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Abstract

The exact analytical expression of the Green function of oligomers M–M– . . . –M and M –M –M – . . . –M –M , where M, M , and1 2 1 2 1 1

M are monomers of arbitrary p electronic structure described by the tight-binding Hamiltonian, is derived for the first time. This result2

makes possible to address relevant spectral and electron transport properties of large linear molecules on the basis of realistic exactly
solvable models. The power of the approach is exemplified by obtaining a number of explicit relations between the transport related
quantities, in particular, through molecule tunneling decay constant, and the molecular electronic structure for a wide family of potential
molecular wires. q 1999 Elsevier Science S.A. All rights reserved.
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1. Introduction

Much attention has recently been paid to the application
of Green function method in calculations of spectroscopic
and electron transport related quantities for polyatomic

w xmolecules 1–12 . For instance, the Green function tech-
nique has been extensively used for a perturbative descrip-
tion of bridge-mediated electron transfer between donor

w xand acceptor 2 , as well as for obtaining model exact
analytical expressions of the electronic factor in the intra-

w xmolecular electron-transfer rate 4 and linear-response
w xmolecular conductance 5 . However, mostly, the Green

function approach has been used for the development of
w xefficient schemes to compute the electronic factor 3,7–9

w xand molecular conductance 10–12 .
The reported analytical treatments of long-distance elec-

tron transferrtransmission across molecules have been
essentially restricted to the molecular chain modeled by a
linear sequence of one-site one level subunits coupled via

w xa constant nearest-neighbor hopping integral 1,4,5 . This
model is known to give a single band of one electron
states, that is nothing else but 1-D metal. On the other
hand, the molecules tried in electrical measurements as
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w xmolecular wires 11–15 are inherently either dielectrics or
semiconductors but not metals. Moreover, as it is evi-
denced experimentally, the Fermi energy of metals used to
contact these molecules falls somewhere within the band
gap of the molecular spectrum. Under such conditions, the
molecular electron states from both valence and conduc-
tion bands are expected to contribute the electron tunneling
across molecules connecting two metals. For these reasons,
the above mentioned model of molecular chain, though
useful, is not adequate to reproduce the performance of
real molecular wires. To take into account the molecular
band gap, a more sophisticated model has recently been

w xproposed 16 that refers to CH- and SN-chains. A far
more reach variety of linear organic molecules can be
approached analytically by the Green function technique.

To describe the electrical properties of metal–molecu-
lar–metal heterojunctions, the Green function of the
molecule spanned between metal electrodes has to be
found with account to the molecule–metal interaction
w x5,10,17 . The perturbation of molecular levels can be
included by a proper definition of the self-energy operator.
An important point to note is that the effect of molecule–
metal interaction is taken into account not in a perturbative

w xmanner but exactly 17 . Thereby, the problem to solve is
Žfinding the resolvent of a complex because of adding self
.energy to the molecular Hamiltonian hermitian matrix of

the same order as the matrix of non-perturbed molecular
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Hamiltonian. By further redefinition of the self energy the
electron–phonon interaction as well as charging effects
can also be included into consideration, at least approxi-

w x Žmately 12,17 . In all the applications mentioned and
w x.many others, e.g., in the chemisorption theory 18 , the

knowledge of unperturbed molecular Green function greatly
facilitates calculations. The formal reason for the simplifi-
cation is that provided the molecular Green function is
known the problem of inverting the matrix of the order
determined by the basis set of the molecule is reduced to
the order determined by the number of atoms interacting
with the metal. The latter is usually much less than the
total number of atoms in the molecule. For instance, it can

w xbe taken as small as two 5,10–12 .
Furthermore, the unperturbed Green function matrix

elements referred to the end binding sites of the molecule
Žwhich connectsrbridges electrodes in metal–molecular
heterojunctions or donor and acceptor in donor–bridge–

.acceptor systems determine the through-molecule tunnel-
w xing rate 4,5,19,20 . In particular, from the Green function

expression the tunneling decay constant can be deduced.
By using the latter quantity, the charge transmitting abili-
ties of different molecules can be compared with a clear
reference to the molecular electronic structure. Otherwise,
the estimate of the tunneling decay constant, not to men-
tion a detailed analysis of molecular conductance, requires
a large volume of computational work. In view of the
system complexity, this kind of calculations is usually
performed on the basis of approximate semi-empirical

w xmethods 10,21,22 with much uncertainty left with regard
to their accuracy. It makes therefore advisable a compari-
son with rigorous exact results which can be obtained in
the framework of simplified but realistic tight-binding
models.

The conjugated oligomers are considered to be the most
w xlikely candidates to act as molecular wires 10–15 . They

possess a number of other potentials for molecular elec-
w xtronics 23 . The relevant Green functions are known only

for the simplest finite linear sequences of repeating units,
w xsuch as simple tight-binding chains with constant 24 and

w xalternating 6,25 value of hopping integral. The purpose of
this paper is to give the exact analytical solution of the
Green function problem for two broad families of conju-
gated oligomers covered by structural formulas M–M–

Ž. . . –M oligomers of polyene, polythiophene, polypara-
. Žphenylene, etc. and M –M –M – . . . –M –M oligomers1 2 1 2 1

.of polyaniline, polyparaphenylenevinylene, etc. . As an
illustration, the solution obtained is then used to describe
the molecular tunnel conductance of metal–molecular het-
erojunctions.

2. Green function of M-oligomers

In one-electron approximation, the p electron Hamilto-
Žnian of linear conjugated molecules M–M– . . . –M M-

.oligomers , where M denotes a monomer of arbitrary
chemical structure can be represented as

N
O MMˆ ˆ ˆH s H qV , 1Ž .Ý n

ns1

ˆ Mwhere H is the Hamiltonian operator of the nth monomer,n
ˆN is the number of monomers in the molecule, and V is

the energy operator of inter-monomer interaction,
N

ˆ < :² < < :² <Vsb nq1 n q ny1 n .Ž . Ž .a aÝint a al rr l
ns1

2Ž .
Ž . < : <Ž . : < :In Eq. 2 , 0 s Nq1 s0, the ket n has itsa a ar l

usual meaning of the p orbital of the a th atom in the nth
monomer, b is the energy of resonance p electronint

Ž .transfer hopping integral between the neighboring sites
Ž .denoted as a and a , respectively of the nth andr l
Ž .nq1 th monomers. Since the further derivation is not

ˆ Mrestricted to the particular form of operator H its formn

will not be specified at this stage.
To find the Green function for the Hamiltonian defined

Ž . Ž .in Eqs. 1 and 2 , it is convenient to use the Dyson
equation

ˆO M ˆO ˆO ˆ ˆO MG E sG E qG E VG E , 3Ž . Ž . Ž . Ž . Ž .
Žwhich in the matrix representation reads henceforth, the

indication of explicit dependence of the Green function on
.electron energy E is omitted

GO M sd GM
n ,m n ,m n ,mn m

M O M OM Mqb G G qG G ,int n ,a Žny1. n ,a Žnq1.l a ,m r a ,mr m l m

4Ž .

GO M s0, GO M s0, 5Ž .0 ŽNq1.a ,m a ,mr m l m

M ˆ ˆ M y1² <Ž . < :where G s n EIyH m is the matrix elementn ,m n

of the monomer Green function operator; indexes n and m
take all possible values from 1 to N, while indexes n and
m identify the location of atoms within the monomer. In

Ž .particular, setting in Eq. 4 nsa , a , and msa , a ,l r l r

we obtain four equations for the matrix elements referring
to the binding sites of monomers.

Ž . Ž .Finding the solutions to Eqs. 4 and 5 is substantially
simplified by using the dispersion relation between the
energy E and quasi-impulse j of electron in M-oligomers

w xthat has the form 26
y1M M2cosjs f E , f E s b G 1yG , 6Ž . Ž . Ž .Ž .Ž .int a ,a Dl r

where
2M 2 M M MG 'b G G y G . 7Ž .Ž .D int a ,a a ,a a ,al l r r l r

Representing the Green function matrix elements ap-
Ž .peared in Eq. 4 for nsa , a , and msa , as a superpo-l r r

sition of incident and reflected waves and exploiting Eq.
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Ž .6 , after some lengthy but straightforward algebra we
arrive at the following expressions of GO M and GO M

n ,m n ,ma a a al l r l
y1O 2 MMG s b G D sinjŽ .n ,m int a ,a Mn a l rl

M Ž .°b G sinj Nq1y mint a ,al l

MŽ . Ž .= sinj ny1 y b G sinj ny2 , if n s a ,w xint a ,a ll r

2 M M Ž .b G G sinj Nq1y m sinj n , if n s a ,int a ,a a ,a rl l r r

n- m ,
M~ w Ž .b G sinj my1= int a ,al l

M Ž . Ž .y b G sinj my2 sinj Nq1y n , if n s a ,xint a ,a ll r

MŽ . Ž .sinj my1 y b G sinj my2w xint a ,al r

MŽ . Ž .= sinj Ny n y b G sinj Ny1y n , if n s a ,w xint a ,a rl r¢
nG m.

8Ž .

The expressions of matrix elements GO M can be foundn ,ma ar r

in a similar way,

GO M
n ,ma ar r

M Ž . M Ž .G sinj Ny n y b G sinj Ny ny1° a ,a int a ,ar r l r

M sinjb Gint a ,al r~s sinj m
= , if n) m ,

DM¢
nlm , if nF m.

9Ž .

Ž . Ž .In Eqs. 8 and 9 , a new notation is introduced

D ssinj Nyb GM sinj Ny1 . 10Ž . Ž .M int a ,al r

Ž .If the electron energy satisfies Eq. 6 , the solutions to
equation D s0 determine the eigenvalues of quasi-im-M

w xpulse j in M-oligomers 26 .
The equations represented above give the exact explicit

expression for any component of the M-oligomer Green
ˆO Mfunction operator G in terms of the matrix elements of

ˆMmonomer Green function operator G . In Section 3, they
are used to derive the Green function for another wide
class of linear organic compounds with a somewhat more
complex structure, M –M –M – . . . –M –M , called here1 2 1 2 1

Ž .for brevity M –M -oligomers.1 2

( )3. Green function of M –M -oligomers1 2

Ž .The M –M -oligomers can be considered as M-1 2

oligomers, MsM –M , where at the chain end M is1 2

substituted by M . The molecular Hamiltonian is now1

conveniently represented as

Ny1
O M – MM – M 1 2ˆ ˆ ˆ1 2H s H qVÝ n

ns1

ˆ M 1< :² <qb Ny1 N qH , 11Ž . Ž .aint a Nr l

ˆ Ž .where operator V is defined in Eq. 2 with N replaced by
Ny1; all the other notations have already been intro-
duced.

ˆO M – M ˆŽ . Ž1 2The matrix elements of operator G E s EIy
ˆ O M – M y1.1 2H can be found from

O 0 0 OM – M M – M1 2 1 2G sG qb G Gn ,m n ,m int n ,ŽNy1. Nn m n m n a a ,mr l m

0 O M – M1 2qG G , 12Ž .n , N ŽNy1. ,mn a a ml r

0 ˆ ˆ O M ˆ M 1 y1² <Ž . < :where G s n IEyH yH m and opera-n ,m n N mn mˆ O M Ž .tor H is given by Eq. 1 with N replaced by Ny1,
and M by M –M .1 2

For the Green function matrix elements referred to the
Ž .end atoms of the M –M -oligomer, it follows from Eq.1 2

Ž .12

GM 1 GO M
a ,a 1 ,ŽNy1.l r a al rO M – M1 2G sb ,1 , N int 2 M Oa a 1 Ml r 1yb G Gint a ,a ŽNy1. ,ŽNy1.l l a ar r

GO M yGM 1 GO M
1 ,1 a ,a Da a l ll lO M – M1 2G s ,1 ,1 2 M Oa a 1 Ml l 1yb G Gint a ,a ŽNy1. ,ŽNy1.l l a ar r

GM 1 yGO M GM 1
a ,a ŽNy1. ,ŽNy1. Dr r a ar rO M – M1 2G s 13Ž .N , N 2 M Oa a 1 Mr r 1yb G Gint a ,a ŽNy1. ,ŽNy1.l l a ar r

M Ž .where G is defined in Eq. 7 , andD

2O 2 O O OM M M MG sb G G y GŽ .D int 1 ,1 ŽNy1. ,ŽNy1. 1 ,ŽNy1.a a a a l rl l r r

sinj Ny1 yb GM sinj NŽ . int a ,al rs . 14Ž .Msinj Ny1 yb G sinj Ny2Ž . Ž .int a ,al r

Ž .The dispersion relation for M –M -oligomers has the1 2
Ž .form of Eq. 6 , where M is of course a compound

monomer M –M . It may be instrumental to use the Green1 2

function components of monomers M and M which have1 2

a more simple structure than those of the compound
monomer. For this purpose one can use the following

ˆM 1 – M 2expressions for the matrix elements of operator G

GM 2 GM 1
a ,a a ,al r l rM – M1 2G sb ,a ,a int 2 M Ml r 2 11yb G Gint a ,a a ,al l r r

GM 1 yGM 2 GM 1
a ,a a ,a Dl l l lM – M1 2G s ,a ,a 2 M Ml l 2 11yb G Gint a ,a a ,al l r r

GM 2 yGM 1 GM 2
a ,a a ,a Dr r r rM – M1 2G s . 15Ž .a ,a 2 M Mr r 2 11yb G Gint a ,a a ,al l r r



( )A. Onipko et al.rMaterials Science and Engineering C 8–9 1999 273–281276

Expressed in terms of the matrix elements of Green func-
ˆM 1 ˆM 2 Ž .tion operators G and G function f E in the disper-
Ž .sion relation for M –M -oligomers takes the form1 2

1
2 M M1 2f E s 1yb G GŽ . Žint a ,a a ,a2 M M l l r r1 2b G Gint a ,a a ,al r l r

M M M M1 2 1 2qG G qG G . 16Ž ..a ,a a ,a D Dr r l l

For applications, it is also useful to have the expres-
Ž .sions of the components of M –M -oligomer Green1 2

function as functionals of j and matrix elements of opera-
ˆM 1 ˆM 2 Ž . Ž . Ž .tors G and G . Making use of Eqs. 8 , 9 and 14 in
Ž . Ž .Eq. 13 , and taking into account the relations 15 and

Ž .16 one can find

GM 1 GM 2 sinja ,a a ,al r l rO M – M1 2G s ,1 , N M M Ma a 2 1 2l r G sinj NqG G sinj Ny1Ž .a ,a a ,a Dl r l r

17Ž .

GO M1 – M21 ,1a al l

GM 1 GM 2 sinj NqGM 1 GM 2 sinj Ny1Ž .a ,a a ,a a ,a a ,al l l r l r l ls ,M M M2 1 2G sinj NqG G sinj Ny1Ž .a ,a a ,a Dl r l r

18Ž .

GO M1 – M2N , Na ar r

GM 1 GM 2 sinj NqGM 1 GM 2 sinj Ny1Ž .a ,a a ,a a ,a a ,ar r l r l r r rs .M M M2 1 2G sinj NqG G sinj Ny1Ž .a ,a a ,a Dl r l r

19Ž .

It is worth noting that as in the case of M-oligomers, for
the given kind of linear molecules the bilinear combination
of Green function matrix elements

2
2 O O OM – M M – M M – M1 2 1 2 1 2b G G y Gž /int 1 ,1 N , N 1 , Na a a a a al l r r l r

GM 1GM 2 sinj NqGM 1 sinj Ny1Ž .D a ,a a ,al r l rs , 20Ž .M M M2 1 2G sinj NqG G sinj Ny1Ž .a ,a a ,a Dl r l r

Ž .which is an analogue of Eq. 14 , has poles of the same
order as that of the Green function itself.

4. Molecular tunnel conductance

The ohmic conductance of a molecule that connects two
metal pads is determined by the Green function of the

w x Žwhole system 5,10 consisting of the source and drain
.electrodes and the molecule itself which is taken at the

Fermi energy E . Under the assumption that the electrodesF

can be modelled by a semi-infinite 3-D cubic lattice with
the nearest-neighbor electron-transfer interaction and that

w Ž . xthe molecule M- or M –M -oligomer is coupled elec-1 2

tronically with metal pads only via its end atoms, it can be
shown that the molecular conductance is given by

2
28e ImS E ImS EŽ . Ž .l F r F

< <gs 1 N ,a al r¦ ;Oh Mˆ ˆ ˆ ˆE IyH yS E yS EŽ . Ž .F l F r F

21Ž .

ˆ ˆŽ . Ž .where the self energy operator S E qS E , whichl F r F

takes into account the interaction between molecule and
ˆ² < Ž . < :metal pads, is defined as n S E m slŽ r . F

2 Ž .d d b G E , b is the molecule–metal cou-n ,m n ,1 ŽN . lŽr . F lŽr .a al r Ž .pling constant, and G E is the surface diagonal matrixF

element of the Green function operator for a free electron
in semi-infinite cubic lattice. In this simplest model of
metal–molecule–metal heterojunction, the shift and broad-
ening of molecular levels that interact with metal are
determined by the real and imaginary parts of product

2 Ž . Ž .b G E . Eq. 21 has been used to examine the molecu-lŽr. F
w xlar wire properties modeled by chains with a constant 5

w xand alternating 27 value of the hopping integral.
w xAccording to experimental data 11–15 , the Fermi

energy is usually far from the molecular levels and the
metal–molecule interaction is weak. Hence, to estimate the
molecular conductance in the first approximation, one can

Ž .use Eq. 21 with the Green function of bare molecule, i.e.,

28e 2
O Mgs ImS E ImS E G E . 22Ž . Ž . Ž . Ž .l F r F 1 , N Fa al rh

This expression makes apparent the fact that, in addition to
Ž .the effective metal–molecule coupling constants ImS El F

Ž .and ImS E , the molecular electronic structure and par-r F

ticularly, the width of the band gap, and the relative
position of the Fermi energy with respect to the molecular
levels play a decisive role in determining the efficiency of
the through band gap electron transmission between metal
electrodes.

The gross structure of the one-electron spectrum of
Ž .conjugated oligomers is described by Eq. 6 . In particular,
Žit determines the boundaries of allowed real values of j

w x. Žin the interval 0,p and forbidden complex values of j ,
.js"id or jsp" id zones and also the dispersion

Ž . Ž .relations E j and E d that correspond to these zones.
The band boundaries determine the energy intervals of
delocalized electron states of the oligomer. The number of
such states in the band is proportional to the molecular
length, that is to the number of monomers. It follows from

Ž .Eq. 6 that the band boundaries which correspond to
Ž .js0 and to jsp are determined by equations f E s2

Ž .and f E sy2, respectively.
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In the case of periodic boundary conditions, the band
gaps would be free of electron states. The chain ends,
however, play the role of defects. Under certain conditions
specified below, even in ideal oligomers consisting of

Ž .identical monomers, there exist in-gap local electron
Ž .levels. Strictly speaking, approximation 22 is not valid, if

the Fermi energy is near in-gap states. Therefore, whether
or not the local levels are present in the molecular spec-
trum is an important question to answer.

The presence or absence of in-gap states, as well as the
band joining, band degeneracy and other important fea-
tures of the gross structure of oligomer electron spectrum

can be overseen at the monomer level by examining the
monomer Green function properties. In particular, the p

electron spectrum of M-oligomers does not contain in-gap
w xstates, if 26

< M <b G -1 23Ž .int a ,al r

at energies that satisfy equation

GM GM s0, 24Ž .a ,a a ,al l r r

the solution to which may exist within the band gap energy
intervals only.

Ž .Fig. 1. Examples of chemical structure of conjugated oligomers from top to bottom : MsC H ; MsC H ; M sC H , M sC H ; M sC H ,2 2 6 4 1 6 4 2 2 2 1 6 4

M sC H ; MsC H X; M sC H X, M sC H ; M sC H X, M sC H . X denotes heteroatom, for instance, S. Oligomers of comparable2 4 4 4 2 1 4 2 2 2 2 1 4 2 2 4 4
Ž . Ž .length have the same number of carbons in row N . N and Ny1 indicate the number of monomers M and M –M in M- and M –M -oligomers,C 1 2 1 2

respectively.
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Ž .An extension of this result to the case of M –M -1 2

oligomers leads to the following condition:

M 1Ga ,al r M 2G -1 25Ž .DM 2Ga ,al r

at the energies determined by

GM 2 yGM 1 GM 2 GM 2 yGM 1 GM 2 s0, 26Ž .Ž . Ž .a ,a a ,a D a ,a a ,a Dr r r r l l l l

Žwhich ensures the absence of in-gap states in the M –1
.M -oligomer spectrum.2

Obviously, the through band gap electron tunneling is
substantially dependent on whether the in-gap levels exist
or not. In what follows we restrict our consideration by the

Ž .assumption that, in the respective cases, inequalities 23
Ž .and 25 are valid.

To calculate the molecular tunnel conductance given by
Ž .Eq. 22 , one needs only the expression of the Green

function matrix element, GO M or GO M1 – M2. As explained1 , N 1 , Na a a al r l r
above, these must be taken at energies within the band

< Ž . < Ž .gap, where f E r2)1. According to Eq. 6 , the imagi-
nary part of quasi-impulse is then related to the electron
energy as

2< < (ds ln f E r2q f E r2 y1 , 27Ž . Ž . Ž .ž /
where the choice of the sign in front of the square root

Ž . w Ž .xaccounts to condition 23 or Eq. 25 .
For complex values of jsp" id and js"id Eq.

Ž . Ž .8 for nsN and ms1, and Eq. 17 give

N M.1 G sinhdŽ . a ,al rO MG s ,1 , N Ma al r sinh dN "b G sinh d Ny1Ž . Ž .int a ,al r

28Ž .

and

N M M1 2.1 G G sinhdŽ . a ,a a ,al r l rO M – M1 2G s ,1 , N M Ma a 1 1l r sinh dN .G G sinh d Ny1Ž . Ž .a ,a Dl r

29Ž .

respectively, where the upper sign corresponds to jsp"
Ž .id , and the lower sign corresponds to js"id d)0 .

The above expressions determine the molecular tunnel
conductance in the case of weak molecule–metal coupling
w x Ž . Ž .28 . Also, as mentioned in Section 1, Eqs. 28 and 29
can be used for estimating the electronic factor in the
non-adiabatic oligomer-mediated electron transfer rate
w x19,20 . The strict proof of these relations is given here for
the first time.

Ž . Ž . Ž .Under the condition exp dN 41, Eqs. 28 , 29 and
Ž .22 recover the exponential dependence of the tunnel
conductance on the oligomer length with the pre-exponen-
tial factor and the tunneling decay constant explicitly

related to the molecular electronic structure. Specifically,
Ž 2 .we have in units 2e rh

gsg g moley2 d N , 30Ž .0 0

Ž . Ž . 2where g s4 ImS E ImS E rb , and factors0 l F r F int

4sinh2d
molg s 31Ž .0 2y1M ydb G "eint a ,až /l r

and
2M 24 b G sinhdŽ .int a ,al rmolg s 32Ž .0 2M M M yd2 1 2G rG .G eŽ .a ,a a ,a Dl r l r

Ž .multiplied by exp y2dN represent a purely molecular
contribution into the conductance of metal–molecular het-

Ž .erojunctions based on M- and M –M -oligomers, respec-1 2

tively. In Section 5, we specify further this contribution in
the particular case of aromatic-ring based oligomers with-

Ž . ŽŽout M-oligomers and with C H or C H group M –2 2 4 4 1
. .M -oligomers between the five- and six-membered rings,2

C H X and C H , see Fig. 1 where X stands for het-4 2 6 4

eroatom.

5. Tunnel conductance of aromatic-ring based oligomers

For the monomers in focus the Green function matrix
elements GM and GM sGM , and bilinear combina-a ,a a ,a a ,al r l l r r

tion GM calculated in the tight-binding approximation takeD

the form
eh, MsC H ,° 2 2

he , MsC H ,4 4
g XintM ~2coshh , MsC H ,b G s 6 4int a ,al r D XhM e Ey´Ž .X

X¢ 2 2 y2hqg E ye , MsC H X,Ž .X 4 2

E, MsC H ,° 2 2

2 2h 2E E ye yg , MsC H ,Ž .int 4 4
g int X2M ~E E y2cosh 2h y1 , MsC H ,w xŽ .b G s 6 4int a ,al l DM X2E Ey´ E y2cosh 2hw xŽ .Ž .X

X¢ 2 2 y2hyg E ye , MsC H X,Ž .X 4 2

1, MsC H ,° 2 2

2 2E yg , MsC H ,int 4 4
X Xg int 2 2h 2 y2hy1 M ~Ž .Ž .E ye E yeg G sint D D y1M X2w xŽ .= E y2cosh 2h q1 , MsC H ,6 4

X¢ 2 y2hŽ .Ž .Ey´ E ye , MsC H X,X 4 2

33Ž .
where

E2 ye2h , MsC H ,° 2 2

22 2h 2 2Ž .E ye y E g , MsC H ,int 4 4
X X~ 2 2 2D s w xŽ .E y2cosh 2h q1 E y4cosh h , MsC H ,Ž .M 6 4

X X2 yh 2h wŽ . Ž .E q Ee ye Ey´ X¢ X X X2 yh 2h 2 2 yhŽ . Ž .x= E y Ee ye y2g E ye , MsC H X.X 4 2

34Ž .
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Table 1
2 m o lŽ . y2 d max N Ž 2 .Minimal conductance in units 2e rh, g rg sg d e , and maximal resistance in units hr 2e f12.9 kV, R sg rg calculatedmin 0 0 max max 0 min

Ž .for oligomers listed in Fig. 1 represented in the same order as in Fig. 1 . The Fermi energy corresponds to the maximum of tunneling decay constant dmax

within the HOMO–LUMO gap D . The oligomer length is indicated as N s16, 20, 22, and 28, N is the number of C atoms in row, see Fig. 1. TheHL C C
w x Xparameters of the molecular electronic structure are: for polyene hs0.1333 30a,30b , and hs0.1 in all other cases; for MsC H h s0, g s0.92,6 4 int

X w x w xand for MsC H S h s0.1, g s1; g s0.38, ´ s0.25 31 ; bsy3.757 eV 30a,30b4 2 int X X

mol y2 2Ž . Ž . Ž . Ž .Oligomer g d d D eV g =10 R =100 max max HL min max

16 20 22 28 16 20 22 28

Ž .M
MsC H 1 0.27 2.0 1.4 0.48 0.28 0.06 0.71 2.08 3.57 16.72 2

MsC H 1 0.78 3.4 0.20 0.04 5 256 4

MsC H S 1 0.56 2.0 1.1 0.35 0.91 2.864 2
Ž .M –M1 2

M sC H1 6 4

M sC H 1.5 0.98 2.7 0.43 0.06 2.33 16.72 2 2

M sC H 2.2 1.18 2.4 0.19 0.02 5.26 502 4 4

M sC H S1 4 2

M sC H 1.5 0.77 1.9 1.5 0.32 0.67 3.132 2 2

M sC H 2.2 0.97 1.9 0.66 0.94 1.5 1.062 4 4

Ž . Ž .The notations appeared in Eqs. 33 and 34 have the
following meaning. The hopping integrals associated with
double and single C–C bonds in the polyene chain and
between the rings are denoted as beh and beyh , respec-
tively. Similarly, beh

X

and beyh
X

distinguish double and
single C–C bonds within aromatic rings. b´ is theX

heteroatom site energy, bg is the hoping integral of C–XX

bond, and g sb rb. All energies are in units b , andint int

the electron site energy at carbon is taken as the reference
point. Further details on the monomer Hamiltonians used

w xto obtain the above relations are given in 26,29 .
Ž . Ž .It can be seen from the dispersion relations 6 and 16

w Ž .they are simplified considerably by using Eqs. 33 and
Ž .x34 that in the case of aromatic ring based oligomers

Ž .function f E may have singularities at some energies
and, hence, the tunneling decay constant d may go to
infinity. Physically, this means that such oligomers can act
as nearly ideal switchers provided the Fermi energy is
properly tuned.

If the properties of the monomer Green function are
Ž .such that f E has no singularities, the tunneling decay

constant remains finite, and its maximal value d withinmax

the given band gap is reached at the extremum of this
XŽ .function, where f E s0. Table 1 represents the values

of d for oligomers shown in Fig. 1.max

It is of interest to find the expression of the decay
Ž .constant at the energies which are solutions to Eqs. 24

Ž .and 26 . In the case of alternant, all carbon oligomers,
Žwithin the HOMO–LUMO highest occupied molecular

.orbital–lowest unoccupied molecular orbital gap such a
Ž .solution corresponds to the extremum of f E at Es0. At

Ž .the energies which satisfy Eq. 24 for M-oligomers and
Ž . Ž .Eq. 26 for M –M -oligomers, the expression of tunnel-1 2

ing decay constant takes an especially simple form

< M <y1
ds ln b G 35Ž .int a ,al r

and
y1

M 1Ga ,al r M 2ds ln G , 36Ž .DM 2Ga ,al r

< M <respectively. To recall, the case of b G )1 andint a ,al r

< M 1 Ž M 2 .y1 M 2 <G G G )1 is excluded of the consideration.a ,a a ,a Dl r l r

Ž . Ž .Finally, using in Eqs. 35 and 36 the above given
explicit expressions of GM and GM for alternanta ,a Dl r

oligomers one gets

2h , MsC H ,° 2 2

4h , MsC H ,4 4
X w�ln 2coshh 2cosh

X x 4Ž .= 2h y1 rg , MsC H ,int 6 4~d s Xmax w�ln 2coshh 2cosh
X x 4Ž .= 2h y1 rg q2h , M sC H ,M sC H ,int 1 6 4 2 2 2

X w�ln 2coshh 2cosh¢ X x 4Ž .= 2h y1 rg q4h , M sC H ,M sC H .int 1 6 4 2 4 4

37Ž .
Ž .The maximal value of the tunneling decay constant 37

can be easily estimated by using the known data: the value
w xof h is close to 0.1 30a,30b ; this same value is character-

X w xistic for parameter h in the heterocyclic rings 31 while
C–C bonds within phenyl ring are nearly equal to each
other, i.e., h

X f0; and expected values of g are close toint

unity. As an example, for oligomers of polypara-
phenylenevinylene these data yield the value of dimen-
sional tunneling decay constant in the middle of the gap

˚ y1 Žk s0.306 A k s2d NrL, L is the oligomermax max max
˚ .length in A . For this estimate, a commonly accepted

geometry was assumed, namely: the length of M sC H ,1 6 4

M sC H , and C–C bond between M and M was2 2 2 1 2
˚taken to be equal to 2.78, 1.32, and 1.48 A, respectively;

and the angle between double and single C–C bonds was
set to be 1208. The estimated value of k is in a goodmax
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agreement with that calculated by Magoga and Joachim
˚ y1 ˚ y1w x w x21 0.278 A , and also by Larsson et al. 22 0.303 A .

˚ y1It is also consistent with the value of 0.2 A which is
considered as a typical characteristic of linear conjugated

w xmolecules in the bridge-mediated electron transfer 32 .

6. Conclusion

The exact solution of the Green function problem for
M-oligomers described by the tight-binding Hamiltonian
represents the central result of the paper. In the solution

Žfound, the matrix elements of the oligomer linear macro-
.molecule Green function are explicitly expressed in terms

of monomer Green function. The calculation of the latter
quantity is a far more easy task. As is demonstrated in the
above illustrative examples, in many cases of interest, it
can be found in an analytical form.

A number of physical properties can be conveniently
described if the Green function of the system is known.
The solution found makes the p electronic structures of
two families of conjugated oligomers covered by formulas
M–M– . . . –M and M –M –M – . . . –M –M available1 2 1 2 1

for a comprehensive Green function analysis. Actually,
w xdue to early works of Sandorfy 33 , and Pople and Santry

w x34 , with an appropriate choice of the system parameters,
the same type of Hamiltonian, as that has been used here,
is also applicable for the description of s electrons. The
formal analogy between p and s electron system has
recently been used for a comparison of the electron-trans-
mitting abilities of conjugated and saturated carbon chains
w x27 . Furthermore, by the standard methods, the knowledge
of M-oligomer Green function can be extended to the case
of molecular chains with side andror end groups whose
Green functions are to be found separately. For instance,
the Green function of oligomers terminated by arbitrary
end groups can be obtained essentially in the same way as

Ž .it has been derived above for M –M -oligomers.1 2

In this work, the knowledge of the Green function has
been used to examine the electron tunneling through the
molecular band gap. So far, the molecular tunnel conduc-
tance has been studied mostly by numerical methods. For a
number of conjugated oligomers, the tunneling decay con-
stant has been calculated on the basis of the extended

w xHuckel model 21 . It is not our intention to make a¨
detailed comparison with these and similar results but
rather to notice an obvious advantage of the analytical

Ž .definition given in Eq. 27 . Firstly, this and subsidiary
equations derived make equally simple the estimate of the
tunneling decay constant at any energy within the band
gap. This is a useful application of the theory in view of
uncertainty with regard to the relative position of the
Fermi energy which in numerical models is usually fixed
w x21,22 . Secondly, the analytical expression of the tunnel-
ing decay constant establishes the relationship between the
through band gap tunneling efficiency and the parameters

of molecular Hamiltonian which determine the details of
electronic structure such as band gap, valence and conduc-
tion band widths, the full width of the p electron spec-
trum, etc. Unfortunately, the values of the Hamiltonian
parameters are not strictly defined in the microscopic
sense. However, on the basis of available experimental and
theoretical data, they can reasonably be chosen to investi-
gate the qualitative trends in molecular conductance.

To summarize, for broad families of conjugated
oligomers the exact analytical expression of the full Green
function matrix is derived. Although this result has a
number of other potentials, its presentation is primarily
addressed to modeling metal–molecular heterojunctions by
both analytical and computational means. Its use seems to
be especially helpful for the understanding of electrical
properties of long oligomers consisting of monomers with
nontrivial chemical structure. A particular problem is the
dependence of current–voltage characteristics on the num-
ber of monomers in the wire. The work aimed to examine
this issue is now in progress.
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