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It is shown that the asymptotic behavior of the highest occupied molecular orbital-lowest
unoccupied molecular orbita(HOMO-LUMO) gap of conjugated oligomers of types -M
(M), ,—M and M=(M) _—M; with M = M;—M,, where M, M, and M, are alternant but
otherwise arbitrary monomers described by théck@li Hamiltonian, is ruled by the law
AHL(N)=AHL(oo)+constN‘2. On this basis we suggest an approximate expression for the

HOMO-LUMO gap as a function of oligomer length, that is exact for minimal- and infinite-length
oligomers. Two parameters of this function determine the dependermgL(if\l) on the oligomer

geometry. By comparing the proposed approximation with the exact model results for oligomers of
polyene, polyparaphenylefiBPB, and polyparaphenylenevinyleflePV) (some experimental data

and results of more elaborate calculations have been also used for this putpogEoposed
approximation is proven to give a useful estimate of the conjugation length and geometry effect on
the HOMO-LUMO gap of the molecules under consideration. Applying our approach to PPP and
PPV oligomers, we rederive the geometry effects on the PPP band gap reported previously
(however, an important point is taking end effects into accoamd predict that the HOMO-LUMO

gap of PPV decreases with the increase of the quinoid character of the backbone geometry much
more strongly, as compared with PPP. The band gap closing in the infinite chain limit as well as the
problem of the existence of discrete in-gap states were also examined, and this analysis has resulted
in the formulation of general conditions of the occurrence of the above mentioned situations.
Applied to the polymersinfinite oligomers, these conditions allow one to decide whether the gap
closing or the existence of in-gap states is possible under the givetectronic structure of
monomer. Since the conditions obtained are expressed in terms of the monomer Green function
only, they provide a simple and efficient tool with which to search for new polymer materials with
the band gaps desired. @97 American Institute of Physids$s0021-9607)01742-X]

I. INTRODUCTION Finding this dependence starting from first principles is
an extremely difficult task. The knowledge accumulated thus
Conjugated polymer based materials are the subject ahr due to established numerical calculations is therefore, far
continuing experimental and theoretical interest stimulatedrom enough for rationalizing existing experimental data. At
by the possibility of fabricating efficient polymeric conduc- the same time, it has been convincingly demonstrated that
tors, battery electrodes, light emitting diodes and using thenthe Hickel model with parameters taken either from experi-
for other applications. The electronic properties of these mament or from more elaborate theories can serve as a powerful
terials are determined by a number of factors among whickool for examining general properties of the electronic
the architecture and length of the basic structuraktructure such as its dependence on the oligomer backbone
components—conjugated oligomers—play a significant ifgeometry?® end groups and oligomer length’ As an ex-
not a decisive role. The dependence of the gap between thgnple, an appropriately parameterizedckel model not
highest occupied molecular orbittfOMO) and the lowest  only quantitatively reproduces thé B, 0-0 absorption ener-
unoccupied molecular orbitaLUMO) on the oligomer gies for a number of well defined polyene oligométsyt it
length and geometry of molecule is not only of fundamentalyjsg pehaves reasonably in the long chain limit and thus

importance, it is one of the key issues to be considered igjiows one to derive information about the conjugation
designing new polymeric materials, in particular, those withiengih distribution in long polyends’

large optical response. Thus, it appears that, even in the case of polyenes, where
the applicability of the one-particle approximation has been

aElectronic mail: alex@ifm.liu.se repeatedly criticized®! one-particle models have proved to
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be of significant predicting power at both the qualitative andciently well the dependence of the HOMO-LUMO gap on
guantitative levels. However, it must be stressed that becaugke oligomer length and monomer geometry. Proof of the
of its simplifications of real molecules the kel model asymptotic behavior&HL(N)—AHL(oo)~N‘2 (given in Ap-
fails to reproduce the ordering of polyene excited singletpendix A), which is reproduced by the approximate formula,
states observed experimentalfywhich can be explained by is one of the central, but not the only new, results of this
inclusion of electron-electron correlation effeétgnd thisis  article. In Sec. IV, the proposed approximation is compared
not the only indication of the restricted applicability of the with exact model dependences, (N) obtained for oligo-
classic one-particle approximation to linear conjugated molmers of polyene, quinoid and aromatic forms of polypar-
eq_ules. So, on the one hand, an appropriately parameterizg@,henwene(ppg and polyparaphenylenevinylen@®PV).
Huckel model can be adequate for the description of dipoleparallel to this, a number of new analytical relations for these
bands of conjugated oligomers and, in particular, the gapligomers is presented and used in the discussion of their
associated with the lowest dipole allowed transition. On thes|ectronic properties. Section V gives a synopsis of the most
other hand, the results obtained in the framework of thismportant results that were obtained. Some mathematical de-
model must be used with a good deal of precaution. Theretajls, that are essential for the understanding and application

fore, we are not saying that our conclusions do pretend t@f these results are presented in Appendixes A—C.
give a satisfactory explanation of the full electronic struc-

ture of this type of molecules.

Here we put most of the emphasis on an analyticaI”' BASIC EQUATIONS
analysis of the dependence of the HOMO-LUMO gap onthe  As is already knowr* % in the Hickel theory of =
oligomer length and parameters associated withithelec-  electrond’ the eigenvalue problem for an arbitrary conju-
tronic structure. This is a part of the Stratg'é)aimed at gated 0|ig0mer, a sequence of a finite numbg&rof co-
examining optical and electrical properties of conjugated olivalently linked monomers M, MM~ ...—M, can be re-

gomers by analytical methods in such detail that are almosjuced to the solution of a set of two transcendent equations,
impossible to obtain by qualified numerical calculations in a
f1(E)=2 cosé,

reasonable amount of time. Note in this connection that the (1)

problem of a theoretical description of the excitation energy sin(N§)

versus molecule length dependence has been repeatedly ad- f2(E)= S(N=1)8)"

dressed in the case of polymethine dys=e, e.g., Ref. 5 and

references therejrbut we are not aware of any successful The first of these equations determines the dependence of the

attempt that suggests such a dependence for conjugated off-electron energf=E ,(£) in the wth band(the number of

gomers consisting of monomers other than a methine grouphich is equal to or less than the number ofcenters in

mimicked by a one-level atom. monomer M on the quantum numbe¥, while solutions to
The main motivation of this work was, then, to find a the second equation, whekeis replaced byE ,(£), deter-

simple analytical expression of the dependence of thénine values of within each band.

HOMO-LUMO gapA_ on oligomer lengthN. As will be The set just referred to is completely equivalent to the

shown below, for a T/\L/ide class of linear conjugated mo|_initial eigenvalue problem except those electron states,

ecules a quite accurate theoretical estimatA|9Lf(N) at any whose wave functions have nodes at the binding sites, i.e.,

. i = left (I igh fM ia the el
value ofN can be obtained by using only two limiting values eft (1) and right ) atoms of M connected via the electron

i . . transfer resonance interaction witrand! binding atoms of
of this quantity, namerAHL(Z) andAHL(oo) provided the the left and right neighboring monomers, respectively. Such

highest valence and the lowest conductiorelectron bands energies(subject to the solution of a much more simple ei-
remain separate in the limN—c, and there are no discrete genyalue problem for an isolated monoinare not affected
levels in the band gap. The analysis of the band gap closingy the intermonomer interaction and therefore they do not
and of the appearance of in-gap discrete states caused by egiéhend on the oligomer length. It is also worth mentioning
effects has led us to a formulation of general conditi@s  {hat the number of real solutions fér which correspond to
tained in the one-particle approximatjothat relate the ihe given dependendg, (¢) can be equal tdl or less. In the
above mentioned peculiarities of theelectron spectrum of |atter case, there existr electron levels genetically

infinite oligomers to certain properties of the monomerconnected with, say, theuth band but, with energies
Green function. These conditions, which have far rangingying within  intervals ENi(£§)<E<E['(¢) or/and

implications regarding forbidden zones in the electron EMX(¢)<E<E™MM (£), the so-called local levelésee be-
spectrum, are specified for the HOMO-LUMO gap of PPP|OCV)_ #

and PPV Oligomel’s. In the Iatter, eXpliCit equations that de- There is a vast Variety of linear Conjugated molecules

termine thew electron spectrum o =2 andN= oligo-  covered by the structural formulae MM — ...—M, which
mers(and hence, values af | (2) andA  («)) have also jmplies that monomers are connected with each other via a
been derived. chemical bond. Usually, this is a C-C bond. However, often,

In Sec. Il, we specify equations that give the formalto form an oligomer, monomers are connected not directly to
basis of this discussion. In Sec. lll, we suggest and justify amut through a certain atomic group. A typical example is
appealing and simple analytical formula that describes suffieligomers of polyparaphenylenevinylenes, where phenyl
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rings (M.l) are connected through a vinylene gro(.mz)'. G|M|2(E):G:V'rz(E):sin(fNZ)/sin(g(Ner1)) and GerZ(E)

Such ollgomers can be modeled by a regular chain with an_ éing/sin(g(N2+ 1)), respectively E and ¢ are interrelated

end defect M-M—...—M—M,, where M = M;—My. g £q (1)), Obviously, ~M—=C-C, if we formally set

(The synthesis of novel oligphenylenevinylengswas re- N,=0, i.e G|M2(E)=O and GIMZ(E)=1 and thus. in this
7 . " r L}

ported several years ad®. Using solid state terminology, case Eq(3) wfl1ere M=M. coincides with Eq(2).

the latter structure can be considered as a finite one- . . - .
dimensional crystal with elementary cells; MM, and one Equation (1) together with explicit expressions for
L2 f,(E), f,(E) and for the Green function matrix elements

defect cell M at its end. Because of the formal similarity of GM(E), GP{'r(E), Gm(E) (whereE is expressed in unitg,

the structure of these two types of oligomers, botk-M ; :
 _MandM —MoeMi—  —M.—M. are included in and the Qoulomb integral for_ c_arbon atom is set equal to
rore e 2 zero provide the exact description of the electron spec-

the present context. :
There can be several forms of equations that are equiva'{[um of oligomers of types MM—M...~M and M—-M

lent to the initial Schidinger problem with the Fikel —_ *-*~ M—Ma. In the present context, the term “exact”
Lo ger prob . .means that this spectrum is calculated exactly on the basis of
Hamiltonian used to describe conjugated oligomers. Thel{he Hickel model. It is also a good time to recall that, as

articular form depends on the method of derivation. This . .
gan be. for exanI:pIe the transfer mafxpolynomial mentioned above, the solutions to Efj) should be supple-

matrix> method, or ones similar to the¥2To make these mented byN-fold degenerated eigenvalues which are not

) . . . affected by the inter-monomer interaction, see, for more de-
equations more explicit physically, it seems preferable to USE s Ref 192)

the Green function formalism that proved to be extremely
efficient in the analysis of ther electron spectrum of linear
conjugated molecules.’ As will be seen later, the represen-
tation of functionsf(E) andf,(E) in terms of certain com-
ponents of the Green function for an isolated monomer is in  Equation(1) determines the dependence »felectron
many respects useful for understanding the interrelation bdevels on the oligomer length and monomer geometry im-
tween the monomer and oligomer electronic structures. plicitly. Although finding solutions to this equation is a much
Omitting technical details, for oligomers of the type M more simple task than that one encounters handling the ini-

Ill. ANALYTICAL FORMULAE FOR THE 0-0 B
TRANSITION ENERGY

—~M~—...—M we can writé*® tial Schralinger problem, it is still too complicated to be
used for a quick analysis of the above mentioned depen-
f1(E)= — [1—GM(E)GM(E)+(G{\f'r(E))2], dence. Therefore, it is highly desirable to obtain at least an

o approximate analytical expression for the dependence of the
) HOMO-LUMO gap (denoted below ad (N)) on the oli-
f2(E)=GM(E), gomer length\.
. 1 . — From the mathematical point of view it is, in principle,
M My -1y;r M
where GJ,J/_'B“ [(E-HY)"7j"), H" is the Hamiltonian possible to derive such a dependence in the long chain limit.

operator of monomer M|j), j=1, r, is the binding site  5wever one can expect that, if applied to shorter oligo-
atomic orbital; andg is the resonance interaction energy qars it would fail to reproducd, (N). To make the ap-

between monomers. proximate dependenca??P™(N) applicable to oligomers
For oligomers of type MM—...—M—M,, where M

> of an arbitrary length, we set
= M;—M,, the eigenvalue problem can also be reduced to

set (1), whereN corresponds to the number of monomers ~ AZPP(2)=4 (2),

i o(b) 4
M;, and functionsf;(E) andf,(E) have the fornk AT A (c0)

f1(E)=— 7 {1—G|M|1(E)GM2(E) Of course, an approximation based on the above equa-
G, (E)G| A(E) ’ o tions cannot pretend to give a precise descriptiod gf (N)
M, M, M, M, at intermediate values ¢i. However, as is demonstrated in
—GA(BE)G, [(E)+[G, [(E)G, (E) Sec. IV, such an approximation provides a reasonable quan-
L AMy 210 ~My My =y M) 2 titative estimate ofA,,, (N) at any length and, more impor-
(G (ENTILG (B)G, H(E) = (G (BN tant, it reflects the main tendencies of HOMO-LUMO gap
(3  dependence on the monomer structure and on the particular
" form of the oligomers.
- M, M, M, ) Except for some special cases the behavior of the
fo(E)=— GMZ(E) [GI,I (E)Gr,r(E)_(Gl,r (E)?]. HOMO-LUMO gap at large N is described by
Ir

AHL(N)=AHL(oo)+const N~2. This law, which is proved in
Note that the above equations coincide with the defini-Appendix A, is a direct consequence of the fact that in a

tions of functionsf,(E) andf,(E) given in Eq.(2), if “con- sufficiently long but finite chain deviation of the band-edge

necting” group —M— is equivalent to the C-C bond. Indeed, values of¢ from their limiting values 0 andr attained in the

for a non-alternating chain of Ncarbons the diagonal and limit N— is proportional toN . Excluding the aforemen-

non-diagonal Green function components are equal ttioned special cases connected with the possibility of band
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joining or the existence of in-gap local states, as discussed in B
Appendix B, a function, that has the minimal number of

adjustable parameters and coincides with the exact values of C O
AHL(N) atN=2 andN=« can be taken in the form

, (5 B.expMm,) B,exp(-n,)

aa
appro =A—
AZP XN)=A—-B CO{ NT 1

where constantd andB are defined as
A=2AHL(2)—AHL(00)

and 4
B=2[A, (2)—A, ()] (6) Bexp(Inl) Pexp(-Inl)

It is worth mentioning that, forma”y’ EC(S) de_scribes FIG. 1. Quinoid(left) and benzenoidright) geometries of PPRuppe) and
the band-bottom energy of an excess electron in a Mon@pV (lowen oligomers. The arrows indicate the resonance integrals associ-
atomic chain consisting dil atoms, where the electron site ated with different C-C bonds.
energy is equal toA, and the intersite resonance
interaction—to— B/2. As seen from Eq(6) neither of these _
meanings is applicable if the dependefiBkis used to fitthe ~With the exact model results fofalternant oligomers of
excitation energy of the 0-0 dipole transition of oligomers. Polyene, polyparaphenylene, and polyparaphenylenevi-

To calculateA2PP™XN) for all N, one needs to know nylene. The Green function matrix elements needed for this

HL ' . . . .
the exact values oA _ (N) only for the shortestM—M or &€ defined in Eq9B7)—(B11). The calculation of the lim-
HL it _

M;—M,—M,) and infinite oligomers. FON=2 we have mn_g values Of, the HOMO-LUMO gf':lpAHL(Z) a}ndéHL(oo),
instead of(1) which determines constanésandB in Eq. (5), is discussed

in Appendix C.
f1(E)—f2(E)=0, (7

and in the limitN—« the edge energies af electron bands |v. COMPARISON OF APPROXIMATE RESULTS WITH
are subject to solution of the upper equation of(&¢with & PREDICTIONS OF THE HUCKEL MODEL

replaced by 0 orfr, i.e., _
We now present the results of calculations of the

f1(E)=2=0, (8)  HOMO-LUMO gap versus oligomer length dependence that
where the choice of sign depends on the particular structurd®re performed for the above mentioned oligomers using
of the monomer. both the exact definition OAHL(N) from Eq. (1) and an

In accordance with their definition, the quantitigs (2) ~ approximate one given in E@5). The aim of these calcula-
andA (=) are determined by their solutions to Ed) (for tions is twofold. On the one han_d, they dempnstrate the ac-
the fo??ne) and Eq.(8) (for the lattey which correspond to curacy of the proposed approximate analytical description

the HOMO and LUMO levels. Only the smallest roots of the compared with the exact model results and show that the

appro ;
above equations are needed if one deals with alternant Oligéj_ependencekHL (N) can be used, in many cases to the

mers that have an even number of identizatenters in their  1€ast length, for a quick and reliable estimate of the HOMO-
building blocks—monomers. LUMO gap and variations of this quantity by changes in the
Finally, in many cases of interest the expressions for théumber of monomers and changes in their geometry. On the
Green function matrix elements appearing in the definition®ther hand, these calculations make the relative role and mi-
of f1(E) andf,(E) can be obtained in an explicit form, as is CrOSCOPIC Origins of major factors that determine the HOMO-
illustrated by representative examples given in Appendix BLUMO gap value apparent and can therefore be helpful in
Then, Eq.(5) makes “visible” not only the dependence of INterpreting relevant experimental data.
the HOMO-LUMO gap on oligomer length but also on pa- A commonly accepted practice, a particular geometry of

rameters which are directly related to the monomer geom@ligomers can be taken into account by relating non-
etry. equivalent C-C bonds to different resonance integrals. In the

Thus, taking into account the minor restrictions indicated®igomers under consideration these are, in polyenes, the in-
above and specified in Appendix B, EqS)—(8) suggest an (€9rals associated with the doubles ( = pBexpy) and
appealingly simple procedure that allows one to examine isingle (8_ .= Bexp(-7)) C-C bonds; in PPPs, similar no-
great detail the dependence of the HOMO-LUMO dapd  tations, namelyS,.exp( ), are used for the same bonds
hence of the related quantities measured experimentally, e.dn a phenyl ring, whileB refers to the resonance interaction
the 0-0 transition frequency of the lowest dipole allowedbetween the rings, see Fig. 1; correspondingly, in PPVs,
excitation) on the basic parameters of conjugated oligomersS,,exp(* 7, and Bexp(* ) distinguish double(+) from
An example of such an analysis is given in Sec. IV, wheresingle (—) bonds within and between the rings, respectively.
we turn to a comparison of the proposed analytical formulaeBy convention, we make; positive (negative for an aro-

J. Chem. Phys., Vol. 107, No. 18, 8 November 1997

Downloaded 23 Oct 2005 to 130.236.162.183. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



Onipko, Klymenko, and Malysheva: HOMO-LUMO gap of conjugated oligomers 7335

varying parametety), and to changes in the difference be-
tween single and double C-C bonds within monomgra-
rameters,,) and between monome(garameter for PPVs
only). In Fig. 3, the dependence.‘sHL(N) displayed above

and below bold-faced curves illustrate how large the increase
or decrease of the HOMO-LUMO gap can be under possible
changes towards an aromatic or quinoid character of the oli-
gomer geometry.

The dependencAHL(N) for polyenes, where both the

0.0 . ' parameterization of the Hkel Hamiltonian and experimen-
0 10 20 80 tal data are borrowed from Ref. 4, is presented as an illus-
tration of the high accuracy of the given modsblid line) in
_ _reproducing the established resultsosses on the 0-0 B
FIG. 2. HOMO-LUMO gap vs number of double bonds in polyene oligo- band Lo hain | h. Th I
mers. Solid line—Eq.(1); dotted line—Eq.(5); »=0.1333; crosses— and excitation energy versus c aln. ength. Tl € e?<ce ent
experimental data of Ref. 4. agreement between theory and experiment obtained in Ref. 4
encourages us to apply the same simple model to more com-

matic (quinoid) structure of PPV. Thus, being expressed inpIex molecules, such as oligomers of PPP and PPV discussed

units of ||, the HOMO-LUMO gap, in addition to its de- |q the later portign of t.his article. However, the.model pre-

pendence o, is also a function ofy for polyenes, ofy,p, dictions coinciding with the observed variation of the

and y= B,/ for PPPs, and of,,, 7, andy for PPVs. 11Ag—> 1B, transition frequency for a restricted number of
According to experimental data accumulated for BP, polyenes(with 3—7 double bondscannot be considered as a

nph~0.01,|y— 1|~0.1, and it is reasonable to assume thatproof of validity for the Hukel model in the long chain

| 7|=~0.1. The parameters used in our calculations include thémit. To our knowledge, its validity has been neither con-

above indicated values, as well as those of intermediate arfitmed nor rejected.

extreme aromatidi.e., benzenoidand quinoid-like geom- As seen from Figs. 2 and 3, in the limN—c, the

etries. For PPP a_nd PPV the latter are associated with “Tﬁ‘ependenca (N) for oligomers of polyene, PPP, and PPV
structures shown in Fig. 1. The transition from one type of HL

geometry to another includes passing the equalized bonﬁalnd very ""?'y most of conjugated ollgomers; see Se_c. i
model (y=1, ,,=7=0). For this reason in the discussion and Appendixes A and Bfollows the universal behavior

of the evolution of the HOMO-LUMO gap in response to A (N)=A_ ()~N"? which coincides with that implied
changes of the backbone geometry, it is instructive to usey Eg. (5). The approximation5) also agrees reasonably
this model as a reference point. The dependemk:&:{N) well with the exact model calculations of the HOMO-LUMO
which correspond to the equalized bond model are shown igap as a function of chain length and other characteristic
Fig. 3 by bold-faced curves. The solid lines in Figs. 2 and 3parameters of the oligomer. A number of calculations per-
represent the results of exact model calculations, and th&rmed on the basis of Eq1) and compared with Eq5),
dotted lines are the approximation of E§). which cover in excess all the values of the characteristic

For each type of oligomer geometry we are interested inyarameters that are considered reasonable for PPP and PPV
the sensitivity of the HOMO-LUMO gap with respect to oligomers(Table | and Fig. 3 represent part of the param-

changes in the ratio of the resone_mce interaction W'thmeters userishow that, despite some lack of quantitative ac-
monomers and between monométkis can be traced by

curacy, the suggested approximation reliably reproduces the
main trends of the gap behavior. But in the strict sense of the
2.0 - - - - word, Eq.(5) fails to reproduce functiod , (N) at short and

intermediate lengths, where the use of exact equatibnis
preferable.

So, taking into account the appealing simplicity of Eq.
(5) and its increasing accuracy for longer oligomers, this
approximation can be suggested as a quick alternative to Eq.
(1) for carrying out a preliminary analysis, especially for
00 . . i i large N, when exact calculations require an ever-increasing

N N amount of time.
Now we turn to a comparison of previous with ofim

FIG. 3. HOMO-LUMO gap vs number of monomers_in _oligomers of poly- certain aspects more detaije@sults for PPP oligomers and
paraphenylene and polyparaphenylenevinylene. Solid lines-ddotted to conclusions concerning PPV oligomers that have not been

lines—Eq.(5); the labeling of the curves corresponds to the labeling of the ™ .
rows in Table I; bold-faced curves—equalized bond model. discussed thus far in the present context.

2.0 T T

10 |

HOMO-LUMO GAP in I

1.0 F W

HOMO-LUMO GAP in Ipl
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TABLE |. ConstantsA andB (in units |g[) which determine the depen- In a sense, the result just pointed out is trivial since it
dence of HOMO-LUMO gap on the number of monomers in oligomers of reflects the tendency & towards the monomer LUMO
polyene, polyparaphenylene, and polyparaphenylenevinylene. Data from the M . LUMo . .
labelled rows were used in the calculations shown in Fig. 3. energyE'" in response to weakening of intermonomer
interaction. Obviously, the effect indicated can be considered
Oligomer Y o w8 (2) A (¢) A B as a general property of this kind of oligomer. In contrast, the
Polyene 0.1338 1572 0535 2609 2.074 dependence omy,, (non-equivalence of single and double
C-C bonds within the ringis substantially different in the
PPP benzenoid and quinoid-like structures: the increaseygf
all equal bonds 1.0 0.00 1410 0828 1992 1.164 CAUSES aweak increase &f in the former, and a strong
benzenoid form 1.0 0.10 1446 0878 2014 1.136 decrease ofA  in the latter. In other words, to the linear
jﬂ 8-28 i-ggg i-gég 2;% ﬁ;g approximation inz,, the HOMO-LUMO gap of aromatic
o e ' : ' ‘ structured PPP oligomers is practically insensitive to whether
quinoid form  °1.0 0.10 1.102 0.456 1.748 1.292 L ) .
311 005 1425 0807 2043 1236 C-C bonds within phenyl rings are assumed to be equalized
‘1.1 0.10 1259 0.608 1.910 1.302 or formally alternated, whereas in the case of the quinoid
structure of the ring, the difference between the single and
PPV double bonds has a dramatic effect on the band gap.

all equal bonds 1.0 0.00 0.00 1.009 0.508 1.510 1.002 . . . .
benzenoid form 10 0.00  0.10 1164 0728 1600 0872 The origin of this effect becomes clear if we consider the

M _IEM ; P
11 000 000 1105 0600 1610 1010 dependence deLUMO| (—|EHOMO| since the Coulomb inte

21 000 005 1187 0715 1659 0.944 gral of carbon atom is set equal to zeom 7,,<1. Expand-
1 . .. .y .

i 11-1 0.00 0-110 1.270 0-28279 11;1711 10-15182 ing the minimal positive poles of Green functions of the
quinoid form 1.0 0.00 —0.10 ~ 0.860 0287 1.433 1.146 0y 1ing in aromatic and quinoid conformations given in
1.0 010 -0.10 0706 0.068 1.344 1.276 . ,

311 000 —-005 1.024 0485 1563 1.078 EUS.(B8) and(B9)in powers ofzy,,, we obtain to the low-
4.1 000 -010 0946 0370 1522 1152 est power of the small parameter

11 005 —-005 0941 0372 1510 1.138

511 005 —-0.10 0867 0258 1.476 1218

11 010 -0.10 0.787 0.144 1430 1.286 IEﬁ"UMO|wy(1+277§h), aromatic form, o
#From Ref. 4.
M 5 . .
|ELUMO|~7(1_§77ph)a quinoid form.

The curves for PPP oligomers reveal the same depen- The behavior ot =2|E | as a function ofy, is a
dence of the HOMO-LUMO gap on the geometry parameters . HL LUMO ‘ph
of the molecule backbone that was first predicted bydBg reflection of the above dependences. Of course, in oligomers

and investigated in more detail by Bi@s et al?® and by |ELUMO| acqgirgs a c_]uantita_ltively different dependerlce on

Ambrosch-Draxkt al? In the papers cited periodic boundary 7ph bUt qualitatively it remains the same. As shown in Ap-

conditions were used and, thereby, the finite length and thB€Ndix C, in the long chain limit this dependence can be

existence of ends in real molecules were neglected. TheXPressed analytically for both benzenoid and quinoid forms

present calculations also answer next question, To what exX2f PPP- Precisely, for the former we hatie units |3])

tent do geometry effects depend on oligomer length?
Figure 3 shows that in both PPP and PPV oligomers, and

independent of their particular geometry, the HOMO-LUMO

gap increases with the increaseygfthat is, with the relative

decrease of intermonomer resonance interaction which Caphere Zmin is the minimal (|n the absolute Va][)eroot of

be caused by the decrease of C-C bond strength between tBguation

phenyl rings due to, e.g., alternate twisting the rings relative

to each other(To recap, sincaHL is expressed in units3|,

the increasédecreasgof AHL with the increasédecreasgof

A (2)=2Zpin+ ¥*(2 costi2 ) — 1), (10

73— (1+3y)Z%- 4y ycos 2 nyp) + sintf 5,2

v illustrated in Fig. 3 is actually partly cancelled if changes +4y4sintf 5,,=0, (11
in the latter's quantity are caused exclusively by the decrease
(increasg of |B|.) and for the latter

yexp — npn) | 2

(12
1—yexpmpn

A, (2)=12 \/ 1+ yexXp 2 70n) + 472X — 27pn) — [1— Y2exp 2751)] \/ 1+8
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To describe the aromatic and quinoid PPV structures, weligomers that they have a substantially smaller HOMO-
use for the former the equalized bond model of the phenyLUMO gap compared to PPPs. However, it must be empha-
ring which, as shown above, is accurate to the linear order isized that this result is valid only under the assumption of an
7ph- Then, the HOMO-LUMO gap in the limiN— is  equal degree of conjugation in the PPP and PPV. In the
determined byAHL(oo)=2Emin, whereE,;, is the smallest language of the model given, this means that in both poly-
(in the absolute valygoot of the polynomialC10), where¢ mers the intermonomer resonance interaction is essentially

is set equal tor (see Appendix the same, which is not necessarily the case in real materials.
6 ) ) As seen from Fig. 1, the increase of the quinoid charac-
E°—[3y“exp(—2npp) +2(y“cosi2,,) +cosh27)) ter of the backbone of PPP and PPV oligomers is associated
Fexa — 2 ) 14+ fext — A7) + v dexy — 2 with the increase of oner(,,) and two (7,n, |7|) param-
A=2m)] {exp(=47) + 7 4exi = 27pn) eters, respectively. Therefore, similar changes in the relative
><(yzexp(—znph)+2coshj277))+exp(277ph) difference between double and single C-C bonds produce a

stronger effect on the band gap in PPV than in PPP oligo-

_ 2_ .2 _
X(2cost2) +exp(—2n)) 1B~ y[exp(2npn—47) mers; see Table I. In brief, the possibility of obtaining a

+4728Xp(27l—477ph) stronger effect on the HOMO-LUMO gap of PPV by in-
creasing the quinoid character is a consequence of the larger
—4yexp(— (7pnt 7))]=0. (13 capability of the PPV backbone to change its geometry into a
When using the above equation for the benzenoid geometrj@vorable direction. , o o
7on Should be set equal to zero, and-0; the quinoid ge- As was mentioned above, in the infinite chain limit the
ometry implies thaty,,>0, and the sign of; is negative. interrelation between the band gap and the backbone geom-

Taking into account that for the equalized bond model€Y ©f PPP has been already examined in great detad.

E2 <1 we can solve Eq(13) approximately, omitting However t_here is_ one imp_ortant_ questiqn that has not bgen
LUMO answered in previous studies; this question concerns the lim-

terms of the higher order the. Thus, for| 7], Tpn<1 we iting behavior of the band gap as a function of the parameters

have of the backbone structure. What should be expected if the
12y—1] quinoid character is stronger than that prescribed by values
Y . . .
A (m)mZyﬁ of the parameters used in the present and in previous calcu-
HL Vay +11y7+1

lations? For the PPP model this question is of theoretical
interest only. But a nearly zero value of the gap obtained for

x[ 14 2272+7_1 n Y2+2 77 PPV aty=1, ,,=—7=0.1 indicates that for this, and
(2y—1)2  4y*+11y%°+1 probably for some other oligomers, closing of the band gap
can be attained or nearly attained. What then are the condi-
_[8Y°=2y=1 , 89’45 14 tions of zero distance between the highest occupied and the
(2y—1)? I 49+ 1192+ 1 Ton( - (14) lowest unoccupied levels?

Within the framework of the model given this question
Predictions of the above equation are in a good quantits answered here in a quite general form; see Appendix B.
tative agreement with exact values af () calculated For alternant oligomers this answer can be expressed in the
from Eq. (13) and represented in Table I. In particular, Eq. form of particularly simple conditions. Namelg,, («)=0
(14) indicates that for y=1 we have A  (*)=05 f
—(67/32)(n,n— 1), i.€., that in the case of quinoid geometry
(7<0) the gap decrease in response to the increase of either GIM,I(O)G'rV,lr(O):O’ (19
7ph OF |7 has the same rate. For example, the HOMO-
LUMO gap at#n,,=0.1 andn=0 is equal to that af,,=0
and »=—0.1. For a more realistic mode};# 1 but|y—1|
<1, the changes of the gap produced by increasing the-m, M, VY RV
quinoid character of the phenyl rings in the chéircrease of FG” (0)G, A(0)[=1, for My=M,=M;— ... —M, Ma@
7pn) and by increasing the difference between the double
and single C-C bonds of the connecting structimerease of  where the sign =" in Eq. (16) corresponds to the gap clos-
|7|) are nearly of equal importance. ing as a result of band joining, whereas the fulfilment of
It is of interest to compare the band gap and its responsmequality (16) is the existence of a twofold degenerate local
to the increase of the quinoid character in PPV and PPP. Ifevel in the middle of the band gap in the linht— oo,
the long chain limit, the equalized bond model predicts for  For PPPs and PPVs conditiaid6) predicts (see Eq.
PPV about a 1.6 times narrower band gafs083|) than for  (B12) in Appendix B that with the increase of the quinoid
PPP that ha§2(3—22)¥3B|~0.8283]|). This is due to character of the backbone the highest valence and lowest
the phenylene-vinylengM;—M,) resonance interaction, conduction bands approach each other up to the gap closing.
which lowers the LUMO level of the PPV monomer com- At this point equality(16) is fulfilled. Under a further in-
pared with that of a phenyl ring. Therefore, if theconju-  crease of the quinoid charact@eflected in the increase of
gation does not differ much, it is an intrinsic property of PPV the non-diagonal component of the monomer Green func-

and
IGM(0)|=1, forM—=M—...—M,
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tion) the bands diverge, but the HOMO and LUMO levels markably well reproduced by approximati¢®) in the entire
preserve their fixed positions in the middle of the band gapregion of the oligomer length thus providing a quick and
For a rough estimate of parameteys,, », andy we  reliable evaluation oﬁHL(N) on the basis of only two pa-
accept Harrison’s 2 rule’* and Setﬂc—c”_'éfo where  rametersA  (2) andA (). Needless to say, the precise
lc_c, is the C-C bond length. Then, using the data ofiheoretical determination of the latter quantities is a much
STO-3G calculations of optimized geometry of 50 mol % gagjer task than calculation of the HOMO-LUMO gap at
sodium doped polyparaphenyléfievhich givelc_c—lc-c  each value of the oligomer length. So the proposed approxi-
~0.1 A ( c=c andlc_c refer to the C-C bonds that are aiion can be efficiently used for a preliminary estimate of
parallel and inclined to the chain axis, respectiyetie de-  he HOMO-LUMO gap dependence as a function of the
termine that the extreme quinoid geometry of the P_PP backs,onomer number and of the parameters of the oligomer
bone can be characterized hyp~0.1, y~1.1. According {0 packhone structure, and can be used in combination with
(B12), this set of paramfalters is far from satisfying the con-mqre elaborate theoretical models. Alternatively, the deter-
dition of gap closingy “=2exp(-37y). Assuming that ination of constants in E5) from experiment, e.g., from
upon PPV n-type doping these parameters can reach thge,qurements of the 0-0 transition frequency, allows one to
same values and that the C-C bond difference between thgayy certain conclusions about the actual microscopic struc-
rings is comparable to that within the rings, i.e., tyre of the given oligomer by comparing experimental data
— 7~=7pn~=0.1, one comes to the conclusion that the bandyjih the predictions concerning the HOMO-LUMO gap de-

gap of n-type heavily doped PPV may be about four times,endence on parameters of PPP and PPV oligomers made
smaller than that of PPP with a similar quinoid-like contri- gpqye.

bution to the electronic structure; see Table I. Just as in the |1 \was shown that ther electronic structure of a mono-

case of PPP, this result is consistent with the condition of,er is key to understanding the relationship between the
gap closing in PPVy™"=2exd—3(npnt|7))] which for the  gjigomer backbone structure and the HOMO-LUMO gap
given parameters is much closer to fulfillment than the simivq|e. In this respect, a determination of the conditions that
lar condition for PPP. Note that the above very crude esti;g|ate the HOMO-LUMO gap closing in the infinite chain
mate does not account for polaronic effects which may evefiyit with certain properties of the monomer Green function
more strongly influence the band 9%?9 _ o is of special importance from both fundamental and practical
An effective increase of the quinoid-like contribution t0 4ints of view. As to the first, this is, at least, not a frequent
the electronic structure of aromatic ring based polymers CaBxample when zero&ot poles of the Green function have
also be attained by certain types of substitution as was demyjrect physical meaning. As to the latter, the conditions ob-
onstrated for polythiophene and its derivati?830 examine tained allows one to estimate whether or not the narrow

this possibility, use of the monomer Green function in the(zer@ band gap of a designed polymer is realistic by exam-
way discussed in Appendix B can be especially useful sinc%ing the Green function of its monomer.

it allows one to make a preliminary estimate of the substitu-  pgggiple changes of the PPV band gap with the increase
tion effect on the band gap at the monomer level. So, imporyf the quinoid character of the backbone are discussed above
tant in this analysis is not numbers but that knowledge of,, great detail. For this we derived the analytical expression
only the monomer Green function can be extremely helpfubs the pand structure as a function of the C-C bond differ-
in making the right choice of monomer to obtain the polymergp,ce within and between phenyl rings, which implies a num-

band gap desired. ber of applications. It is shown that under the assumption of
an equal degree of conjugation the band gap suppressing
V. CONCLUSIONS effect of the increased quinoid character of PPV is substan-

] ) ) ) 7 tially larger than a similar effect predicted previously for
~ Quantum chemistry aided design of organic polyriers ppp.  apart from all this, the result confirms the heuristic
implies first of all the ab|llty of a t_heory at t_he least p03_5|ble power of the conditions of band gap closing derived here and
cost to oversee properties of conjugated oligomers, which argg es a challenge to find the most favorable monomer ge-

of a fundamental and practical significance, and to show poSsmetries for obtaining polymeric materials with a small or
sible ways for their modification. From this point of view we o\en zero band gap.

summarize briefly the main findings of the work.
One of the central results is represented by Gowhich
shows that the HOMO-LUMO gap of conjugated oligomers,
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APPENDIX A An important conclusion that follows from E@A6) is
o , , that the asymptotic behavior of the band-edge solutigps,
For our purposes it is convenient to rewrite the set Ofandg , which determine the energies at the band edges, is
equationg1) in an equivalent form . N
independent oCC,
f1(E)=2 cosé, (A1) - ™
limé=—, Ilm¢ =m——, if C<-1, (A7)
. N— oo N N— o N N
1 B Sin(N¢) A2
f(E)-f%E) SM(NTDE’ A2} and limy_.&=m/N, limy_..£ =7 m/(2N), if C=—1.
As a consequence, all four band-edge energies of poly-
First, let us consider the case of the polyene chain, where thene have identical asymptotics,
energy is a simple function df,

i A

E=*2(cosh 27+ cos¢), (A3) JTwEedge(N): Eeagd @)+ INER (A8)

and where the values dEqqd ) (assumed#0) andA are de-
) termined by the structure of the energy bands. In particular,
sin(N¢) _ for the inner band edge&lOMO and LUMO levels of poly-
: C, (A4)

sin((N+1)¢) ene;é=m— w/N) we have
C=—exp(2p). The latter notation is introduced since the ) w?
asymptotic solutions ofA4), which refer to the band-edge |Eeqgd N)|[=2sinH 5|+ —4N25inH e (A9)

energies, can be found for an arbitrary value of constnt
not just for its particular value in the Lennard-Jones equaand for the outer band edges we have

tion. 2

For C<—1 the in-band solutions t6A4), 0<é&. <, |Eoqed N)| =2 coshry— m _ (A10)
satisfy the following inequalities: ¢ 4N? coshp
k 2.k Obviously, the only exception ofA8) is the case of zero
msgks INTL’ k=1,2,....N, (A5) band gap,s=0 (C=-1), when, in accordance witfA3)

and (A6), in the limit N—c, the HOMO (LUMO) energy
where ¢; (—0 asN—x) and ¢ (—m asN—w) corre- behaves abl~!. It is also worth mentioning that, if the band
spond to the band-edge statesN.—iN/(N+1)<C<0, Eq. 9P is small [7;|<1) but finite, the use of asymptotic depen-
(A4) has an imaginary solution faf which corresponds to dence(A7) in the dispersion lawA3) reveals the existence
N

; 26 L . of intermediate asymptoticE =—E ~N"1in the
an in-gap(local) states° Such a special situation is not in- onN>1 b N H.’Mrc]’ . H?MO d by th
cluded in the present discussiofthe conditions of local €9'on N>1 but | 7IN<<r, which is replaced by the true
state appearance are the focus of Appendix \Be note, asymptotics(A9) at |»|N> . The latter observation is in
however, that the asymptotic behavior of solutiongAd),

good agreement with numerical results presented in Figs. 2
which determine the band-edge energies and are found f&nd 3, which show that the larger the band gap, the better the

C<—1 (see Eq(A7)) is also valid forC>—1 (but C#0), approximation(5), i.e., theN~2 law is “switching on” at
although the proof of this asymptotic in the latter case issmaller values oN. L )
slightly different. _ The example pre_sented ab_ove highlights the foIIOW|_ng:
The use of Eq(A5) allows one to solve Eq/A4) ap- (i) the vaIues_oE_, v_v_h|ch determine the band-edge energies,
proximately by using the secant metfbd approach their limiting values 0 or asN~!; as a conse-
quence, the energies of edge states have the asymptotics of
2k the kind (A8) if the neighboring bands remain separated in
§~ INT1 the limit N—oo; (i) in the case of zero gajpand joining the
asymptotic behavior of band-edge energy changes qualita-

) 7k tively and becomes-N~1. Now we prove these two state-
(1+C)sin ;
1 2N=+1 ments in the general case.
x| 1- 2(N+1) o - [k . rzo:fsnee;gggnn?r?é :cr;?r:and edges Bzdl Eq.(A2) can
— i
(A+C)sin o0 1) ~SN N T P
1 sin(N
O E fE FetN)= Sin((',‘jfl))g),
o0 — o0
Equation(A6) is exact forC=—1 (i.e., »=0). It can 1(Eedqd ) T2 "(Eeagd ) (A11)
easily be verified that the above expression is in a good
agreement with the exaéhumerica) solutions of Eq(A4) ~ Where
for N=4 and that the accuracy of this approximation in- lim e(N)=0, (A12)

creases very rapidly with the increaseNf N—c
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andEggqd*) is one of the solutions to EqA1) with §=0 lim |EedgéN)_Eedge(°c)|~N721 (A18)
or ¢=q. Correspondingly, we are seeking only for those  N—e
solutions to Eq(A11) that determine the values gffor the

. S if the bands are separated, and
edge states in the long chain limg= & or é&=#— ', and

satisfy the condition lim |Eeqgd N) — Eegqd )| ~N"1 (A19)
N—o
lim =0, limé§'=0. Al13 . _ . :
N o0 N o0 (AL3) in the case of band joining. This result survives as long as the

. 1 , model Hamiltonian used remains applicable.
Note that the function Lf,(E)—f, “(E)] is a polyno-

mial that takes zero values at the monomer energies. There-
fore, the absolute value of the first term on the left-hand Sid?APPENDIX B
of Eq. (All) is always non-zero(Of course, the case of

degenerated bands, which has no dependencH @ ex- In general, two qualitatively different cases of
cluded) o ) asymptotic behavior of the 0-0 transition excitation energy as
In zero approximation, i.e., settingN)=0, Eq.(A11) 3 fynction of the oligomer length should be distinguished:
can be ;olved in exactly the same way as &dt), so that (i) IimNﬁxAHL(N)=const as is assumed in the text: and
we obtain (i) limy_.A, (N)=0.
T The zero limit is realized due to the HOMO and LUMO
0=0 N (A14) states approaching each other\as» . These states can be

either band-like states or in-gap states. In the former, the zero
limiting value ofAHL is due to joining the upper valence and
lower conduction bands, whereas in the latter these bands
remain separate.

w2 Suppose first that in the limil— « there are no discrete
(local) levels between the highest filled and lowest unfilled

Expanding the left-hand side of EgAl) in powers of
E—Eecggd*), and the right-hand side in powers éf we
arrive at(compare with(A8)—(A10))

Eedge(N) = Eedge(oo) +

2¢/

Nf1(Eeagd bands. According to Ed1), at the band edge§=0, , the

—1, if Eeqqd®) corresponds tg=0, following equations must be satisfied;(E)*+2=0 and
% |f,(E)|=1. Since in the infinite chain limit there are no dif-

1, if Eeqgd ) corresponds tg= . ferences in the band structure of oligomersM—...—M
and M—M—...—M—My, for both types of oligomers the

(A15) equations just indicated can be rewritten as
The latter equation implies thd(Eeqqd>)) # 0. If for GM(E)GY(E)=0, (B1)

some of band-edge energies, say, jttie fi(E(eJ(}ge(OO))=O, nd
it means that the neighboring bands join each other a?
E=E{}qe Indeed, the equation for the band-edge energies |G)'(E)|=1. (B2)

f1(E)+2=0 can be represented in the form Thus, if in the energy interval of interest there exists

7 YE)E- Eg](-j)ge)(E_ Eg‘j)ge) .. .(E— Eg(}ge)Z_ . only one §olutiorto Eq. (B1), substitut?ng this soI.u_tion in.to'
Ny—1) Eq. (B2) gives the necessary and sufficient condition of join-
(E— Eed“g"e )=0, (Al16) ing the bands; see examples below.

Using Eq.(1), it is easy to show that in the limii— oo,
energies of discrete stai@there are any in the polymer
electron spectrujnmust obey the following equation:

where N,, is the number of non-degenerated bands in the[he
given oligomer, andA(E) is a polynomial, whose degree is -
less tharNy, . Thus, in such a case, expanding the left-hand

side of (A1) in powers ofE—EJ) . we have to retain the 1—f,(E)f,(E)+f3(E)=0. (B3)
second order term. Then, instead(6fl5) we obtain In the case of oligomers MM — ... —M, i.e., under the
27 substitution of expressions 6f(E) andf,(E) from Eq.(2),
E(N)=Eeggd @)+ ; Eq. (B3) takes the form of Eq(B1). For My—M,—M;— ...
N\/|f1(Eedge(°°))| —M,—M; we have instead ofB1)
-1, if Eedge(oo) corresponds tg=0, (GI'\,ArZ( E))2+[G:\’/||2(E)G'r\{|r2(E) _ (GI'\,ArZ(E))Z]
X .
1, if Eeggd®) corresponds tg=m. ><[1_Gll\flll(E)GyrZ(E)_GI"/IYIZ(E)G:‘/Y"‘:L(E)]
(A7) +G\ME)G,"(E)[ G, AE)G"2(E)
Thus, in conjugated oligomers of the type-M—...—-M _(GM2(E))212=0 B4
the dependence of band-edge energies on the chain length is (G (E)7] ' B4
characterized by universal asymptotic behavior: It also can be proved that at the energy of discrete states
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IGM(E)[>1, (B5) ZGY(E)=exp — 1) E{[E2— y?exp(27,p)
and —2y%exp(— 2,0 I[E?—exp(27)]
—exp(—27)[E2— Y2exp 27,0 1},
G'Y(E)

Ir

Z(E)G(E)=exp(— n)E{[ E?— 2y%exp( — 27,n]?
— y?exp(2n,n E2—exp( —27)[ E2

- 272exq -2 7]ph) - YzeXD(Z ﬂph)]}y
(B10)

gz (O EICHB - GBI >1, @9

for the first and second types of oligomers under consider-
ation, respectively.

The condition for the existence of in-gap states follows
from the substitution of the solution to EB1) (or (B4))
into Eq. (B5) (or (B6)). If such a state does exist, the ?
law of HOMO-LUMO gap decrease is no longer valid.

To utilize the general conditions of band joining and of
the existence of local states formulated above, one needs the Z(E)={[E?—2y?exp( —27,n)1°— y?exp(27,n) E?}
explicit expressions of monomer Green functions that are in 5
Egs. (B1)—(B6). For the oligomers of focus these are vi- X[E*—exp(27)]
nylene, phenylene, and phenylenevinylene groups. Finding —exp(—277)E2[E2—72exp(277ph)
—2y%exp(—2mpn)],

Z(E)GM(E)=2yexp( — (n+ npn),

where

the matrix elements of the operatd® € H") %, whereH
is the Hickel Hamiltonian of the above indicated groups in
its conventional representatiéh,is straightforward and

(B11)

gives (E is in units of B)

Eexp(—
GM(E)=GM(E>=#,
E“—exp2n) B7)
1
G(E)= ———,
() E2—exp(27)
M—vinylene;

GM(E)=GM (E)

_ E[E?—2y*cost27,n) — ¥°]
(E2—4y2cosi y,n) [E2— y(2costi2 7y, — 1)1

2y*cost{ 7pp)
(E2—4y2cosi n,,) [E2— y*(2costi2 7, — 1)1
(B8)

Gl'\,/lr(E):

M—phenylene(aromatic geometpy
GI(E)=G".(E)

E[E*— y?exp(27pn) — 2y%exp( — 27pp) ]
[E2—292exp — 277, 12— y2exp( 27,1 E2

2y3%exp( — 7pn)
[E2—2y%exp( — 25,0 12— v2exp(2 9, E2’
ph Y Mph B9)

G:\{lr(E):

M—phenylene(quinoid geometry,

M—phenylenevinylene.

In the above equations, parametgidistinguishes short
and long C-C bonds in the polyene chdigq. (B7)) and
between phenyl ringéEgs.(B10) and(B11)); parameten,
has a similar meaning but with respect to C-C bonds within
the rings, while parametey accounts for the difference in
electron transfer interaction within and between phenyl
rings. A more detailed definition of the characteristic param-
eters is given in the body of the text; see also Fig. 1. The
Green functiongB10) refer to the aromatic,,=0, »>0)
and quinoid ¢7,,# 0, 7»<<0) structure of the PPV backbone.

The equations for the Green function matrix elements
just presented complete the definition of explicit expressions
of functionsf(E) andf,(E) for the specific cases of poly-
ene, polyparaphenylene, and polyparaphenylenevinylene oli-
gomers discussed in this article.

It should be emphasized that according to the Green
function definition the eigenvalues of the monomer Hamil-
tonian, which correspond to zero amplitudes of the wave
function at thelth orrth site or both, are not present among
poles of the Green function matrix elements which refer to
the sites indicated. Therefore, apart from the fauelectron
levels defined in Eqs(B8) and (B9), the phenyl spectrum
contains two additional levels at energies
E= = yy2 cosh(Z,n)—1 (which are doubly degenerate, see
Eqg. (B8)) in the case of the aromatic structure of the ring,
andE= = yexpn,, (which are non-degenerate the case of
the quinoid structure. The former correspond to states with a
node at the or r site, whereas the latter corresponds to states
with two nodes at these same sites. Just this one difference
between monomer electron states gives rise to the qualitative
difference of the band structure of PPP with aromatic and
quinoid geometries of the backbone; see Appendix C.

Similar to the s electron spectrum of the phenyl ring,
the spectrum of the phenylenevinylene group determined by
poles of the Green function®10) is not complete and two
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levels (with energiesE=*y exp#,,) should be added. 1+GM(E)=O,

These levels correspond to states with nodes attthand M (Cla
rth sites of phenylene and vinylene and are not split there- 1-Gji(B)=0,

fore by the intermonomer interaction. And again, similar tognd Eq.(C2) takes the form

PPP oligomers, in the case of aromatic-like geometry one

can expect an increase in the number of bands in the PPV 1—-G; |l(E)(G (E)+G *(E))=0, (23

spectrum due to the bond alternation within the phenyl ring.

Now we turn to the question of whether the HOMO-
LUMO gap of the oligomers of focus can be zero in the limit  The continuous spectrum of infinite oligomers is deter-
N—o, and if yes, is this due to the conduction and valencemined by
bands joining or due to the existence of local states.

It should be mentioned first that for the type of oligo-  [1(E)—2co£=0, (C3)
mers given the gap closing can occur only at zero energy—where, again, for the oligomers under consideration the ex-
the on-site energy of carbon. Taking into account the definipression of functionf,(E) can be simplified in a similar
tion of the Green function components, it is easy to see thalay. Note also that, since the perturbation of band states by

1-G\{E)(G(E)-G"2(E))=0.

both Eq.(B1) and Eq.(B4) have the solutiorE=0. Substi-
tuting this value into Eqs(B2), (B5), and (B6) it can be

a local defect goes to zero &k—«, one can use the defini-
tion of f1(E) given in Eq.(2) for determining the dispersion

concluded that the HOMO-LUMO gap closing due to joining law of both types of oligomers.
the lowest conduction and the highest valence bands or due

to the existence of a twofold degenerated discrete level in th
middle of the gap takes place under the following conditions:

<0,

y~1=2(2coshi2n,p) —

¥y t=2exi 3 ),
and

Yy 1=2exn3(n— npn))

1)coshy,y, (B12)

T Polyenes

For polyenes finding solutions to Eg&C1a and (C3)
with the Green functions defined iB87) is elementary, so
for the HOMO-LUMO gap F2|ELUMO|) we have

A, (2)=exp(— 7)(Vhexgdy) +1-1),

A, (=)=4sint 7|.

(C4

in polyenes, the benzenoid form of PPP, the quinoid form of- Polyparaphenylenes

PPP, and PPV, respectively.

The above relations make it apparent of that the baang) into account, it

Taking the definitions of the Green functiofB8) and
is easy to see that, due to

gap depends on the geometry of oligomer backbone. In pa@ |(E)=—G}" |( E) for both benzenoid and quinoid geom-
ticular, it is seen that the anomalously narrow band gap ogmes of phenyl ring, two equation&1a have the same

PPV given in Table | ay=1, 7,,= — »=0.1 was indeed to

be expected.

APPENDIX C

Here we derive equations that determine thelectron
energy spectrum of the minimal lengthl€2) and infinite
oligomers of polyene, polyparaphenylei@ quinoid and
benzenoid forms and polyparaphenylenevinylene.

By substituting explicit expressions ®f(E) andf,(E)
in Eq. (7), we obtain

1-GM(E)GM (E)=0
and

1-G\{E)G2(E) - GA(E)G"X(E)

(C1

G \ME)G,"(E)[GAE)G,"(E)— (G"A(E))?]=0,
(C2
which are the secular equations for molecules-M and
M;—M,— My, respectively.

form. So, the non-degeneratedelectron levels of diphenyl
+E,_, correspond to the roots of the following equation:

E*+E3— y’[4 costi2 ) + 1]E?— y*[ 2 costi2 ) + 1]E

+2y%2 costi2n,p) — 1][cost2m,p) +1]=0  (C5)
for benzenoid-like structure, and
E*+E3— y’[exp(2mpn) +4exp — 27,p) |E?
— Y[ eXp(2mpp) + 2eXp — 29,n) |E
+4y*exp(—47,,)=0 (C6)

for quinoid structure.

Corresponding to this, the HOMO-LUMO gap of diphe-
nyl is determined by the smallest of these roots in the abso-
lute value. For a number of parameteys, and y the values
of AHL(Z) of diphenyl are presented in Table I.

It is interesting to note that as seen from the phenyl ring
symmetry,N=2 is the only case where PPP oligomers of the
benzenoid- and quinoid-like structures have the equal num-
ber of split = electron levels. FON=3 there are 8l non-

If G{\f',(E)zG?f'r(E), as is the case in vinylene and phe- degenerate states in the case of benzenoid-like geometry, and
nylene, the above equations can be rewritten in a mordN non-degenerate and twd-fold degenerate states in the

simple form. Specifically, Eq.C1) would read

case of quinoid-like geometry. In the infinite chain limit, we
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obtain equations of the third and second order in pors 73— (1+39y2)Z22— 4y cost{27,)cOS £

which determine ther electron bands of the former and

latter structures, respectively. +sintfy7pr] Z-+ 4ysint? 770,= 0. (€7
Precisely six bands of the benzenoid-like PPP can b&he above equation results from B3) after substituting

defined as E; g(N—,£)==Z+y*(2cosh(Z,)—1), the explicit expressions of the Green functiof8). The

whereZ is a solution to four bands of quinoid-like PPP are determined by

1
Ei-a(N=.8)= = {14 7 exp(2) +47° exp~2)

+J[1—¥* exp27,n) 12+ 8% exp— 27,0 [ 1+ y?exp(2n,n) + 2y expy,ncos £]H2 (C8)

(the latter equation has been reported previgusly lytical expression of the dispersion law of three valefme
The minimal positive value of root§; _g(N—,0) and symmetrical conductionbands of PPV as a function of pa-
E;_4(N—»,0) determines the band bottom of the lowestrameters characteristic of the structure. Note in this connec-

conduction band of the benzenoid and quinoid form of PPPtion that até = 7 three roots of Eq(C10) (that is, of Eq.(13)
respectively, and thus, the value af (=), as defined in in the body of the text|E,|<|E,|<|E| determine the bot-

Egs. (10), (11), and(12). tom of the first (E;|) and third (E5|) conduction bands, and
_ the top of the second conduction band4), whereas at
3. Polyparaphenylenevinylenes £=0 these roots give the position of the top of the first and

The substitution of the vinylene and phenylene groupthird conduction bandsvalues of [E;| and |Ej|, respec-
Green functions defined in Eq@87) and (B8) in Eq. (C2a tively), and of the bottom of the second band.

yields Thus, the proposed formalism allows one to find the ex-
5 4 ) ) pression of band energies of quite complex polymers in an
E>Zexp(7)E"—[4y7exp(—27pn) + v €xp(277pn) analytical form. To our knowledge, Eq$C7) and (C10),
+exp(—27)|E3T ¥2 exp( )[4 exd — 27,1 which determine the band structure, respectively, of PPP
P (where the aromatic-like geometry is mimicked by alternat-
+exp(27pp) |E2+ ¥ [4y* exp(— 47, ing bonds within phenyl ringsand PPV are presented here
for the first time.
+expl—27)(exp(2ypn) =2 exf —27,n)) |E
—4y* exp(n—47,n)=0, (C9
where the upper and lower signs correspond to the upper and
lower equations ifC2a), respectively. 1. D. W. Samuel, I. Ledoux, C. Dhenaut, J. Zyss, H. H. Fox, R. R.

Equation(C9) (with both sign$ determines the position 2?C["O;&Z;‘dJRéﬁeﬂb;mg’zc%rfoéga(lg%g)(1994)'

of 10 non-degenerate electron levels OT St”bend_-There 3C. Ambrosch-Drax|, J. A. Majewski, P. Vogl, and G. Leising, Phys. Rev.
are also two twofold degenerate levels with energies equal tOB 51, 9668(1995.

* yeXpmpn.) It can be shown tha is one of the solu-  :B. E. Kohler, J. Chem. Phy93, 5838(1990.
LUMO 5G. G. Dyadyusha, V. M. Rozenbaum, and M. L. Dekhtyar, Zh. Eksp.

tions to Eq.(C9) and has the lower sign in it. This solution  Teor, Fiz. 100, 1051(1991).
was used to obtain values of the HOMO-LUMO gap of stil- B. E. Kohler, L. I. Malysheva, and A. I. Onipko, J. Chem. Phya3 6068

bene shown in Table I. ,(1995. _
By substituting the Green functiofB10) in (C3) with 'F‘,'h;s'vl'%lgsi'f\%;(”l%% I. Onipko, Synth. Meg0, 11 (1996; J. Chem.
function f,(E) defined in Eq.(2) we obtain 8B. E. Kohler and I. D. W. Samuel, J. Chem. Phy83 6248(1995.
6 ) 9B. E. Kohler and J. C. Woehl, J. Chem. Ph¢83 6253(1995.
E°—[vy°(4 exp(—277ph)+ exq277ph)+2 costi2n) 10A. A. Ovchinnikov, I. I. Ukrainskii, and G. F. Kventsel, Sov. Phys. Usp.
15, 575(1973.
+6X[X—27])]E4+{eX|:(—477) 11D, Baeriswyl, D. K. Campbell, and S. Mazumdar, @onducting Poly-
5 2 mers edited by H. KiesgSpringer, Berlin, 1990
+ ¥4 exg —27,n) (y” exp(—27,,) +2 coshi2n)) 128 3. Hudson and B. E. Kohler, Chem. Phys. La#, 299 (1972.
13K. Schulten and M. Karplus, Chem. Phys. Ldt, 305 (1972.
+ exp(27,n) (2 costi2y) + exp( — 27]))]}E2 14y Jido, T. Inagaki, and H. Fukutome, Prog. Theor. Pk&.808(1972.
) ) 15M. V. Kaulgud and V. H. Chitgopkar, J. Chem. Soc. Faraday Trari&3 I
—ylexp2npn—4n)+4yexp2n—4mnyn) 1385(1977).
16G. G. Dyadyusha, M. N. Ushomirskii, Zh. Strukt. Khi®8, 17 (1987).
+4y exp(—(7pnt 7))cos€]=0. (C10  YE. Hickel, Z. Phys70, 204 (1931); 76, 628 (1932.

_ ) ) 18R. Schenk, H. Gregorius, K. Meerholz, J. Heinze, and Kli&ty J. Am.
From the above equation one can easily derive an ana-Chem. Soc113 2634(1992.
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