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Abstract 

We derive an exact closed expression of the Green function matrix element, which is valid for any linear conjugated 
molecule of the kind M-M- ... -M. where M is an arbitrary monomer, and determines measurable characteristics of 
non-resonant electron transfer (ET) in relevant ET processes, e.g., donorPacceptor bridge assisted ET rate, ohmic 
conductance of molecular wires, etc. (In particular, for polymethine bridges (M = CH), the expression obtained restores 
the well-known McConnell formule for the bridge assisted ET rate.) This result provides a tool for a quick and reliable 
estimate and comparison of ET efficiency of different oligomers which is aimed to facilitate the search for the most 
promising molecules to be used as electron transmitters in molecular electronic devices. 1~1: 1998 Elsevier Science B.V. 
All rights reserved. 
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1. Introduction and model statement 

As is shown by recent development of the Green 
function approach to the description of the electron 
transfer/transmission (ET) phenomena, see Refs. 
[1,2] and literature cited therein, the efficiency of 
bridge-mediated non-resonant ET is determined by 
the Green function matrix element referred to the 
end atoms of bridging molecule which couple the 

bridge with the ‘outer world’, e.g., donor and accep- 
tor, STM tip and surface of supporting conducting 

layer, etc. Typically, the bridging function is per- 
formed by conjugated oligomers (O,), i.e., by mol- 
ecules which can be represented as a linear sequence 

of N identical groups of atoms (monomers M) 
connected with each other by the strong resonance 
interaction associated with n conjugated carbon 
bonds. In the case of the simplest representative of 
this wide class of molecules, a chain of N methine 
groups (M = CH) with non-alternating C-C 
bonds, the oligomer-bridge Green function reads 

Cl,31 - - 
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where /3 is the energy of electron resonance transfer 
between adjacent carbons, and energy E is coun- 
ted from the electron site energy at carbons 
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(E = E - rc, xc is the Coulomb integral of carbon 
atom). 

The CH-bridge-mediated ET rate includes 
([jG:‘Il.(E))’ as one of principal factors [l-4] which 
depends only on the internal electronic properties 
of bridging molecule and, therefore, this quantity is 
referred to as the bridge electron transfer efficiency 

(BETE). It should be stressed that BETE has the 
precise physical meaning if and only if the electron 
energy is outside the resonance region (for the CH 
bridge this means that [El > 21/I\) and the electronic 

coupling between the bridge and source and drain 
of electrons is weak. (For a detailed discussion of 
this point see Ref. [3].) 

One of implications of Eq. (1) is that under 

the condition IE/(2B)I >> 1. the ET rate is propor- 
tional to 

This factor is often referred as the McConnell for- 
mula [S]. The ET rate that includes such a factor 
has been obtained by different techniques and pro- 

ved to be extremely useful in a great number of 
applications to the description of the electron 
transfer processes, see Refs. [1,3,4] and references 
therein. However. these applications are severely 
restricted by the assumption of the mono-atomic 
structure of bridging molecule. Below, Eq. (2) 

and its parent expression of BETE given in Eq. (1) 
will be’ 

bridges. 
M-M 
atoms. 

generalized to the case of conjugated 
whose structure can be represented as 
.-M, where M is an arbitrary group of 

2. Physics of McConnell formula 

The condition [E/(2/91 > 1 means that ET 
happens due to the through-bridge tunneling. 
To make this implication of the expression of 
BETE explicit, we rewrite Eq. (1) in an equivalent 
form 

where 5 is related to electron energy by 

1 

cos ;. Od<<lt. 

E = 28 cosh6. < = * i& (4) 

- cash 0. < = TI * ici. 

and has the meaning of wave vector (expressed in 
units of the inverse lattice constant) which can take 
real. 0 < < d x. as well as complex values: 
5 = + ib, if E < - 2181, and < = x ? i6, if E > 21/j / 
(the hopping integral /I! is supposed to be negative). 

In these notations and under the condition 
6(E)iv>> 1 (for long bridges the latter condition is 
weaker, than IEi(2P)I >> l), Eq. (3) acquires the 
standard exponential form of tunneling probability 

through a potential barrier of thickness .W 

(/jGF;.(E))2 = 4sinh2(6(E)) x eez”(‘o x c~“‘(“Y. (5) 

where the value of d(E) at the given energy is deter- 
mined by Eq. (4). 

It is obvious that under the condition e’““‘>> 1 
which is equivalent to IE/(2fi)l>> 1, Eq. (5) is com- 

pletely identical to the McConnell formula. How- 
ever, the former reveals interesting physics hidden 
in Eq. (2). Namely, the first factor shows that ET 
rate is proportional to the electron group velocity 
squared, which corresponds to the given value of 
(complex) wave vector; the second factor, which 
seems to have no physical meaning. in fact repres- 
ents. as we show below, the intra-monomer ET 

efficiency. In the case of CH bridge modeled by 
a mono-atomic chain, the left and right binding 
atoms in monomer are just one and the same car- 

bon atom. i.e., there is no ET within monomer. 
(From this point of view, the mono-atomic chain 
represents the most efficient electron transmitter.) 
Finally, the third factor is a characteristic indica- 

tion of the through-rectangular-barrier tunneling 
the form of which is independent of particular phys- 
ical nature of the barrier. 

In what follows it will be proved that while 
Eq. (2) is relevant only to the particular case of 
mono-atomic chain, the ET rate dependence on the 
bridge length and electron wave vector, electron 
group velocity, and intra-monomer ET eticiency. 
which is represented in Eq. (5). has the universal 



character inherent to any conjugated bridge of the 
type M-M- - -M. 

3. Generalization of BETE expression and McCon- 
nell formula 

The matrix of one-particle tight-binding Hamil- 
tonian in one dimension is three diagonal. Due to 

this fact, finding solution to the Green function 
equation and thus, the expression of Eq. (I), is quite 
straightforward [6]. The structure M-M- .I. -M 
is not one-dimensional in the true sense since 
at each bjnding site (the site of connection of 
monomer M with the neighboring one) as well as 
within monomers, electron have more than just 

two choices to go, i.e., not only along the chain 
and backward. Consequently, the Hamiltonian 
matrix whtch describes an arbitrary conjugated 
bridge is not three diagonal, and findmg the 

solution of the problem becomes more complic- 
ated. (To our knowledge, it has not been solved 
so far.) 

It is obvious, however, that though, in general, 
the electron dynamics within monomers can be 
very far from being one-dimensional, the electron 
motion along the chain is performed by electron 

transfer from one monomer to another. So, in mac- 
ro-scale the system in focus is certainly one-dimen- 

sional. One may expect, therefore, that the use of 
one-dimensional character can be the key to the 

problem solution. 
With this idea in mind we pass from the equation 

(EI^ - fiO”)GO$’ = f, (6) 

where fioM and eoV are the Hamiltonian and Green 

function operators of oligomer, respectively, and 
r^ is the unity operator, to the Dyson equation with 
the choice of the monomer Green function operator 
GM = (EI^ - fi”)- ’ as a non-perturbative solution. 
Precisely, 

G0.s = 6” + d:” Q&Q.<,, 
(7) 

where the matrix elements of the perturbation op- 
erator p are assumed to have non-zero value ,!I only 
for the nearest-neighbor binding sites, denoted be- 
low as X, and x, ~ the coordinates of the left and 
right binding atams in the monomer. 

In its explicit form 

G ::,.,JEJ = &,,,G:.,$) 

+ BCG:.,(E)G% I,,,.,,$) 

+ G:.,(E)%‘+ I ,z, .nJ-W~ (8) 

Eq. (7) is in essence one-dimensional. Indeed, for 

the mono-atomic chain we have from Eq. (8) 

EC:; (4 = &,,,, + /V%F, ,.M + G;;‘; ,,.,b% (9) 

One can see that the structure of Eq. (8) for 
G:;,.,,,(E) is similar ta the structure of the above 

equation, where the Green function matrix e\e- 
ments are connected by the inter-monomer interac- 

tion /I only with those sites which refer to the 
nearest neighbors. The only distinction is that in 
Eq. (8) the forward and backward hopping inte- 
grals are modified but this complication does not 
prevent finding the closed form of solution IO 

Eq. (8). 
The use of the free-end chain boundary condi- 

tions and dispersion relation, Eq. (4), leads from 
Eq. (9) to Eq. (3). By analogy, the use of the same 
boundary conditions and the dispersion relation 

for the kind of oligomers under consideration [73 

+ WG:.x,(~))21 (10) 

gives the following solution of Eq. (8) for G\)::,n,(E) 

Gy;.$) = sin~N _ ;+‘tE)sini 
.,.&%in<W - 1)’ 

(11) 

Setting in Eqs. (10) and (ll)GE.,,(E) = G!&(E) = 
G:,,,(E) = E- ’ = (Z/,?cos[)- ’ immediately restores 
Eq. (1) and thus, the original McConnell result 
represented in Eq. (2). 

Eqs. (10) and (11) give the exact definition of 
BETE. Again we emphasize that this definition 
makes sense only in the case of weak coupling and 
for energies which are outside oligomer bands and, 
if there are local states in the oligomer 7c electron 
spectrum, see Refs. [7-lo], sufficiently distant from 
such states. If, in addition, for the given energy (in 
accordance with Eq. (lo), the given E implies a cer- 
tain value of complex wave vector) the condition 



6(E)N >> 1 is fulfilled, we obtain the following gener- 
alization of Eq. (5) to the case of arbitrary oligomer 
of the type M-M- ... -M 

(/$Gy; ,T,,(E))2 = 4sinh’(d(E)) 

1 

’ ((PGY.,(QP ’ k exp( - 6(E)))’ ’ e 
- 2cw, ( 12) 

where ’ + ’ corresponds to < = rc + iB, and ’ - ’ 
corresponds to 5 = f 3, and (5 (at the given en- 
ergy) is determined by Eq. (10). 

Eq. ( 12) represents the proof of three basic prop- 
erties of bridge-mediated ET briefly mentioned 
above. The first one is that in the tunneling regime, 
the exponential decrease of ET rate with the in- 
crease of the number of monomers - repeating 

unites of the bridge, is universally defined in terms 
of the complex wave vector whose value at the 
given energy is determined by the dispersion rela- 

tion. Eq. (10). This means that the exponent in the 
ET rate is identical for all bridges of the same 
length (in the number of monomers) provided the 

departure from the bridge band of tunneling elec- 
tron expressed in terms of the wave vector is the 
same. On the contrary, for tunneling electrons 
which have the same separation from the bridge 
band in energy the exponent takes a specific value 
for each particular oligomer. The difference in these 

values is determined by distinctions in the disper- 
sion relation of different oligomers. Secondly, the 
ET rate depends on how fast is the electron transfer 

between the binding sites of monomer. This prop- 
erty of bridge-assisted ET is expressed by a saturat- 

ing-type dependence on jG&(E) of the pre-ex- 
ponential factor in Eq. (12). One can conclude that 
the bridge-assisted ET rate is proportional to 
(jigs.,)‘. if the electron transfer from one end of 

the monomer to another is slow (small values of 
([jGE,,(E))‘), but it becomes independent of the 
intra-monomer ET rate, if the latter is fast (large 
values of (/jG!&(E))2). In a sense, this result shows 
the way of improvement of molecular wire efficien- 
cy by means of proper molecular design. And third- 
ly, as seen from Eq. (12), in the tunneling regime 
of ET the bridge-mediated ET rate is always 

proportional to the square of electron group velo- 
city determined by the oligomer band structure. 

To conclude. it is shown that transmitting of 
electrons by tunneling through linear molecules 
M--M- ... -M is described by an exponential de- 
pendence exp ( - 26(E)N), where 6(E) is interrelated 

with the electron energy by the energy dispersion 
relation, Eq. (10). This kind of dependence for the 
bridge-assisted ET rate was first discovered by 
McConnell [S] for the particular case of mono- 
atomic chain, but until now it has not been under- 
stood that expressed in the form of E.q. (I?), i.e.. 

group velocity squared times intra-monomer ET 
efficiency times exponential tunnel factor. it has the 
universal character relevant to tunneling through 
a sufficiently long oligomer with arbitrary elec- 
tronic structure of its monomers. It is also shown 
that the intra-monomer ET efficiency is character- 
ized by the saturating-type dependence on the 
monomer Green function matrix element which 
refers to the monomer binding sites. 
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