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On the basis of the Landauer approach and Green function technique we
have developed an exactly solvable analytical model that gives a quick and
reliable estimate of (ohmic) tunnel conductance in metal–molecular
heterojunctions. The model covers conjugated oligomers of types
M–M–…–M and M1–M2–M1–…–M2–M1 connecting metal pads in
molecular contacts. Based on a realistic Hamiltonian for these kinds of
oligomers we obtain an analytical expression for the tunnel con-
ductance:ð2e2=hÞg0ðEFÞgmol

0 ðEFÞe¹ 2dðEF ÞN, whereN is the number of the
structural units M (or M1). The pre-exponential factorg0(EF) depends on
the metal and metal–molecule coupling characteristics only, whereas
gmol

0 (EF) and the exponential decay constants are explicit functions of the
Green function matrix elements of monomers M (or M1 and M2). This
formula provides, for the first time, an analytical relationship between a
realistic description of the molecular electronic structure and the hetero-
junction resistance. The results obtained from this formula are of
immediate use for probing currents through single molecules, e.g. by
scanning tunneling microscope (STM) techniques as well as for measure-
ments of electron transfer rates in donor/bridge/acceptor systems.q 1998
Published by Elsevier Science Ltd
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The recent development of different kinds of nano-
technologies and chemical synthesis has led to a dramatic
increase in the research interest in molecular size devices
[1, 2] and metal–molecular heterojunctions [3–5]. Along
with the experimental advancements, there is also a need
for a deeper theoretical understanding of this type of
systems. So far, most theoretical studies have been
based on numerical calculations of, for instance, the
conductance through single molecular wires [5–7]. In
this Letter we present a complementary approach, an
exact analytical solution of the problem of tunnel con-
ductance in metal-molecular heterojunctions where
linear molecules with negligible transverse interaction
act as molecular wires. Unlike previous attempts in this

direction [8, 9] this solution provides a direct relationship
between the conducting properties of molecular wires
and their electronic structure.

Our model is based on a Su–Schrieffer–Heeger
(SSH) type of Hamiltonian that has been shown to give
an adequate description of a number of fundamental
properties of conducting polymers [10]. The one-electron
Hamiltonian describing thep electron manifold of
(M)-oligomers, linear conjugated molecules of type
M–M–…–M with the rigid backbone can be represented
as

Ĥ
OM ¼

∑N
n¼1

ðĤ
M
n þ bi jðn 6 1ÞalðrÞ

〉〈narðlÞ
jÞ; (1)

where index l(r) refers to the upper (lower) sign,
j0ar 〉 ¼ jðN þ 1Þal 〉 ¼ 0. Ket |na〉 has its usual meaning
of the 2pz atomic orbital of theath atom in thenth
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monomer. The monomerp electron Hamiltonian iŝH
M
n

and b i is the 2pz resonance energy (hopping integral)
between the neighboring sites (denoteda l and a r,
respectively) of adjacent monomers.

Using the Landauer approach [11], the conductanceg
is expressed in terms of the transmission coefficient
T(EF) at the Fermi energyEF as:g ¼ ð2e2=hÞTðEFÞ. For
the model of metal-molecular structure shown in Fig. 1,
T(EF) takes the form [8]

TðEFÞ ¼ A1ðEFÞANðEFÞjG1al ;Nar
ðEFÞj2; (2)

whereA1(N)(EF) is the spectral density of the left (right)
metal pad [8] andG1al ;Nar

ðEFÞ is the dimensionless
(multiplied by b i) matrix element of the system
(metal–molecule–metal) Green function.

Finding the Green function in equation (2) by
analytical methods presents a quite complex task. Thus
far, this problem has been solved under reasonable
assumptions regarding metal pads but only for the
simplest model of a linear chain of one-level subunits,
C atoms, coupled via a constant nearest-neighbor inter-
action b i [8]. The model is, however, too simple to
provide a realistic description of the electronic structure
of the oligomers of interest for molecular devices. In
particular, it cannot describe the electron tunneling
through band gaps, which is believed to be the most
likely mechanism of molecular wire resistance [6, 7],
since it does not lead to a band gap in the molecule
electron spectrum. In contrast, there are numerous
successful treatments on the basis of SSH Hamiltonian,
which by a proper choice of̂H

M
n andb i lead to a realistic

description of the electronic spectrum of conjugated
oligomers. (To a certain extent the modification of the

molecule electron spectrum due to metal-molecule inter-
action can also be taken into account in equation (1). In
this sense, the term molecule in the present context
should be understood conditionally.) Since the derivation
of the conductance formula does not depend on the
detailed form ofĤ

M
n in equation (1), we do not specify

it further at this point in the presentation. Instead we
proceed by applying the Green function technique to
arrive at an analytical expression of tunnel conductance
in terms of the monomer Green function.

1. TUNNEL CONDUCTANCE

We can show that for a molecule of arbitrary
complexity the Green function matrix element appearing
in equation (2) is substantially dependent on the metal
and contact characteristics only when the transmission
coefficient is close to its maximal value (for the model of
symmetrical heterojunctions at handTmaxðEFÞ ¼ 1Þ. If, on
the other hand,TmaxðEFÞ ! 1 equation (2) can be reduced
to

TðEFÞ ¼ A1ðEFÞANðEFÞ½GOM
1al ;Nar

ðEFÞÿ2; (3)

where, as distinct from equation (2),GOM(EF) is the
oligomer (and not the system) Green function. The
validity of approximation (3) can of course be verified
by checking that the inequalityTðEFÞ ! 1 is satisfied.
Note that the spectral densities,A1(EF) andAN(EF), that
play the role of effective metal–molecule coupling
constants, do not need to be small. The property
TðEFÞ ! 1 is related to the fact that we are studying
electron transmission due to tunneling across the
molecule, i.e. transmission at energies that coincide
with the gap in the energy spectrum of the molecules.
In addition to the requirement thatTðEFÞ ! 1, for the
replacement of equation (3) with equation (2) we also
have to exclude the case of localized levels in the gap
studied in [12, 13].

The replacement of the system Green function in
equation (2) by the molecule Green function limits our
attention to the case, where the Fermi energy is within a
band gap of the molecule, likely, the HOMO-LUMO gap
[6, 7] (HOMO is the highest occupied molecular orbital,
LUMO is the lowest unoccupied molecular orbital).

Calculation of the conductance is now reduced to the
problem of finding the solution to the equation
ðEI ¹ HOM ÞGOM ðEÞ ¼ bi I . With the Hamiltonian defined
in (1) we obtain for the matrix elementGOM

1al ;Nar
ðEÞ of

matrix GOM ðEÞ

GOM
1al ;Nar

ðEÞ ¼
GM

al ;ar
siny

sinðyNÞ ¹ GM
al ;ar

sin½yðN ¹ 1Þÿ
; (4)

whereGM
a;a9 ¼ 〈ajbi =ðEÎ ¹ Ĥ

M
n Þja9〉 (we omit the indica-

tion of explicit dependence of monomer Green function

Fig. 1. Schematic representation of metal–molecular
heterojunction (top) and the structure of conjugated
oligomers considered here as molecular wires.NC refers
to the number of C atoms in row.

556 TUNNELING ACROSS MOLECULAR WIRES Vol. 108, No. 8



on energy) andy is determined by the dispersion law

2 cosy ¼ f ðEÞ: (5)

In the case of the C-chain model,f ðEÞ ¼ E=bi (with the
on-site electron energy at C atom set equal to zero). But
for realistic oligomers, such as those shown in Fig. 1, the
function f ðEÞ → fOM ðEÞ is determined by [12]

GM
al ;ar

fOM ðEÞ ¼ 1¹ GM
al ;al

GM
ar ;ar

þ ðGM
al ;ar

Þ2: (6)

Equations (4)–(6) give an exact closed expression for
GOM

1al ;Nar
ðEÞ in terms of the monomer Green function

matrix elements. By standard methods the knowledge
of GOM ðEÞ can be extended to cover (M1-M 2)-oligomers
consisting of the linear sequence ofN ¹ 1 identical
monomers M¼ M1-M 2 ended by ‘‘defect’’ M1, i.e. the
molecules of type M1–M2–M1–…–M2–M1. In particular,
we obtain the analogue of equation (4) for the Green
function matrix elementG

OM1–M2
1al ;Nar

ðEÞ of GOM1–M2 ðEÞ in
the form

G
OM1–M2
1al ;Nar

ðEÞ ¼
GM1

al ;ar
GM2

al ;ar
siny

GM2
al ;ar ðEÞ sinðyNÞþGM1

al ;ar G
M2
D sin½yðN¹1Þÿ

;

(7)
where

GM1ðM2Þ
D ¼ GM1ðM2Þ

al ;al
GM1ðM2Þ

ar ;ar
¹ ðGM1ðM2Þ

al ;ar
Þ2;

andy is determined from dispersion relation (5), where
f ðEÞ → fOM1 ¹ M2

ðEÞ is given by [12]

GM1
al ;ar

GM2
al ;ar

fOM1–M2
ðEÞ ¼ 1¹ GM1

al ;al
GM2

ar ;ar
¹ GM2

al ;al
GM1

ar ;ar

þ GM1
D GM2

D : ð8Þ

For in-gap (or out-of-band) energies defined in the
limit N → ` the dimensionless wave vectory in (5) takes
complex valuesy ¼ 6 id or y ¼ p 6 id, d . 0. Inserting
these into equations (4), (5) and (7) results in an
exponential dependence with the following definition
of the decay constantd ; dðEÞ

dðEÞ ¼ ln

�����j f ðEÞj=2 þ

��������������������������
½ f ðEÞ=2ÿ2 ¹ 1

q �����; (9)

if dðEÞN @ 1. Thus the conductance can be expressed as
(in units of 2e2/h):

g ¼ g0ðEFÞgmol
0 ðEFÞe¹ 2dðEF ÞN; (10)

whereg0ðEFÞ ¼ A1ðEFÞANðEFÞ,

gmol
0 ðEFÞ ¼

4 sinh2½dðEFÞÿ

ð½GM
al ;ar

ÿ¹ 1 6 e¹ dðEF ÞÞ2 (11)

for (M)-oligomers and

gmol
0 ðEFÞ ¼

4ðsinh½dðEFÞÿGM2
al ;ar

Þ2

ðGM2
al ;ar =G

M1
al ;ar 7 GM2

D e¹ dðEF ÞÞ2
; (12)

for (M 1-M 2)-oligomers; the upper sign refers to
y ¼ p 6 id and the lower sign corresponds toy ¼ 6 id.

The exponential decay constantdðEFÞ in equation
(10) is nothing more than the modulus of the imaginary
part of the (dimensionless) complex wave vector of an
electron entering the molecule with the kinetic energy
outside the electronic bands of the oligomer.

The pre-exponential factor in the tunnel conductance
of metal–molecule interface defined in equation (10) has
been intentionally represented as a productg0ðEFÞ 3
gmol

0 ðEFÞ in order to separate the contribution coming
from the molecule,gmol

0 ðEFÞ which does not depend on
the length of the molecular wire but does depend onEF.

Furthermore, the energy dependence of both the
decay constant andgmol

0 ðEFÞ is expressed in terms of
the monomer Green function only. Thus, it is possible to
predict and understand the most essential charge transfer
properties of potential molecular wires simply by study-
ing the properties of the monomer building block(s).

Note that in the case of the C-chain model equations
(9)–(11) restore the McConnell result referred to the
non-adiabatic bridge-mediated electron transfer rate
[14], kET , e¹ 2dðEÞN, wheredðEÞ ¼ lnjE=bi j, for energies
that are far from the band states,jE=bi j @ 1. This corner
stone in the theory of non-adiabatic electron transfer
is thus shown here to apply also to intra-molecular
(oligomer) through-gap charge transport in conjugated
systems, but with the generalized definitions of the decay
constant and pre-exponential factor given in equations
(9), (11) and (12). We stress that this result applies to any
oligomer covered by structural formula M–M–…–M or
M 1–M2–M1–…–M2–M1, i.e. essentially, to all types of
conjugated systems.

2. EXAMPLES OF MOLECULAR WIRES

Consider now some particular examples of (M)- and
(M 1-M 2)-oligomers shown in Fig. 1: oligomers of
polyene, M¼ C2H2; poly-paraphenylene, M¼ C6H4;
polythiophene M¼ C4H2S; poly(paraphenylene-
ethynylene), M1 ¼ C6H4, M2 ¼ C2; poly(paraphenylene-
butadiyene), M1 ¼ C6H4, M2 ¼ C4; poly(thiophene–
ethynylene), M1 ¼ C4H2S, M2¼C2; and poly(thiophene–
butadiyene), M1 ¼ C4H2S, M2 ¼ C4.

In Table 1 are shown the results obtained from
equations (9)–(12). Only the maximal values of the
decay constant in the HOMO-LUMO gapDHL are
presented, corresponding to the case when the con-
ductance is minimal, g ¼ gmin ¼ gmol

0 ðdmaxÞe
¹ 2dmaxN.

(We set factorg0 that is never known in real experiments
to be equal to unity as probably, can be the case in best
metal–molecular contacts.)

The parameters of the Hamiltonian of the oligomers
Ĥ

OM are defined as follows: In polyenes and five-membered
ring based oligomers the hopping integrals associated
with single and double and single and triple C–C bonds,
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respectively, are specified asb exp(¹h) for single bonds
andb exph for double and triple bonds. (In other words,
the single C–C bonds within rings and between rings, as
well as double bonds within rings and triple bonds
between rings, are assumed to have identical hopping
integrals.) The carbon–carbon bonds within phenyl rings
in all six-membered ring based oligomers are assumed to
be equal tob and the single and triple C–C bonds
between six-membered rings are specified asb i and
b i exp(2h), respectively. All carbon-site energies are set
to zero. For the thiophene system we also have to specify
the hopping integral associated with S–C bondbS–C and
electron on-site energy at sulfureS. The values of
parameters used are:h ¼ 0:1333 [15] for polyenes
and h ¼ 0:1 in all other cases;bS–C ¼ 0:38b and
eS ¼ 0:25b [16]; bi ¼ 0:92b and b ¼ ¹ 3:757 eV [15]
for all oligomers of focus. This choice of parameters
reproduces the observed 11Bu transition frequencies in
polyenes with three to seven double bonds [15] and
agrees well with the experimental estimates of band
gaps available for us, see Table 1.

For certain positions ofEF the definitions of decay
constant and pre-exponential factor take especially
simple form. LetGM

al ;al
GM

ar ;ar
¼ 0. This equation deter-

mines energies at which the system is capable to generate
local states. As stated above we have excluded the case
of local states and this implies thatjGM

al ;ar
ðEFÞj , 1 [12].

Then, from equations (6), (9) and (11) we have
gmol

0 ðEFÞ ¼ 1 and

dðEFÞ ¼ lnjGM
al ;ar

j¹ 2: (13)

Similar consideration for (M1-M 2)-oligomers leads
us togmol

0 ðEFÞ ¼ jGM2
al ;ar

j¹ 1 and

dðEFÞ ¼ lnjGM1
al ;ar

GM2
al ;ar

j¹ 1; (14)

where EF satisfies equationsGM1
al ;al

GM1
ar ;ar

¼ 0 and

GM2
al ;al

GM2
ar ;ar

¼ 0 and inequalityjGM1
al ;ar

GM2
al ;ar

j , 1.
Importantly, in this particular case the pre-exponen-

tial factor is identical for all (M)-oligomers, i.e. it is
oligomer independent that agrees with numerical find-
ings [7]. For (M1-M 2)-oligomers the value ofgmol

0 (EF) is
determined only by the electronic structure of the con-
necting, M2, group, see examples in Table 1.

In the case of alternant, all carbon oligomersdmax

corresponds to the middle of HOMO-LUMO gap, i.e.
GM

al ;al
¼ 0 at E ¼ 0. Therefore,dmax can be found from

equation (13) or equation (14). Expressed in terms of
parameters of Hamiltonian (1) we obtain:

dmax¼

2h; M ¼ C2H2;

lnð2b=biÞ; M ¼ C6H4;

lnð2b=biÞ þ 2h; M1 ¼ C6H4;M2 ¼ C2;

lnð2b=biÞ þ 4h; M1 ¼ C6H4;M2 ¼ C4:

8>>>>><>>>>>:
(15)
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And for the rest of oligomersdmax has to be found from
equation (9).

As seen from equation (15), for polyenes the
definition of dmax coincides with the definition of half
of the HOMO-LUMO gap in units ofb, DHL =ð2bÞ ¼ 2h,
if h ! 1. (Note that in the derivation of equation (15)
we did not use the smallness of the alternation
parameter.) However, such a coincidence is misleading,
if extended to other molecules. For instance, for the
given model of poly-paraphenylene oligomers [12]
DHL =ð2bÞ¼

���������������������������������
2 þ ð1¹ bi =bÞ2=4

p
¹ ð1 þ bi =bÞ=2. The latter

equation bares little, if any, resemblance of the corre-
sponding definition of dmax in equation (15). This
example is just an illustration of the fact that in general,
there is no direct relationship between the decay
constant, which is formed by all states of the molecule
and the width of the energy gap.

The analytical results obtained above allows one to
predict new physics. In particular, it can be shown that
for special symmetries of monomers, e.g. such thatGM

al ;ar

as a function of energy can take zero value, equations (6)
and (10) suggest an anomalously high resistance at
certain energies, while near these energies the resistance
is low. This unusual switching ability of molecular wires
deserves separate discussion [21].

In conclusion, we have presented the exactly solvable
model of single molecule conductance which relates the
linear response current to the microscopic structure of the
molecule placed between, e.g. the substrate and STM tip
and similar metal–molecular heterojunctions. We have
found analytical expression of the tunnel conductance for
the wide class of linear molecules.
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