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Abstract

The McConnell formula of superexchange that describes the long-range, non-adiabatic bridge-mediated electron transfer
Ž .ET is generalized to the case of conjugated bridges covered by the structural formula M–M– . . . –M, where M is an

Žarbitrary monomer. An explicit definition of the exponential decay constant and pre-exponential factor in the standard
.expression of the ET rate is given in terms of the monomer Green’s function. This makes it possible to address the

essentials of electron transfer across large molecules at the monomer level. The obtained dependence of the ET rate on
parameters of the bridge electronic structure is compared with the original McConnell result and exemplified by analytical
expressions of the effective donor–acceptor through-bridge coupling for oligomers of polyene and five- and six-membered
aromatic ring based oligomers. q 1998 Elsevier Science B.V. All rights reserved.

1. Introduction

w xIn 1961 McConnell published a paper 1 on
donor-to-acceptor bridge-mediated electron transfer
Ž .ET . Among the other results of that work it was
shown that in the tunneling regime of electron trans-
fer, the electronic factor in the ET rate can be
explicitly related to the electronic structure of the
bridging molecule — in that case a polymethylene

Ž .chain CH .2 N

One of the important messages of McConnell’s
formula is that the well-known textbook model for
electron tunneling can be deceptive if applied to the

) Corresponding author. Permanent address: Bogolyubov Insti-
tute for Theoretical Physics, Kiev, 252143, Ukraine.

description of long-range electron transfer in
Ž .donorrbridgeracceptor DBA systems and that the

electronic structure of the bridge has to be taken into
account explicitly.

w xIn Ref. 1 , and in a number of subsequent works,
where the McConnell result has been rederived in

Ž w x .various contexts see Ref. 2–6 to mention few the
electronic structure of the bridging molecule has
been approximated by a linear sequence of one-level
subunits with the electron on-site energy ´ andb

coupled to each other via a constant nearest-neighbor
Ž .ET interaction hopping integral b . This model isb

known to give a band of N discrete one-electron
w Ž .xstates with energies ´ s´ q2b cos p jr Nq1 ,j b b

where js1, 2, . . . , N and N is the number of the
subunits in the chain. If the zeroth-order energy of

Ž .the electron at the donor acceptor coupled to the
bridge is far from the energies ´ , the bridge-media-j
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ted donor–acceptor ET rate k decreases exponen-ET
w xtially with the bridge length 1 ,

4b
y2 d Nk ; e , 1Ž .ET 2bb

where b is the coupling constant between the donor
Ž .acceptor and the end atoms of the bridging molecule

< <and ds ln Erb is an exponential decay constantb

of the d donor–acceptor through-bridge coupling
Ž . Ž .superexchange . In Eq. 1 E has the meaning of

Ž .the electron energy in the initial final state of the
ET event and is counted from ´ . The latter quantityb

therefore, can be set equal to zero.
Ž .Apart of the restriction of the validity of Eq. 1

< < Žw xby the inequality Er2b 41 1 ; for a compre-b
w x.hensive discussion of this limitation, see Ref. 7 , it

Ž .also has to be noted that Eq. 1 is useful if the donor
and acceptor do not oxidize or reduce the bridge and
if the interaction with the bridge b is not exception-
ally large. The non-redox case means that if, for

Ž .instance, Eq. 1 is applied to the bridge-mediated
electron transfer between transition metal ions, their
active ‘d’ levels must be located in the gap between
the occupied and unoccupied levels of the bridge.
However, the above indicated inequality is inconsis-

Ž .tent with the donor acceptor unperturbed levels
being placed in the p electron band gap. Not surpris-
ingly, the simple chain model does not lead to a band
gap in the molecular electron spectrum. Hence,

Ž .strictly speaking, the model used to derive Eq. 1 is
not adequate to describe the electron transfer associ-
ated with tunneling through the molecular band gap.
The realistic Hamiltonian of a conjugated bridge
must take into account the fact that the p electronic
structure is of the semi-conductor type. The same
concerns also the intramolecular electron transfer
across saturated bridges to which the original deriva-

w xtion refer 1 .
There exists an enormous literature aimed at im-

provements of the McConnell approximation. Mostly,
the theoretical effort has been focused on refining
the description of the bridge electronic structure by

Ž w xcomputational methods see e.g. Refs. 8–10 and
. w xreferences therein and the reviews of Newton 11

w xand Jordan and Paddon–Row 12 . This Letter con-
tributes to resolving the above-mentioned problems
analytically by taking advantage of the Green’s func-

tion formalism. The Green’s function technique has
been extensively used for a perturbative description

w xof bridge-mediated electron transfer 13 , as well as
for the development of efficient schemes to compute

w xthe electronic factor in the ET rate 14–18 . Unlike
previous treatments we report and examine here a
model-exact analytical expression of this factor to be
derived making use of a realistic Hamiltonian for a
wide class of conjugated bridges.

Ž Ž ..The central result of this work Eq. 11 suggests
Ž .an analogue of Eq. 1 that gives a useful estimate of

the ET rate due to tunneling through the band gap of
the bridging molecule. The forthcoming discussion
will be restricted to the case of conjugated bridges
covered by the structural formula M–M– . . . –M,
Ž .M -oligomers and described by a Su–Schrieffer–

w xHeeger type of Hamiltonian 19 . With these model
Ž .limitations, Eq. 1 will be proved to be applicable to

the description of intramolecular non-adiabatic elec-
tron transfer with the decay constant and pre-ex-
ponential factor given in an analytical form.

2. McConnell formula in the Green’s function
formalism

To make connections with relevant works re-
ported during the last decade, we represent first the
McConnell result in terms of the effective coupling
T , which describes the electronic interaction be-DA

tween donor and acceptor localized states due to a
Ž .molecule that connects bridges donor and acceptor.

The ET rate in DBA systems is usually assumed
to be given by an expression based on the Fermi

w xgolden rule 20

2p
2< < w xk s T FC , 2Ž .ET DA

"

w xwhere FC is the Franck–Condon factor connected
with nuclear vibrational motion in the DBA system

Ž .and its surroundings; and T the electronic factorDA
w xgiven by 7

2 O MT sb G , 3Ž .DA 1 , Na a2 r

Ž .has the meaning of half the donor acceptor energy
splitting due to the through-bridge interaction.

ˆŽ . ² <ŽIn Eq. 3 the notation G s 1 EIy1 , N aa a ll rˆ O M y1. < :H N is used for the bridge Green’s functiona r
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matrix element, referred to the bridge end atoms
Ždenoted as 1 and N we omit the indication of thea al r

explicit dependence of the Green’s function on en-
ˆ O M.ergy . H is the Hamiltonian that describes the p

Ž . w xelectron subsystem of M -oligomers 21

N
O MMˆ ˆ < :² <H s H qb n nq1 qh.c. ,Ž .Ž .aÝ n i a rl

ns1

4Ž .

< : <Ž . : < :where O s Nq1 s0; ket n has its usuala a ar l

meaning of the 2p atomic orbital of the a th atom inz

the nth monomer; the monomer p electron Hamilto-
ˆ Mnian is H and the neighboring sites of adjacent leftn

and right monomers are denoted as a and a ,r l

respectively.
The definition of the effective coupling given

O Mabove implies that b G <1 and there are nob 1 , Na al r

discrete states in the band gap of the p electron
spectrum. Commonly, the non-adiabatic electron
transfer is associated with small values of effective

Ž w xcoupling T see e.g. Ref. 3 and referencesDA
.therein . It should be stressed, however, that if the

ET frequency is comparable with intramolecular vi-
brational frequencies of the bridge, the pure elec-
tronic problem is not useful. In other words, the
concept of pure electronic effective coupling is not
applicable for too long bridges.

ˆ MFor the McConnell model of the bridge, H s0n
w xand the Green’s function is well known 22 . It is

convenient to use here its trigonometricrhyperbolic
representation

sin j
O Mb G s , 5Ž .b 1, N sin j Nq1Ž .

where j is related to the electron energy by

cos j , 0(j(p ,°
~ cosh d , js"id ,Es2b 6Ž .b¢ycosh d , jsp" id .

Ž .Eq. 3 with the Green’s function matrix element
Ž . Ž .defined in Eqs. 5 and 6 is applicable to the

description of effective coupling, whenever dN41
2 yd ŽNq1.w x < <7 . Hence, b T s 2b sinh de , d sb DA

y1 < Ž . <cosh Er 2b . To compare this expression withb
Ž .Eq. 1 we have, following McConnell, to use the

d < <condition e 41 in which case expressions b Tb DA

2 yd N < Ž . <sb e and ds Er 2b restore the originalb
Ž .result of McConnell 1 .

It is seen from above that formally, the Mc-
Connell result has to be understood as an asymptotic
dependence of the effective coupling as a function of
the electron energy. Also, it is obvious that the
Green’s function matrix element GO M is all that1 , Na al rŽ .we need to generalize Eq. 1 to molecules described
by more realistic Hamiltonians.

3. Oligomer-bridge Green’s function

ˆŽFinding the solution to the equation EI y
ˆ O M ˆO M ˆ. Ž .H G s I with the Hamiltonian 4 requires quite

w xlengthy calculations 23 . To avoid unnecessary
mathematical details, we shall use here an analogy
between chains consisting of subunits with and with-
out internal structure and also the fact that the Green’s
function poles give the energies of the system eigen-
states.

For one-site, one-level monomers the poles of
Ž .Green’s function 5 are determined by

E
sin j Nq1 s sin j N ysin j Ny1Ž . Ž . Ž .

bb

s0 . 7Ž .
Ž .In the general case of M -oligomers the above

w xequation takes the form 21

1
sin j N ysin j Ny1 s0 , 8Ž . Ž . Ž .Mb Gb a ,al r

M ˆ ˆ M y1² <Ž . < :where G s a EIyH a . From a com-a ,a l n rl r

Ž . Ž .parison of Eqs. 7 and 8 and by noting that for
one-site, one-level monomers GM sGM s1rE,a ,a a ,al r l l

one can assume that to obtain the Green’s function
Ž .matrix element appearing in Eq. 3 , one has to

Ž . Ž . Ž .replace the denominator 7 in Eq. 5 by Eq. 8 , i.e.

sin j GM
a ,al rO MG s .1 , N Ma al r sin j N yb G sin j Ny1Ž . Ž .b a ,al r

9Ž .
Ž .Thereby, instead of Eq. 6 , the dispersion relation

2b GM cos js1yb 2 GM GM qG M 2ž /b a ,a b a ,a a ,a a ,al r l l r r l r

10Ž .
Ž . w xprescribed by Hamiltonian 4 21 has to be used.
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Ž . Ž .Eqs. 9 and 10 are valid for any energy. For
Ž .in-band energies defined in the limit N™` j

takes real values 0(j(p; for out-of-band ener-
gies, js"id ; and for in-gap energies jsp" id ,

Ž . Ž .d)0. If dN41 one has from Eqs. 3 and 9

2sinh d eyd N
2< <b T sb , 11Ž .b DA y1M ydb G "eŽ .b a ,al r

where q corresponds to jsp" id , and y corre-
sponds to js"id .

Ž .It should be stressed that Eq. 11 represents an
explicit definition of the effective coupling in terms
of the monomer Green’s function elements. Since in
most cases of interest the latter quantities as func-

w x Ž .tions of energy are known 21,24 , Eq. 11 gives an
analytical dependence of the electronic factor in the
ET rate on energy and relates this dependence to the
particular electronic structure of the bridging
molecule.

Ž .Furthermore, Eq. 11 represents the first strict
proof of the exponential N-dependence of the
bridge-mediated ET rate given on the basis of a
realistic Hamiltonian of the bridging molecule. So
far, this kind of dependence was either guessed or
found numerically.

Importantly, this central result of the Letter, is
applicable to the description of the tunnel current
across molecular wires and can be extended to cover
conjugated oligomers consisting of a linear sequence
of Ny1 identical monomers MsM yM ended1 2

w xby M 25 .1

Now we focus our attention on a comparison of
Ž . Ž .Eq. 11 with Eq. 1 .

4. Asymptotics of effective coupling

As shown above, in the spirit of the original
Ž .derivation, Eq. 1 describes the asymptotic behavior

of the effective coupling as a function of energy.
Therefore, for a more detailed comparison with the

Ž .McConnell result Eq. 11 has to be examined in the
< <limit Erb 41.b

By using the Green’s function properties the
asymptotic behavior of T can be found withoutDA

specifying the molecular electronic structure. Any
Green’s function matrix element can be represented
as a rational function of energy. In particular,

M X Ž . Ž . X Ž .X Xb G sP E rP E , where P and P Eb a ,a N N N Nl r M M M MX Ž X .are polynomials of the N th and N th N -NM M M M

degree, respectively, and N is equal to or less, thanM

the number of one-electron states in the monomer.
Therefore, for energies which are sufficiently distant
from the monomer p levels we can write

< M < < <yŽ NMyN X
M .

b G sconst Erb , 12Ž .b a ,al r

where the values of const and N yN X are deter-M M

mined by the particular electronic structure of the
monomer and b is some energy scale that is conve-

Žnient to use for the given monomer see examples
.below .

Ž .On the other hand, it follows from Eqs. 10 and
Ž . < < d12 that with the increase of E such that e 41,

Ž .the pre-exponential factor in 11 , rapidly saturates at
unity so that

2 yd N< <b T sb e , 13Ž .b DA

where
X < <ds N yN ln Erb y ln const . 14Ž . Ž .M M

To recall, in the McConnell formula, the positive
Ž .integer in front of logarithm energy-dependent term,

as well as const are equal to unity.
Ž .To illustrate expression 14 for particular conju-

Ž .gated oligomers we use in Eq. 10 explicit expres-
sions of monomer Green’s functions obtained for a

w x w xfive-membered heterocycle 21 and benzene 24 .
Ž < < .This yields Erb 41

< < 2 3ds3 ln Erb y ln b b rb , 15Ž .Ž .b X

for polyheterocycle bridges and
< <ds4 ln Erb y ln 2 b rb cosh h 16Ž . Ž .b

for poly-paraphenylene bridges with alternating C–C
Ž . Ž .bonds within phenyl rings. In Eqs. 15 and 16 the

parameter h distinguishes the hopping integrals asso-
Ž .ciated with the double b exp h and single

Ž Ž ..b exp yh C–C bonds within aromatic rings and
Ž .b is the hopping integral between a heteroatom XX

and carbon within the heterocycle.
Ž . Ž .When using Eqs. 13 – 16 for estimates of the

effective coupling, one has to keep in mind that these
are referred to the p electron subsystem only. For
energies that are distant from the p levels of the
bridge, as is implied in the above equations, the
manifold of s electron states can and actually do
suggest more efficient pathways of the donor–accep-
tor electron transfer.
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5. In-gap values of TDA

Typically, the p electron band spectrum of linear
Ž . Ž .molecules described by Eqs. 8 and 10 consists of

Ž . Ž .allowed real j and forbidden complex j energy
zones. With the increase of the oligomer length N
the number of one-electron levels within allowed

Ž .zones or bands increases proportionally, whereas
Ž .the forbidden zones or band gaps remain free of

electron states.
Ž .The main advantage of Eq. 11 is that in contrast

to the McConnell model, it is applicable for energies
lying within band gaps of the bridge electron spec-

Žtrum, in particular, the HOMO–LUMO the highest
.occupied band-lowest unoccupied band gap D ofHL

conjugated oligomers, where the role of s electron
states is negligible.

It can be proved that zeros of the diagonal matrix
elements GM are always within the oligomer banda ,a

w xgaps 21 . Moreover, for alternant all carbon
oligomers the energy that satisfies the equation

GM GM s0 17Ž .a ,a a ,al l r r

in the HOMO–LUMO gap energy interval, corre-
sponds to the middle of the gap, where the decay
constant reaches its maximal value d .max

Ž .At the solutions to Eq. 17 the expression of the
effective coupling takes a particularly simple form

N2 M< < < <b T sb b G 18Ž .b DA b a ,al r

Ž . Ž .which follows directly from Eqs. 10 and 11 , since
< M <we excluded the case of in-gap states, b G -1b a ,al r

w x21 .
As an example, expressed in terms of parameters

Ž .of Hamiltonian 4 for oligomers of polyene and
Žpoly-paraphenylene in the polyene chain the hop-

ping integrals associated with double and single C–C
Ž .bonds are b exp h and b exp yh , respectively and

for poly-paraphenylene oligomers h is set equal to
. Ž . < <zero one obtains from 18 b T sb D A

N2 2Ž . < <b exp y2hN and b T s b b r 2 b .Ž .b DA i
w xWith hs0.1333, bsy3.757 eV 26 and b si

0.92 b , the maximal decay constant for polyene
Ž .oligomers, d s2h, is equal to 0.27 D s2 eV ,max HL

and for poly-paraphenylene oligomers d smax
Ž . Ž .ln 2brb s0.78 D s3.4 eV .b HL

Ž .For non-alternant oligomers Eq. 18 also gives a
< <useful estimate of the exponential decay of TDA

with the oligomer length, but in that case it does not
correspond to the minimal value of the effective
coupling.

It is of importance to note that in accordance with
Ž . Ž .Eq. 18 , at the energies determined by Eq. 17 the

Ž .pre-exponential factor of the effective coupling s1
is independent of the electronic structure of the
Ž .M -oligomers.

6. Anomalies of effective coupling

As is emphasized above the concept of effective
coupling is applicable to the description of electron
through-bridge tunneling if dN41. The shorter the
bridge, the larger d is needed to ensure the validity

Ž .of Eq. 11 . Intuitively, large values of the decay
constant associate with large distances in energy
from the bridge levels and hence, with wide band
gaps. However, such an expectation may not always
be justified.

Ž .As is seen from Eq. 10 , the value of d goes to
infinity, if either

GM s0 , 19Ž .a ,al r

but

b 2 GM GM /1,int a ,a a ,al l r r

2M M M Mor G r G G y G s0 , 20Ž .Ž .a ,a a ,a a ,a a ,al r l l r r l r

but GM /0, is satisfied. Consequently, the effec-a ,al r

tive coupling takes zero value at the energies deter-
Ž . Ž .mined by the solutions to Eqs. 19 and 20 .

Such an unusual switching ability can be pos-
sessed, in particular, by five- and six-membered ring
based oligomers. For poly-heterocycle oligomers the

Ž .energies of zero coupling through p electron states
are given by

ehb
Esy 22bX

= 2 4 2 yh 2 2 y3hb " b q4b e b ´ qb e ,( Ž .X X Xž /
21Ž .
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where b´ is the difference in the Coulomb inte-X

grals between the X and C atoms.
The above equation is derived for the same model

Ž .Hamiltonian as Eq. 15 . For typical parameters of
w xthe bridge 21 one of the two energies determined in

Ž .Eq. 21 lies within the p electron spectrum, and the
other one is outside of it. This latter solution to Eq.
Ž .19 significantly affects the asymptotic behavior of
the effective coupling in the sense that the true

Ž .asymptotic 14 is attained far from p bands of the
bridge.

The energies at which the p electron states of
poly-paraphenylene oligomers block the electron
transfer are given by

(Es"b 2 cosh 2h y1 , h/0 . 22Ž . Ž .
< <These are at the distance f b from the middle of

the HOMO–LUMO gap.

7. Synopsis

Based on a realistic Hamiltonian for conjugated
oligomers of the type M–M– . . . –M, an analytical
expression for the effective through bridge coupling
Ž . Ž .superexchange is derived. Eq. 11 extends the
McConnell exponential dependence of the superex-
change, a corner stone in the theory of non-adiabatic
electron transfer, to a wide class of linear molecules.
This greatly facilitates estimating the electronic fac-
tor of the in molecular ET rate and gives a new
insight into the physics of long-range non-adiabatic
electron transfer mediated by conjugated oligomers.

Acknowledgements

The author is thankful to Yu. Klymenko, L. Maly-
sheva, and I. Yakymenko for numerous helpful dis-
cussions. Partial support from the Swedish Founda-

tion for International Cooperation in Research and
Higher Education is acknowledged.

References

w x Ž .1 H.M. McConnell, J. Chem. Phys. 35 1961 508.
w x2 V.N. Kharkyanen, E.G. Petrov, I.I. Ukrainskii, J. Theor.

Ž .Biol. 73 1978 29.
w x Ž .3 S. Larsson, J. Am. Chem. Soc. 103 1981 4034.
w x Ž .4 A.S. Davydov, Yu.B. Gaididei, Phys. Stat. Sol. B 132

Ž .1985 189.
w x Ž .5 P. Bertrand, Chem. Phys. Lett. 140 1987 57.
w x6 V. Mujica, M. Kemp, M.A. Ratner, J. Chem. Phys. 101

Ž .1994 6856.
w x Ž .7 J.W. Evenson, M. Karplus, J. Chem. Phys. 96 1992 5272.
w x Ž .8 K.D. Jordan, M.N. Paddon-Row, J. Phys. Chem. 96 1992

1188.
w x9 L.A. Curtiss, C.A. Naleway, J.R. Miller, Chem. Phys. 176

Ž .1993 387.
w x Ž .10 M. Braga, S. Larsson, J. Phys. Chem. 97 1993 8929.
w x Ž .11 M.D. Newton, Chem. Rev. 91 1991 767.
w x Ž .12 K.D. Jordan, M.N. Paddon-Row, Chem. Rev. 92 1992 395.
w x13 Y. Magarshak, J. Malinsky, A.D. Joran, J. Chem. Phys. 95

Ž .1991 418.
w x Ž .14 M.A. Ratner, J. Phys. Chem. 94 1990 4877.
w x15 J.N. Onuchic, P.C.P. de Andrade, D.N. Beratan, J. Chem.

Ž .Phys. 95 1991 1131.
w x Ž .16 I.A. Balabin, J.N. Onuchic, J. Phys. Chem. 100 1996

11573.
w x17 S. Priyadarshy, S.S. Skourtis, S.M. Risser, D.N. Beratan, J.

Ž .Chem. Phys. 104 1996 9473.
w x18 M.D. Coutinho-Neto, A.A. de S. da Gamma, Chem. Phys.

Ž .203 1996 43.
w x19 A.J. Heeger, S. Kivelson, J.R. Schrieffer, W.-P. Su, Rev.

Ž .Mod. Phys. 60 1988 781.
w x Ž .20 R.A. Marcus, N. Sutin, Biochim. Biophys. Acta 811 1985

265.
w x21 A. Onipko, Yu. Klymenko, L. Malysheva, J. Chem. Phys.

Ž .107 1997 5032.
w x22 K. Lakatos-Linderberg, R.P. Hemenger, R.M. Pearlstein, J.

Ž .Chem. Phys. 56 1972 4852.
w x23 Yu. Klymenko, L. Malysheva, A. Onipko, unpublished.
w x24 A. Onipko, Yu. Klymenko, L. Malysheva, J. Chem. Phys.

Ž .107 1997 7331.
w x25 A. Onipko, Yu. Klymenko, L. Malysheva, S. Stafstrom,¨

Phys. Rev. Lett., submitted for publication.
w x Ž .26 B.E. Kohler, J. Chem. Phys. 93 1990 5838.


