystal, the
s o3 energy reference used in all above derivations is irrelevant.
€ Viin=(3/4)3"X(m&) ">~ £. (26)  With the n=1 site energy fixed aE=0, Hamiltonian(1)

takes the formg™*H,n=&E(N— 1)+ 84—y .1, and the eigen-

Now we restrict ourselves to the energy intervals near th‘?/alue equatior(2) can be rewritten as

bottom, middle, and top a§ls band. These arél) EL—E
<1; (2) |E—eVIi2|<1 (eV>2); and (3) E-E{<<1 (eV — —
>4). (C)Ir-3|arly, the|latter(0f the)mdlcat(e; intervals exéts only PMEN=dura(@Y o MDY 2(D - a(2) =0 (30)
in the case of high voltages.
(1) ESIS E<1. Under the conditiorf’w«/ESE,S—E<1, In the limit N—o taken at£>0, one electron levels are
®,, can be expanded in powers &f. Using the expansion determined by
in Eq. (23) yields
J_,-1(216)=0, (31

3 1 2/3
Eqs— En= [EW( n— Z) 5] -& (27)  and fill a semi-infinite intervaE> —2.
Equation (31) (or its equivalents has been used for a

which is nothing but the Airy spectrum, see, e.g., Ref. 21. description of electric field effect on the electronic spectrum

Because of the condition of its derivation, E@7) is by Fukuyamaet al!® and in subsequent publications. In ter-
applicable only tosls-band top levels; a comparison with minology of present discussion, E@1) is relevantonly to
exact solutions to Eq2) is represented in Fig.(B). As was  the high voltage casesinceeV—o as N—ox. As is intu-
shown by Fukuyamat al,'® the same relation also can be itively expected, all principal results regarding thks band
obtained for a semi-infinite tight-binding band, see below. It(the high voltage cageand WS band must be possible to
is more familiar for the free electron or effective massobtain from Eq(31). The following confirms the expectation
approximatiorf?> To get a more common representation ofand thus, links our results with previous studies.

Eq.(27), one has to replace in ER7) the energy scalg by As in the case of a finiteV, the explicit expression of

its equivalent in the continuous limiB—7#2/(2m*a?), m* solutions to Eq(31) depends on which part of the spectrum

is the electron effective mass. is described. By analogy with the preceding discussion, the
(2) [E—eVi2|<1, eV>2. For the energies close &3/2  set of electronic levels within the energy interval2<E

we find that equation <2 is referred to as thsls band, and the remainin@nfi-

nite) part of the spectrum is called the WS band.

eV 2 3 First we consider the energy interval2<E<-¢, i.e.,
Em~ +2’S g 4 g 4 +28m, (28 the lower half of thesls band. For these energies
wherem=0,=1,=2, ..., |m|<1/(2£), gives the eigenval- J_,—1(218) =g gy 21E)
ues of matrix(1) with a good accuracy. Thus, for energy
levels lying above I is zero or positive and below (n is E 2 T
negative E=eV/2, the level spacing is equal to theubled ~Vsing® z(sing—gcosé)— |,
spacing in the correspondiriganonical WSL.
(3) E-E\s<1 (eV>4). In this case, it is easy to see (32

from Eq.(23) that — Ews=2—£(n—5/4), wherenis of the  \yhere cog=|E-+£]/2. Note that Eq(32) coincides with Eq.
order ofn>* defined by Eq.(249. This gives the Wannier (2 g from Ref. 15 to within the multiplier and the energy

quantization rule reference point. The substitution of E(B2) in Eq. (31)
ields
E,.,—E,=& 29 7
However, here it refers to the bottom sfs band having a 2 T _
triangular shape. We stress that the validity of E2g) for E(sm§—§cos§)+ z-™ n=12..., (33

energies outside, though close to the WS band, is not at all

obvious. which, if compared with Eq(23), lacks a linear term irg.
As is mentioned in the introduction, for a semi-infinite Such a term would be present, if tme=1 on-site energy

crystal Eq.(27) was repeatedly derived earlier by different were equal not to zero bt
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energy
FIG. 4. Exact dependence &f ¢, 1(2/£) onE (solid lines for

£=0.1(upper curvgand£=0.2 (lower curve. Approximate values
of eigenenergies given by Eq&34), (35), (37) and E,=&n are

marked by filled squares, triangles, circles, and diamonds, respec-

tively.

Near the bottom of thels band E+2<1) we have¢?

=E+2+ <1, under which condition the electronic levels

can be approximated by the expression

3¢ 1
2"y

The above reconfirms E¢R7). The accuracy of the approxi-
mation is illustrated in Fig. 4, where the values Bf are
indicated by filled squares.

In the middle of thesls bandé= 7/2— o with a<1. As a
result, for|E| <1 the solution to Eq(31) may be represented
as

2/3

2+4+E,= —& n=12,.... (39

where n=n;, n;=1, n;=2,..., andn,;=[2/(7&)+%].

PHYSICAL REVIEW B 63 235410

At the top of thesls band 2-E—£<1, Eq.(36) simplifies
to

En~2—5—§2=(n—1)5—§, (37)

which is similar to Eq(29).
Finally, for the semi-infinite intervdt>2— & (WS band

£ 1 .
~ — a—(2/6)(6 coshs—sinh &)
J-u-a(26)= wsinha(Ze

m(E+E)
XCOST

+ e(2/8)(6 coshé—sinh 5)Si

. (39

where 2 cosld=E+E£. As a result, Eq(31) takes the form

7T(E+5)>
£

r(wE)_ 1 4 _
ta = = 5&X —E((Scoshé—smhﬁ) , (39

which is to be compared with E@18). Under the condition
4(6coshs—sinhd)>¢&, andEn>1, the solution to(39) can
be approximated by
2(n+1)

: (40)

E=E,=n& ¢ _°

—EnmheT oo &n+1)

showing that for energies of the order or larger tleardge
effects on the WSL are negligible.

VIl. SYNOPSIS

This work is addressed, first of all, to dielectric crystalline
layers (and superlattices whose thicknesg¢length reaches
the edge of the direct tunneling. On the other hand, from
below ten to fifteen atomic layeravells) are required, to
meet the conditiodv>1. One-patrticle, single band approach
implies that in a full scale, the obtained results are applicable
only to empty bands which are weakly mixing with the oth-
ers in the actual voltage region. Furthermore, the condition
of a symmetric zero-field band is likely to be crucial for the

The respective energies are indicated as filled triangles ifXistence of canonical, as well as noncanonical WSLs. In the

Fig. 4.

most of relevant real systems such symmetry is rather not the

By the condition of the above derivation, the square rooc@s€. However, the band asymmetry is often small and, in the
in Eq. (35) must be close to unit. One can see therefore, thali’St approximation, can be neglected. Even though the

except the energy reference poE*ql, the obtained relation

is essentially the same as that given in E2§). It turns out
that approximation(35) is surprisingly accurate far beyond
the limit of its applicability, see Fig. 4.

Consider now the energy interval E<E<2—¢, which
represents the positive half of thés band. Under the restric-
tion indicated, an&<1, the Bessel function in Eq431) can
be expressed in the fort82) but with the summandE
+&)w/ € added to the cosine argument. Equatid8) is thus
replaced by

(E+&m

5 (36)

2 T _
g(smé—fcosé)Jr 2t =n.

model assumptions used explicitly or implicitly in the above
derivations are quite demanding, there is a certain Heuristic
value of obtained results highlighting the main trends of
electric field effects on the surface and bulk electronic states
which always coexist in real systems.

The results of the above analysis of field effects on one-
electron spectrum are summarized in Fig. 5 which exposes
guantum mechanical content of classical diagrams in Fig. 1.
A constant electric field increases an average interlevel sepa-
ration in a nontrivial way and redistributes electronic levels
over the band. In zero field, the density of states is minimal
in the band center, while it is maximal at the band edges. At
high voltages, the level distribution is just reversed. In an
obvious limit eV>EQ, (not considered hejethe &-spaced
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level spacing equals to the doubled Wannier spacing, see
HH H H H”l £=0 Fig. 5. It is worth stressing that the relatéahd often used
Airy spectrum semi-infinite model is just unable to describe the electric
field effects, when the electrostatic energy is smaller, than
' ' the zero-field band width. The model of finite and tilted
H £=0.04 tight-binding band is thus shown to be much more rich and
. fertile physically, than is commonly thought.
1 ‘ . From the experimental point of view, the most straight-
forward application of our results is seen in the field depen-
€,=0.065 dence of peaks of through tilted band tunneling probability.
Due to the band states, an electron with properly tuned ki-
6 ’ ’ ’ ’ ‘ 28‘2 . | netic energy can be transmitted across a thin crystal layer or

3€

’ ‘ ’ ’ superlattice by means of resonance tunneling. The position
15701 of peaks in the transmission spectriiie., the dependence
0 T?l ! 2 Tz% 3 4 E of resonance tunneling probability on enefG¢E)] can be
controlled by the applied voltage, as is explained in the
FIG. 5. Band levelgvertical lines calculated forA’=51 and ~ @bove discussion. Precisely, noncanonical WSLs can be ob-
electrostatic energy differencdrom top to bottoy ev=0, ev  Served in the case of low voltages and weak coupling of the
=2, eV=4 cosm/5~3.24, andeV=5. Arrows mark levels within ~ tunnel region(modeled by the tilted bandwith the source
specific series; accented ticks indicate the top of Wver dia- and drain of electrons. Such WSLs will manifest themselves
gram and es band. Airy spectrum refers to levels given by Eq. as evenly spaced central peaks in the transmission spectrum.
(27). Similarly, in the region ofsls-assisted tunneling, peaks with
&-, doubleé-, and Airy-type spacing can be observed. Prob-
ably, ballistic-electron-emission microscopy that can probe
levels are distributed homogeneously throughout the spedieterostructure transmission spectra in a nondestructive
trum. mannef® is the most suitable but not the only technique for
The following lists main transformations of the band the purpose.
spectrum in response to an increase of the applied volfage. ~ Methodologically, the use of the above approach can be
At eV=2.3¢?R—¢ the first two surface localized states straightforwardly extended to the analysis of the transmis-
appear, above and below tles band. At higher voltages, sion spectrum dependence on the field, energy, and length of
two sls bands emerge(ii) At certain voltages, which sat- tunneling region. Further usage is envisioned in a description
isfy Eqg. (12), the middle part of the spectrum consists of of the Franz-Keldysh effect which reflects changes of the
evenly spaced levels forming a noncanonical WSL with theband spectrum induced by a constant electric field. The
level spacing equal t& times integer or fractional number through gap Zener tunneling also associates with field af-
(>1 and dependent on the applied voltageor experimen- fected electron states. Signatures of the Wannier-Stark effect
tal observations, however, the WSLE=I{1+2m'/(m in Zener tunneling and Franz-Keldysh absorption, which in-
—2m’)}&, where the second summand in brackets is not toovolve at least two bands, are expected but not well under-
small, may be most meaningful. The level spacin§ i8 stood yet. Even within the relevant zero-approximation
expected aeV= Egm/z_ The increase of the applied voltage model, which is two noninteracting bands influenced by a
by \2 should result in a new level spacing equal to theconstant electric field, the above mentioned processes have
doubled dimensionless field parameter. Equatitk® and  Not received an adequate theoretical treatment. Some pre-
(13) suggest a number of other tests for validating noncali_min_ary results have been reporféeénd work in this direc-
nonical WSLs experimentally(ii) When eV=EJ,, the tONIsin progress.
spectrum consists of twels bands, and at higher voltages
the WS-band emerges. A¢V>E), the band spectrum
gradually changes its character from the canonical WSL in This research was supported by the Swedish Research
the middle to the Airy type at the edge parts of the spectrumCouncil (former NFR and TFR Partial support from INTAS
This changing is such that in the middle of thks bands, the under Grant No. 99-864 is also gratefully acknowledged.
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