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Abstract

The concept of Wannier±Stark (WS) quantization literally refers to in®nite crystals or bulk electron states. In real ®nite

crystals, the bulk and edge or surface states always coexist. Moreover, when the surface states are already considerably

localized due to the presence of a constant electric ®eld, the WS ladder (WSL) and hence the WS localization may not yet

come into play, at least, in the canonical form of WS quantization Ej � const ^ je; j � 0; 1; 2;¼ (Ej is the one-electron energy,

and the parameter e is associated with the electric ®eld strength). We show that at certain voltages Vm; m � 3; 4;¼; which are

lower than V1 needed for the WS band opening (the sub-WS regime), the mid-spectrum levels can form triple-, double-, and

fractional-spaced WSLs, where El � ^l�1 1 2=�m 2 2��em: It is also found that in the WS regime, the quantization of surface

localized states (sls) smoothly changes from the Airy type (at the spectrum edges) to the WS type with a pronounced energy

interval in between, where the level spacing doubles that of canonical WSL. Possible experimental manifestations of predicted

effects are also outlined. q 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Due to periodic atomic structure, band states in ®nite

crystals are quantized regularly. For an ideal crystal lattice

the electron states (Bloch electrons) are labeled by discrete

values of quasi-momentum, which are determined by the

boundary conditions. Both factors, periodicity and con®ne-

ment are of importance for the regular quantization of band

states. However, as was predicted by Wannier in 1960 [1,2],

the electron band spectrum of a crystal subjected to a

uniform electric ®eld, which breaks down periodicity,

consists of discrete, evenly spaced levels forming a ladder.

This kind of band spectrum has come to be known in litera-

ture as the Wannier±Stark ladder (WSL).

Literally, the Wannier±Stark (WS) quantization refers to

in®nite crystals or bulk electron states which have been

studied extensively in various aspects, [3±7] see also review

articles [8,9,10] and references therein. The electric ®eld

effect on the edge or surface states has received much less

attention and is mainly explored numerically [11±15]. Few

related analytical results have been obtained so far for ®nite

systems; all of them in the one band nearest-neighbor

approximation [16±19]. In particular, Fukuyama et al.

[19] and in a more recent work Yakovenko and Goan [20]

have shown explicitly that WSL always coexists with the

Airy spectrum. The derivation of this result implies,

however, that it is valid only for the high voltage limit,

when the total electrostatic energy is larger, than the elec-

tron bandwidth. In fact, in the semi-in®nite crystal discussed

in Refs. [19,20], the electrostatic energy is in®nite. For this

reason, the model does leave out of consideration, the case

of low voltages (the sub-WS regime). With regard to the

latter, general trends of the band levels rearrangement in

response to the increase of applied voltage are not well

understood. Numerical modeling in this direction, [14]

though useful, is insuf®cient, because the results are always

restricted to the given choice of system parameters.

The WS effect may have speci®c signatures in a number

of phenomena in crystalline and molecular systems. In par-

ticular, it is relevant to the through empty band tunneling,

Bloch oscillations [8,9,10], Zener tunneling [3,21,22], and

Franz±Keldysh absorption [4,23,24]. Combined with the

exact results obtained earlier, the present analysis provides
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a ®rm basis of further exploration of the above mentioned

and related effects. It also suggests reliable tests for more

sophisticated models.

In the current letter, we prove the existence of speci®cally

quantized series at sub-WS voltages and show a new type of

quantization (distinct from Airy and WS quantization) in the

case of intermediate and high electric ®elds.

2. Problem statement

Let us consider a symmetric tight-binding band under the

in¯uence of a constant electric ®eld. Since the spectrum of

the system is symmetric with respect to its center (shown in

Fig. 1 as Ec) it is convenient to use Ec as the energy reference

point. Equivalently, one can assume that the electrostatic

potential energy varies symmetrically with respect to the

crystal center and use the zero energy as the reference

point. With the latter choice, the Hamiltonian matrix has

the form

Hmn � 2eFa�N 1 1 2 n 2 u�dm;n 1 bdum2nu;1; �1�

where n;m � 1;N; u � 0:5 for N � 2N; and u � 0 for

N � 2N 1 1; e, F, and a are, respectively, the absolute

value of electron charge, electric ®eld strength, and lattice

constant; b is the energy of electron resonance transfer

between neighboring sites; the electron site energy in zero

®eld is set equal to zero. In what follows, b serves as the

energy unit, notation e � eFa=b stands for the ®eld para-

meter, and eV � e�N 2 1� is the energy of electrostatic

potential applied to the bounding surfaces which are perpen-

dicular to one of the crystal principal axes.

The eigenvalues of matrix Hmn are given by zeros of the

determinant

DN�E� � uEdm;n 2 b21Hmnu � 0: �2�
As it has been shown by many authors [17±19,25], the

Hamiltonian matrix determinant can be expressed in terms

of Bessel functions. For the particular choice of the energy

reference point and lattice sites numbering, as is shown in

Fig. 1, we have [25]

DN�E� � Jm1�N11�=2�z�Ym2�N11�=2�z�
2 Ym1�N11�=2�z�Jm2�N11�=2�z�; �3�

where m ; E=e; z ; 2=e; and Jm (z) and Ym (z) are the Bessel

functions of the ®rst and second kind, respectively.

We discuss ®rst particular solutions to Eq. (2) for an odd

number of atomic layers N � 2N 1 1: The case of an even

N can be examined similarly. Because of the spectrum

symmetry only positive energies, i.e., the upper half of the

spectrum will be considered.

3. Fractional quantization of the mid spectrum

For the purpose it is convenient to transform DN(E) to the

form of a ®nite order polynomial. For odd values of N Eq.

(3) is transformed into [25]

D2N11�E� � �21�N e

p

XN
l�0

e2l11
N 1 l 1 1

N 2 l

 !

� �m�l11�2m 1 1�l; �4�
where notation (¼)l stands for the Pohgammer symbol

�a�l � a�a 1 1�¼�a 1 l 2 1�: The above expression is

equivalent to the Lommel polynomial form of Eq. (2)

which was ®rst derived by Stay and Gusman [17], and by

Saitoh [18].

Let us show that at certain values of eV equation

D2N11�E� � 0 does have solutions E � En � ne; where n

takes positive integer values to be speci®ed. For E � En

all terms in Eq. (4) with l $ n are cancelled. Hence we
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Fig. 1. Untilted (upper) and tilted (middle and lower) bands of

electronic levels in a crystal of ®nite thickness. The crystal area in

the direction of electric ®eld is occupied by N atomic layers. In the

division of the band spectrum at a particular voltage V, the center of

the spectrum Ec serves as a reference point. At V � 0 all states

within the band are extended from the left hand side to the right

hand side of the crystal. These states form an extended state band or

es-band which is indicated by a shaded rectangle. The zero-®eld

bandwidth is equal to 4 in units of the electron resonance transfer

energy. At 0 , eV , 4 in addition to the (narrowed) es-band, two

bands of surface localized states appear (sls-bands indicated by

shaded triangles). At eV . 4 the es-band shrinks to zero and the

Wannier±Stark band appears instead (WS-band is indicated by a

shaded parallelogram). Index t (top) labels the highest possible

energy of a respective band: Et
es � 2 2 eV=2; Et

WS � eV=2 2 2;

Et
sls � 2 1 eV=2:



can write

D2N11�En� � e

p

Xn 2 1

l�0

�21�l1N

� e2l11 �N 1 l 1 1�!
�N 2 l�!

�n 1 l�!
�n 2 l 2 1�!�2l 1 1�! :

�5�
For n p N we have �N 1 l 1 1�!=�N 2 l�! < N2l11 (the

Stirling formula). And performing the summation, we

obtain

D2N11�En� < �21�N1n11 e

p

sin{2n arccos�eN=2�}
sin{arccos�eN=2�} ; �6�

if eN , 2; and

D2N11�En� < �21�N1n11 e

p

sinh{2n cosh21�eN=2�}
sinh{cosh21�eN=2�} ; �7�

if eN . 2:

It immediately follows from Eq. (6) that if eV , 4; some

(or none) of electronic states have energies which are

exactly equal to ne . These are the nth states for which

2n arccos�Ne=2� � pk; and k is a positive integer. In

particular, if the applied voltage satis®es the condition

V � Vm � �N 2 1�em; where

arccos
eVm

4

� �
� p

m
; m � 3; 4;¼; �8�

there exists a sequence of eigenvalues En � nem; where n �
0;m; 2m;¼; if m is odd �E � Ej � jmem; j � 0; 1; 2;¼�; and

n � 0;m=2;m; 3m=2;¼; if m is even �E � Ej � j�m=2�em�: It

is seen from Eq. (8) that the ®rst `odd' series �m � 3�
appears at eV3 � 2 �e3 � 1=N�: The level spacing within

this series is equal to 3e3 � 3=N: On the other hand, the

es-band width at this voltage is a half of zero-®eld band

width, showing that the level spacing must be near the

value of p=�N 1 1�; so that E � Ej < pj=�N 1 1�: From

the closeness of the latter estimate to the nearly exact solu-

tion Ej � 3je3 � 3j=N (if N is large and we are not far from

the spectrum center), it follows that the ®rst odd series lists

all levels in the mid part of es-band. The same is true about

the ®rst even series, which appears at eV4 � 2
��
2
p

.
eV3�e4 �

��
2
p

=N . e3�: The second, third, and so on odd

series, which in accordance with Eq. (8) appear at ever

higher voltage V5, V7, and so on, coincide with each third,

®fth and so on spectrum level. The energies of the second,

third, and so on even series coincide with each second, third

and so on spectrum level. Further analysis shows that the

mid part of the spectrum consists of nearly equidistant

levels.

Combining all these results yields the following structure

of the mid part of one-electron spectrum at 2 , eV �
eVm , 4

El � l 1 1
2

m 2 2

� �
em: �9�

This equation implies that the WSL with e -spaced

levels, which appears at eV . 4; [17±19] is preceded by a

3e 3-spaced WSL appeared at eV3 � 2; then by a 2e 4-spaced

WSL at eV4 � 2
��
2
p

; and then by a �1 1 2=�m 2 2��em-

spaced WSL (a sort of fractionally quantized spectrum) at

higher voltages Vm determined by Eq. (8). Thus it is possible

to change one regular level spacing to the other by proper

tuning of the applied voltage. For instance, by increasing

the applied voltage from the value of V5 to V6, the WSL

with 5
3
e level spacing will be replaced by one where

Ej11 2 Ej � 3
2
e:

Finally we notice, as can be concluded from Eq. (7), for

eV . 4 the spectrum is never described exactly by equation

E � En � ne: By no means does this result exclude the

existence of WSL in ®nite systems. It just shows that the

WSL must always be understood in an asymptotic sense

[17,26].

4. Surface localized states (sls) spectrum. Double-e
quantization in the mid of sls-band

From the analysis of DN(E) as a function of energy it

follows that in the energy intervals, which are shown in

Fig. 1 as extended states (es), surface localized states

(sls), and WS bands, the corresponding solutions to Eq. (2)

have distinctive properties. Here we focus on the eigen-

values within the sls-band. These have been examined by

Saitoh [18], Fukuyama at al. [19], and Yakovenko and Goan

[20]. However, their results refer to the band edges, where

the spectrum is nearly the same as in an in®nite triangle well

(the Airy spectrum). It will be shown soon that in the mid of

sls-band, as well as in its part verging on the es-band, the

electron state quantization is different.

The energy interval of sls-band is de®ned as Et
es ; 2 2

eV=2 , E , 2 1 eV=2 ; Et
sls; if eV , 4 (in such a case, the

sls-band width is equal to eV); and Et
WS ; eV=2 2 2 , E ,

Et
sls; if eV . 4: In the latter case, the sls-band width has the

maximal value which is equal to the width of untilted band.

For V ± 0; the crystal areas, which are classically accessible

(shaded in Fig. 1) and forbidden (unshaded), are divided by

sloped lines. As is seen in the ®gure, while the es-band states

are extended over the entire length N, the crystal thickness,

the sls-band states tend to be preferably localized near one

of the crystal boundary surfaces; for positive energies this is

the right hand side surface.

Under the condition e p 1 and N q 1; which covers

most cases of interest1, the secular equation determining

the sls-band spectrum is expressible in a more simple

form. This can be done by making use of standard approxi-

mate expressions of Bessel functions with large arguments

and small or large orders [27]. Skipping lengthy calculations
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1 The opposite case of large ®eld parameter e $ 1 is easily treated

by perturbation theory in the small parameter e21; it may require,

however, unrealistically high applied voltages.



we write only the result

DN�E� <
e

p

���������������
1

sin j sinh d

s
cos

2Fj

e
1 j 2

p

4

� �
£

exp
2Fd

e
1 d

� �
;

�10�

where

2cosh d � E 1
eV

2
; 2cos j � E 2

eV

2
; �11�

Fd � d cosh d 2 sinh d; and Fj � sin j 2 j cos j: To

derive Eq. (10), small energy intervals e , which contain

one or no levels at all, are excluded. Namely, E t
es 1 e ,

E , Et
sls 2 e; if eV , 4; and Et

WS 1 e , E , Et
sls 2 e; if

eV . 4:

Using Eq. (10) in Eq. (2), one obtains

sin
2

e
Fj 1 j 1

p

4

� �
� 0; �12�

so that

j sls ;
2

e
Fj 1 j 1

p

4
� pn: �13�

The latter equation labels the sls-band states by a single

quantum number j sls
n � pn; n � 1; 2;¼; nsls

: Smaller values

of j sls
n correspond to energies closer to the top of sls-band

Et
sls:

The number of states in the sls-band is given (up to unity)

by

nsls �
"

2

pe

 ������������������
eV

 
1 2

eV

4

!vuut 2

 
1 2

eV

2

!
£

arccos

 
1 2

eV

2

!!
1

1

p
arccos

 
1 2

eV

2

!
1

1

4

#
;

�14�

if eV , 4; and by

nsls � 2

e
1

5

4

� �
; �15�

if eV . 4: In Eqs. (14) and (15), and henceforth, square

brackets indicate the integer part of the argument. Eq. (15)

up to the term 5/4 coincides with that obtained by

Yakovenko and Goan [20] for a semi-in®nite crystal. As is

readily seen, at high voltages the number of sls-band states

is fully controlled by the ®eld strength only. However, this is

not true at arbitrary voltages. For instance, at very low

voltages eV ! 1; Eq. (14) to the ®rst approximation can

be rewritten as

nsls � 2N

3p

����
eV
p� �

; �16�

i.e., nsls depends on the crystal thickness N more strongly

than on the ®eld parameter e . These results clearly indicate

that the manifestation of electric ®eld effects in thin crystals

may be very much different from those that can be obtained

from semi-in®nite crystal models.

In certain energy intervals (1) Et
sls 2 E p 1; (2) uE 2

eV=2u p 1�eV . 2�; and (3) E 2 Et
WS p 1�eV . 4�; Eq.

(12) can be solved analytically. Let us consider the corre-

sponding solutions.

(1) Et
sls 2 E p 1: Under the condition j <

�����������
E t

sls 2 E
p

p

1; Fj can be expanded in powers of j . Using the expansion

in Eqs. (11) and (12) yields

E t
sls 2 Em � 3

2
p m 2

1

4

� �
e

� �2=3

; �17�

which is nothing but the Airy spectrum see, e.g., Ref. [28].

This equation is quite familiar for the free electron or effec-

tive mass approximation [19,29]. To obtain a more common

representation of Eq. (17), one has to replace the energy

scale b by its equivalent in the continuous limit: b!
"2
=�2mpa2�; mp is the electron effective mass.

(2) uE 2 eV=2u p 1; eV . 2: For the energies close to

eV/2 we ®nd that equation

uEm11 2 Emu < 2e; �18�
with m p 1=�2e� and the energy reference point appropri-

ately de®ned [26], gives the eigenvalues of matrix (1) with

a good accuracy. Thus for energy levels lying above

�Em11 2 Em is positive) and below �Em11 2 Em is negative)

E � eV=2; the level spacing is equal to the doubled spacing

in the corresponding canonical WSL.

(3) E 2 Et
WS p 1�eV . 4�: In this case, it is easy to see

from Eq. (13) that Em 2 Et
WS � 2 2 e�m 2 5=4�; where m is

of the order of nsls. This gives the Wannier quantization rule

Em11 2 Em � e; �19�
which, however, refers not to the WS-band energy interval,

but to the bottom of the upper sls-band having a triangular

shape, see Fig. 1. We stress that the validity of Eq. (19) near

the edge of WS-band is not at all obvious.

As mentioned above, for a semi-in®nite crystal Eq. (17)

was derived earlier by different techniques [17±19,29]. At

the same time, Eqs. (18) and (19) have never been reported

in the given context, at least, to the best of our knowledge.

5. Conclusions

The dependence of the one-electron spectrum on the

applied voltage may have re¯ections in a variety of experi-

ments. The most straightforward manifestation of our results

is seen in the ®eld dependence of peaks of the tunneling

probability through tilted bands. Due to the band states, an

electron with properly tuned kinetic energy can be trans-

mitted across a thin crystal layer or superlattice by means

of resonant tunneling. The position of peaks in the transmis-

sion spectrum (i.e., the dependence of resonant tunneling

probability on energy T(E)) can be controlled by the applied

voltage as is explained in the above discussion. It can be
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stated, therefore, that in the case of sub-WS voltages and

weak coupling of the tunnel region (modeled by the tilted

band) with the source and drain of electrons, the mid part of

transmission spectrum will have peaks at the voltages and

energies determined by Eqs. (8) and (9). The shape of these

peaks depends on a number of factors. However, their

integral intensity is likely to differ little, since all of them

correspond to extended-state assisted tunneling. In contrast,

the peaks of T(E) in the sls-band energy intervals correspond

to localized-state assisted tunneling. As a result, they will

have exponentially decaying intensities the closer are peaks

to the tilted band edges. Depending on the part of trans-

mission spectrum, the peak spacing can be of the Airy

type (predicted earlier), doubled e , and e spacing, see

Eqs. (17)±(19). The method used above is applicable with

some modi®cations to the analysis of the transmission spec-

trum dependence on the ®eld, energy, and tunneling region

thickness, to be discussed elsewhere [30].

The Franz±Keldysh effect re¯ects the electric-®eld-

induced changes of the band spectrum. The through gap

Zener tunneling also associates with ®eld affected electron

states. The WSL signatures in these processes, which

involve at least two bands, are far more complicated [3,4].

Even relevant to these effects, the zero-approximation

model, which is two non-interacting bands in¯uenced by a

constant electric ®eld, has not yet received an adequate

theoretical treatment. In this context, the results presented

are of immediate and future use.

Summarizing, electric ®eld effects on the bulk and surface

states spectra are described in one band nearest-neighbor

approximation. The new results obtained are addressed,

®rst of all, to thin crystal layers and/or superlattices in a

few-tens nanometer range, whose band spectrum contains

an empty symmetric band well separated from the others.

We predict triple-, double-, and fractional quantization of

bulk states at sub-WS voltages, and the existence of a part of

surface state spectrum, which has regular doubled Wannier

level spacing. These predictions are of importance for

reliable experimental identi®cation of electric ®eld effects

on the electron spectrum and dynamics.
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