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It is shown that the asymptotic behavior of the highest occupied molecular orbital-lowest
unoccupied molecular orbital~HOMO-LUMO! gap of conjugated oligomers of types M2
~M!

N22
2M and M2~M!

N22
2M1 with M 5 M12M2, where M, M1, and M2 are alternant but

otherwise arbitrary monomers described by the Hu¨ckel Hamiltonian, is ruled by the law
D

HL
(N)5D

HL
(`)1const•N22. On this basis we suggest an approximate expression for the

HOMO-LUMO gap as a function of oligomer length, that is exact for minimal- and infinite-length
oligomers. Two parameters of this function determine the dependence ofD

HL
(N) on the oligomer

geometry. By comparing the proposed approximation with the exact model results for oligomers of
polyene, polyparaphenylene~PPP!, and polyparaphenylenevinylene~PPV! ~some experimental data
and results of more elaborate calculations have been also used for this purpose! the proposed
approximation is proven to give a useful estimate of the conjugation length and geometry effect on
the HOMO-LUMO gap of the molecules under consideration. Applying our approach to PPP and
PPV oligomers, we rederive the geometry effects on the PPP band gap reported previously
~however, an important point is taking end effects into account! and predict that the HOMO-LUMO
gap of PPV decreases with the increase of the quinoid character of the backbone geometry much
more strongly, as compared with PPP. The band gap closing in the infinite chain limit as well as the
problem of the existence of discrete in-gap states were also examined, and this analysis has resulted
in the formulation of general conditions of the occurrence of the above mentioned situations.
Applied to the polymers~infinite oligomers!, these conditions allow one to decide whether the gap
closing or the existence of in-gap states is possible under the givenp electronic structure of
monomer. Since the conditions obtained are expressed in terms of the monomer Green function
only, they provide a simple and efficient tool with which to search for new polymer materials with
the band gaps desired. ©1997 American Institute of Physics.@S0021-9606~97!01742-X#
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I. INTRODUCTION

Conjugated polymer based materials are the subjec
continuing experimental and theoretical interest stimula
by the possibility of fabricating efficient polymeric condu
tors, battery electrodes, light emitting diodes and using th
for other applications. The electronic properties of these m
terials are determined by a number of factors among wh
the architecture and length of the basic structu
components—conjugated oligomers—play a significant
not a decisive role. The dependence of the gap between
highest occupied molecular orbital~HOMO! and the lowest
unoccupied molecular orbital~LUMO! on the oligomer
length and geometry of molecule is not only of fundamen
importance, it is one of the key issues to be considered
designing new polymeric materials, in particular, those w
large optical response.1

a!Electronic mail: alex@ifm.liu.se
J. Chem. Phys. 107 (18), 8 November 1997 0021-9606/97/107(18)
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Finding this dependence starting from first principles
an extremely difficult task. The knowledge accumulated th
far due to established numerical calculations is therefore,
from enough for rationalizing existing experimental data.
the same time, it has been convincingly demonstrated
the Hückel model with parameters taken either from expe
ment or from more elaborate theories can serve as a pow
tool for examining general properties of thep electronic
structure such as its dependence on the oligomer backb
geometry,2,3 end groups and oligomer length.4–7 As an ex-
ample, an appropriately parameterized Hu¨ckel model not
only quantitatively reproduces the 11Bu 0-0 absorption ener-
gies for a number of well defined polyene oligomers,4 but it
also behaves reasonably in the long chain limit and t
allows one to derive information about the conjugati
length distribution in long polyenes.8,9

Thus, it appears that, even in the case of polyenes, wh
the applicability of the one-particle approximation has be
repeatedly criticized,10,11 one-particle models have proved
7331/7331/14/$10.00 © 1997 American Institute of Physics
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7332 Onipko, Klymenko, and Malysheva: HOMO-LUMO gap of conjugated oligomers
be of significant predicting power at both the qualitative a
quantitative levels. However, it must be stressed that bec
of its simplifications of real molecules the Hu¨ckel model
fails to reproduce the ordering of polyene excited sing
states observed experimentally,12 which can be explained by
inclusion of electron-electron correlation effects,13 and this is
not the only indication of the restricted applicability of th
classic one-particle approximation to linear conjugated m
ecules. So, on the one hand, an appropriately paramete
Hückel model can be adequate for the description of dip
bands of conjugated oligomers and, in particular, the
associated with the lowest dipole allowed transition. On
other hand, the results obtained in the framework of t
model must be used with a good deal of precaution. The
fore, we are not saying that our conclusions do pretend
give a satisfactory explanation of the fullp electronic struc-
ture of this type of molecules.

Here we put most of the emphasis on an analyti
analysis of the dependence of the HOMO-LUMO gap on
oligomer length and parameters associated with thep elec-
tronic structure. This is a part of the strategy6,7 aimed at
examining optical and electrical properties of conjugated
gomers by analytical methods in such detail that are alm
impossible to obtain by qualified numerical calculations in
reasonable amount of time. Note in this connection that
problem of a theoretical description of the excitation ene
versus molecule length dependence has been repeated
dressed in the case of polymethine dyes~see, e.g., Ref. 5 and
references therein! but we are not aware of any success
attempt that suggests such a dependence for conjugate
gomers consisting of monomers other than a methine gr
mimicked by a one-level atom.

The main motivation of this work was, then, to find
simple analytical expression of the dependence of
HOMO-LUMO gap D

HL
on oligomer lengthN. As will be

shown below, for a wide class of linear conjugated m
ecules a quite accurate theoretical estimate ofD

HL
(N) at any

value ofN can be obtained by using only two limiting value
of this quantity, namely,D

HL
(2) andD

HL
(`) provided the

highest valence and the lowest conductionp electron bands
remain separate in the limitN→`, and there are no discret
levels in the band gap. The analysis of the band gap clo
and of the appearance of in-gap discrete states caused b
effects has led us to a formulation of general conditions~ob-
tained in the one-particle approximation! that relate the
above mentioned peculiarities of thep electron spectrum o
infinite oligomers to certain properties of the monom
Green function. These conditions, which have far rang
implications regarding forbidden zones in thep electron
spectrum, are specified for the HOMO-LUMO gap of PP
and PPV oligomers. In the latter, explicit equations that
termine thep electron spectrum ofN52 andN5` oligo-
mers~and hence, values ofD

HL
(2) andD

HL
(`)) have also

been derived.
In Sec. II, we specify equations that give the form

basis of this discussion. In Sec. III, we suggest and justify
appealing and simple analytical formula that describes su
J. Chem. Phys., Vol. 107, N
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ciently well the dependence of the HOMO-LUMO gap o
the oligomer length and monomer geometry. Proof of
asymptotic behaviorD

HL
(N)2D

HL
(`);N22 ~given in Ap-

pendix A!, which is reproduced by the approximate formu
is one of the central, but not the only new, results of t
article. In Sec. IV, the proposed approximation is compa
with exact model dependencesD

HL
(N) obtained for oligo-

mers of polyene, quinoid and aromatic forms of polypa
aphenylene~PPP! and polyparaphenylenevinylene~PPV!.
Parallel to this, a number of new analytical relations for the
oligomers is presented and used in the discussion of t
electronic properties. Section V gives a synopsis of the m
important results that were obtained. Some mathematical
tails, that are essential for the understanding and applica
of these results are presented in Appendixes A–C.

II. BASIC EQUATIONS

As is already known,14–16 in the Hückel theory of p
electrons17 the eigenvalue problem for an arbitrary conj
gated oligomer, a sequence of a finite numberN of co-
valently linked monomers M, M2M2 . . .2M, can be re-
duced to the solution of a set of two transcendent equatio

f 1~E!52 cosj,
~1!

f 2~E!5
sin~Nj!

sin~~N21!j!
.

The first of these equations determines the dependence o
p electron energyE5Em(j) in themth band~the number of
which is equal to or less than the number ofp centers in
monomer M! on the quantum numberj, while solutions to
the second equation, whereE is replaced byEm(j), deter-
mine values ofj within each band.

The set just referred to is completely equivalent to t
initial eigenvalue problem except thosep electron states,
whose wave functions have nodes at the binding sites,
left ( l ) and right (r ) atoms of M connected via the electro
transfer resonance interaction withr and l binding atoms of
the left and right neighboring monomers, respectively. Su
energies~subject to the solution of a much more simple e
genvalue problem for an isolated monomer! are not affected
by the intermonomer interaction and therefore they do
depend on the oligomer length. It is also worth mentioni
that the number of real solutions forj, which correspond to
the given dependenceEm(j) can be equal toN or less. In the
latter case, there existp electron levels genetically
connected with, say, themth band but, with energies
lying within intervals Em21

max (j),E,Em
min(j) or/and

Em
max(j),E,Em11

min (j), the so-called local levels~see be-
low!.

There is a vast variety of linear conjugated molecu
covered by the structural formulae M2M2 . . .2M, which
implies that monomers are connected with each other v
chemical bond. Usually, this is a C-C bond. However, ofte
to form an oligomer, monomers are connected not directly
but through a certain atomic group. A typical example
oligomers of polyparaphenylenevinylenes, where phe
o. 18, 8 November 1997
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7333Onipko, Klymenko, and Malysheva: HOMO-LUMO gap of conjugated oligomers
rings ~M1) are connected through a vinylene group~M2).
Such oligomers can be modeled by a regular chain with
end defect: M2M2 . . .2M2M1, where M 5 M12M2.
~The synthesis of novel oligo~phenylenevinylenes! was re-
ported several years ago.18! Using solid state terminology
the latter structure can be considered as a finite o
dimensional crystal with elementary cells M12M2 and one
defect cell M1 at its end. Because of the formal similarity o
the structure of these two types of oligomers, both M2M
2 . . .2M and M12M22M12 . . .2M22M1 are included in
the present context.

There can be several forms of equations that are equ
lent to the initial Schro¨dinger problem with the Hu¨ckel
Hamiltonian used to describe conjugated oligomers. Th
particular form depends on the method of derivation. T
can be, for example, the transfer matrix,14 polynomial
matrix15 method, or ones similar to these.16 To make these
equations more explicit physically, it seems preferable to
the Green function formalism that proved to be extrem
efficient in the analysis of thep electron spectrum of linea
conjugated molecules.5–7 As will be seen later, the represen
tation of functionsf 1(E) and f 2(E) in terms of certain com-
ponents of the Green function for an isolated monomer is
many respects useful for understanding the interrelation
tween the monomer and oligomerp electronic structures.

Omitting technical details, for oligomers of the type
2M2 . . .2M we can write19~a!

f 1~E!5
1

Gl ,r
M ~E!

@12Gl ,l
M ~E!Gr ,r

M ~E!1~Gl ,r
M ~E!!2# ,

~2!

f 2~E!5Gl ,r
M ~E!,

where Gj , j 8
M

5b^ j u(E2HM)21u j 8&, HM is the Hamiltonian
operator of monomer M;u j &, j 5 l , r , is the binding site
atomic orbital; andb is the resonance interaction ener
between monomers.

For oligomers of type M2M2 . . .2M2M1, where M
5 M12M2, the eigenvalue problem can also be reduced
set ~1!, whereN corresponds to the number of monome
M1, and functionsf 1(E) and f 2(E) have the form19~b!

f 1~E!5
1

Gl ,r
M1~E!Gl ,r

M2~E!
$12Gl ,l

M1~E!Gr ,r
M2~E!

2Gl ,l
M2~E!Gr ,r

M1~E!1@Gl ,l
M1~E!Gr ,r

M1~E!

2~Gl ,r
M1~E!!2#@Gl ,l

M2~E!Gr ,r
M2~E!2~Gl ,r

M2~E!!2#%,

~3!

f 2~E!52
Gl ,r

M1~E!

Gl ,r
M2~E!

@Gl ,l
M2~E!Gr ,r

M2~E!2~Gl ,r
M2~E!!2#.

Note that the above equations coincide with the defi
tions of functionsf 1(E) and f 2(E) given in Eq.~2!, if ‘‘con-
necting’’ group –M2– is equivalent to the C-C bond. Indee
for a non-alternating chain of N2 carbons the diagonal an
non-diagonal Green function components are equal
J. Chem. Phys., Vol. 107, N
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Gl ,l
M2(E)5Gr ,r

M2(E)5sin(jN2)/sin(j(N211)) and Gl ,r
M2(E)

5sinj/sin(j(N211)), respectively (E andj are interrelated
by Eq. ~1!!. Obviously, –M2–5C-C, if we formally set
N250, i.e., Gl ,l

M2(E)50 and Gl ,r
M2(E)51 and thus, in this

case Eq.~3!, where M15M, coincides with Eq.~2!.
Equation ~1! together with explicit expressions fo

f 1(E), f 2(E) and for the Green function matrix elemen
Gl ,l

M (E), Gr ,r
M (E), Gl ,r

M (E) ~whereE is expressed in unitsb,
and the Coulomb integral for carbon atom is set equa
zero! provide the exact description of thep electron spec-
trum of oligomers of types M2M2M . . .2M and M2M
2 . . .2M2M1. In the present context, the term ‘‘exact
means that this spectrum is calculated exactly on the bas
the Hückel model. It is also a good time to recall that,
mentioned above, the solutions to Eq.~1! should be supple-
mented byN-fold degenerated eigenvalues which are n
affected by the inter-monomer interaction, see, for more
tails, Ref. 19~a!.

III. ANALYTICAL FORMULAE FOR THE 0-0 B u
TRANSITION ENERGY

Equation~1! determines the dependence ofp electron
levels on the oligomer length and monomer geometry
plicitly. Although finding solutions to this equation is a muc
more simple task than that one encounters handling the
tial Schrödinger problem, it is still too complicated to b
used for a quick analysis of the above mentioned dep
dence. Therefore, it is highly desirable to obtain at least
approximate analytical expression for the dependence of
HOMO-LUMO gap ~denoted below asDHL(N)) on the oli-
gomer lengthN.

From the mathematical point of view it is, in principle
possible to derive such a dependence in the long chain li
However, one can expect that, if applied to shorter olig
mers, it would fail to reproduceDHL(N). To make the ap-
proximate dependenceDHL

approx(N) applicable to oligomers
of an arbitrary length, we set

D
HL

approx~2!5D
HL

~2!,
~4!

D
HL

approx~`!5D
HL

~`!.

Of course, an approximation based on the above eq
tions cannot pretend to give a precise description ofDHL(N)
at intermediate values ofN. However, as is demonstrated
Sec. IV, such an approximation provides a reasonable qu
titative estimate ofDHL(N) at any length and, more impor
tant, it reflects the main tendencies of HOMO-LUMO ga
dependence on the monomer structure and on the partic
form of the oligomers.

Except for some special cases the behavior of
HOMO-LUMO gap at large N is described by
D

HL
(N)5D

HL
(`)1const•N22. This law, which is proved in

Appendix A, is a direct consequence of the fact that in
sufficiently long but finite chain deviation of the band-ed
values ofj from their limiting values 0 andp attained in the
limit N→` is proportional toN21. Excluding the aforemen-
tioned special cases connected with the possibility of b
o. 18, 8 November 1997
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7334 Onipko, Klymenko, and Malysheva: HOMO-LUMO gap of conjugated oligomers
joining or the existence of in-gap local states, as discusse
Appendix B, a function, that has the minimal number
adjustable parameters and coincides with the exact value
D

HL
(N) at N52 andN5` can be taken in the form

D
HL

approx~N!5A2B cosS p

N11D , ~5!

where constantsA andB are defined as

A52D
HL

~2!2D
HL

~`!

and

B52@D
HL

~2!2D
HL

~`!#. ~6!

It is worth mentioning that, formally, Eq.~5! describes
the band-bottom energy of an excess electron in a mo
atomic chain consisting ofN atoms, where the electron sit
energy is equal to A, and the intersite resonanc
interaction—to2B/2. As seen from Eq.~6! neither of these
meanings is applicable if the dependence~5! is used to fit the
excitation energy of the 0-0 dipole transition of oligomers

To calculateD
HL

approx(N) for all N, one needs to know
the exact values ofD

HL
(N) only for the shortest~M2M or

M12M22M1) and infinite oligomers. ForN52 we have
instead of~1!

f 1~E!2 f 2~E!50, ~7!

and in the limitN→` the edge energies ofp electron bands
are subject to solution of the upper equation of set~1! with j
replaced by 0 orp, i.e.,

f 1~E!6250, ~8!

where the choice of sign depends on the particular struc
of the monomer.

In accordance with their definition, the quantitiesD
HL

(2)
andD

HL
(`) are determined by their solutions to Eq.~7! ~for

the former! and Eq.~8! ~for the latter! which correspond to
the HOMO and LUMO levels. Only the smallest roots of t
above equations are needed if one deals with alternant o
mers that have an even number of identicalp centers in their
building blocks—monomers.

Finally, in many cases of interest the expressions for
Green function matrix elements appearing in the definitio
of f 1(E) and f 2(E) can be obtained in an explicit form, as
illustrated by representative examples given in Appendix
Then, Eq.~5! makes ‘‘visible’’ not only the dependence o
the HOMO-LUMO gap on oligomer length but also on p
rameters which are directly related to the monomer geo
etry.

Thus, taking into account the minor restrictions indicat
above and specified in Appendix B, Eqs.~5!–~8! suggest an
appealingly simple procedure that allows one to examine
great detail the dependence of the HOMO-LUMO gap~and
hence of the related quantities measured experimentally,
the 0-0 transition frequency of the lowest dipole allow
excitation! on the basic parameters of conjugated oligome
An example of such an analysis is given in Sec. IV, wh
we turn to a comparison of the proposed analytical formu
J. Chem. Phys., Vol. 107, N
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with the exact model results for~alternant! oligomers of
polyene, polyparaphenylene, and polyparaphenylen
nylene. The Green function matrix elements needed for
are defined in Eqs.~B7!–~B11!. The calculation of the lim-
iting values of the HOMO-LUMO gap,D

HL
(2) andD

HL
(`),

which determines constantsA andB in Eq. ~5!, is discussed
in Appendix C.

IV. COMPARISON OF APPROXIMATE RESULTS WITH
PREDICTIONS OF THE HüCKEL MODEL

We now present the results of calculations of t
HOMO-LUMO gap versus oligomer length dependence t
were performed for the above mentioned oligomers us
both the exact definition ofD

HL
(N) from Eq. ~1! and an

approximate one given in Eq.~5!. The aim of these calcula
tions is twofold. On the one hand, they demonstrate the
curacy of the proposed approximate analytical descript
compared with the exact model results and show that
dependenceD

HL

approx(N) can be used, in many cases to t
least length, for a quick and reliable estimate of the HOM
LUMO gap and variations of this quantity by changes in t
number of monomers and changes in their geometry. On
other hand, these calculations make the relative role and
croscopic origins of major factors that determine the HOM
LUMO gap value apparent and can therefore be helpfu
interpreting relevant experimental data.

A commonly accepted practice, a particular geometry
oligomers can be taken into account by relating no
equivalent C-C bonds to different resonance integrals. In
oligomers under consideration these are, in polyenes, the
tegrals associated with the double (b

C5C
5bexph) and

single (b
C2C

5bexp(2h)) C-C bonds; in PPPs, similar no
tations, namely,bphexp(6hph), are used for the same bond
in a phenyl ring, whileb refers to the resonance interactio
between the rings, see Fig. 1; correspondingly, in PP
bphexp(6hph) and bexp(6h) distinguish double~1! from
single (2) bonds within and between the rings, respective
By convention, we makeh positive ~negative! for an aro-

FIG. 1. Quinoid~left! and benzenoid~right! geometries of PPP~upper! and
PPV ~lower! oligomers. The arrows indicate the resonance integrals ass
ated with different C-C bonds.
o. 18, 8 November 1997
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matic ~quinoid! structure of PPV. Thus, being expressed
units of ubu, the HOMO-LUMO gap, in addition to its de
pendence onN, is also a function ofh for polyenes, ofhph

andg5bph /b for PPPs, and ofhph , h, andg for PPVs.
According to experimental data accumulated for PPP3,20

hph'0.01, ug21u'0.1, and it is reasonable to assume th
uhu'0.1. The parameters used in our calculations include
above indicated values, as well as those of intermediate
extreme aromatic~i.e., benzenoid! and quinoid-like geom-
etries. For PPP and PPV the latter are associated with
structures shown in Fig. 1. The transition from one type
geometry to another includes passing the equalized b
model (g51, hph5h50). For this reason in the discussio
of the evolution of the HOMO-LUMO gap in response
changes of the backbone geometry, it is instructive to
this model as a reference point. The dependencesD

HL
(N)

which correspond to the equalized bond model are show
Fig. 3 by bold-faced curves. The solid lines in Figs. 2 and
represent the results of exact model calculations, and
dotted lines are the approximation of Eq.~5!.

For each type of oligomer geometry we are interested
the sensitivity of the HOMO-LUMO gap with respect t
changes in the ratio of the resonance interaction wit
monomers and between monomers~this can be traced by

FIG. 2. HOMO-LUMO gap vs number of double bonds in polyene olig
mers. Solid line—Eq.~1!; dotted line—Eq.~5!; h50.13334; crosses—
experimental data of Ref. 4.

FIG. 3. HOMO-LUMO gap vs number of monomers in oligomers of po
paraphenylene and polyparaphenylenevinylene. Solid lines—Eq.~1!; dotted
lines—Eq.~5!; the labeling of the curves corresponds to the labeling of
rows in Table I; bold-faced curves—equalized bond model.
J. Chem. Phys., Vol. 107, N
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varying parameterg), and to changes in the difference b
tween single and double C-C bonds within monomers~pa-
rameterhph) and between monomers~parameterh for PPVs
only!. In Fig. 3, the dependencesD

HL
(N) displayed above

and below bold-faced curves illustrate how large the incre
or decrease of the HOMO-LUMO gap can be under poss
changes towards an aromatic or quinoid character of the
gomer geometry.

The dependenceD
HL

(N) for polyenes, where both the

parameterization of the Hu¨ckel Hamiltonian and experimen
tal data are borrowed from Ref. 4, is presented as an il
tration of the high accuracy of the given model~solid line! in
reproducing the established results~crosses! on the 0-0 Bu
band excitation energy versus chain length. The excel
agreement between theory and experiment obtained in R
encourages us to apply the same simple model to more c
plex molecules, such as oligomers of PPP and PPV discu
in the later portion of this article. However, the model pr
dictions coinciding with the observed variation of th
11Ag→11Bu transition frequency for a restricted number
polyenes~with 3–7 double bonds! cannot be considered as
proof of validity for the Hückel model in the long chain
limit. To our knowledge, its validity has been neither co
firmed nor rejected.

As seen from Figs. 2 and 3, in the limitN→`, the
dependenceD

HL
(N) for oligomers of polyene, PPP, and PP

~and very likely most of conjugated oligomers; see Sec.
and Appendixes A and B! follows the universal behavio
D

HL
(N)2D

HL
(`);N22 which coincides with that implied

by Eq. ~5!. The approximation~5! also agrees reasonab
well with the exact model calculations of the HOMO-LUMO
gap as a function of chain length and other characteri
parameters of the oligomer. A number of calculations p
formed on the basis of Eq.~1! and compared with Eq.~5!,
which cover in excess all the values of the characteri
parameters that are considered reasonable for PPP and
oligomers~Table I and Fig. 3 represent part of the para
eters used! show that, despite some lack of quantitative a
curacy, the suggested approximation reliably reproduces
main trends of the gap behavior. But in the strict sense of
word, Eq.~5! fails to reproduce functionD

HL
(N) at short and

intermediate lengths, where the use of exact equations~1! is
preferable.

So, taking into account the appealing simplicity of E
~5! and its increasing accuracy for longer oligomers, t
approximation can be suggested as a quick alternative to
~1! for carrying out a preliminary analysis, especially f
largeN, when exact calculations require an ever-increas
amount of time.

Now we turn to a comparison of previous with our~in
certain aspects more detailed! results for PPP oligomers an
to conclusions concerning PPV oligomers that have not b
discussed thus far in the present context.

e
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7336 Onipko, Klymenko, and Malysheva: HOMO-LUMO gap of conjugated oligomers
The curves for PPP oligomers reveal the same dep
dence of the HOMO-LUMO gap on the geometry paramet
of the molecule backbone that was first predicted by Bre´das2

and investigated in more detail by Bre´das et al.20 and by
Ambrosch-Draxlet al.3 In the papers cited periodic bounda
conditions were used and, thereby, the finite length and
existence of ends in real molecules were neglected.
present calculations also answer next question, To what
tent do geometry effects depend on oligomer length?

Figure 3 shows that in both PPP and PPV oligomers,
independent of their particular geometry, the HOMO-LUM
gap increases with the increase ofg, that is, with the relative
decrease of intermonomer resonance interaction which
be caused by the decrease of C-C bond strength betwee
phenyl rings due to, e.g., alternate twisting the rings rela
to each other.~To recap, sinceD

HL
is expressed in unitsubu,

the increase~decrease! of D
HL

with the increase~decrease! of
g illustrated in Fig. 3 is actually partly cancelled if chang
in the latter’s quantity are caused exclusively by the decre
~increase! of ubu.!

TABLE I. ConstantsA and B ~in units ubu) which determine the depen
dence of HOMO-LUMO gap on the number of monomers in oligomers
polyene, polyparaphenylene, and polyparaphenylenevinylene. Data from
labelled rows were used in the calculations shown in Fig. 3.

Oligomer g hph h D
HL

(2) D
HL

(`) A B

Polyene 0.1333a 1.572 0.535 2.609 2.074

PPP

all equal bonds 1.0 0.00 1.410 0.828 1.992 1.1
benzenoid form 1.0 0.10 1.446 0.878 2.014 1.1

21.1 0.00 1.600 1.013 2.187 1.17
11.1 0.10 1.641 1.066 2.216 1.15

quinoid form 51.0 0.10 1.102 0.456 1.748 1.29
31.1 0.05 1.425 0.807 2.043 1.23
41.1 0.10 1.259 0.608 1.910 1.30

PPV
all equal bonds 1.0 0.00 0.00 1.009 0.508 1.510 1.0
benzenoid form 1.0 0.00 0.10 1.164 0.728 1.600 0.8

1.1 0.00 0.00 1.105 0.600 1.610 1.01
21.1 0.00 0.05 1.187 0.715 1.659 0.94
11.1 0.00 0.10 1.270 0.829 1.711 0.88

quinoid form 1.0 0.00 20.10 0.860 0.287 1.433 1.146
61.0 0.10 20.10 0.706 0.068 1.344 1.276
31.1 0.00 20.05 1.024 0.485 1.563 1.078
41.1 0.00 20.10 0.946 0.370 1.522 1.152
1.1 0.05 20.05 0.941 0.372 1.510 1.138

51.1 0.05 20.10 0.867 0.258 1.476 1.218
1.1 0.10 20.10 0.787 0.144 1.430 1.286

aFrom Ref. 4.
J. Chem. Phys., Vol. 107, N
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In a sense, the result just pointed out is trivial since
reflects the tendency ofE

LUMO
towards the monomer LUMO

energy E
LUMO

M in response to weakening of intermonom
interaction. Obviously, the effect indicated can be conside
as a general property of this kind of oligomer. In contrast,
dependence onhph ~non-equivalence of single and doub
C-C bonds within the ring! is substantially different in the
benzenoid and quinoid-like structures: the increase ofhph

causes a weak increase ofD
HL

in the former, and a strong
decrease ofD

HL
in the latter. In other words, to the linea

approximation inhph the HOMO-LUMO gap of aromatic
structured PPP oligomers is practically insensitive to whet
C-C bonds within phenyl rings are assumed to be equali
or formally alternated, whereas in the case of the quin
structure of the ring, the difference between the single a
double bonds has a dramatic effect on the band gap.

The origin of this effect becomes clear if we consider t
dependence ofuE

LUMO

M u ~5uE
HOMO

M u since the Coulomb inte-
gral of carbon atom is set equal to zero! on hph!1. Expand-
ing the minimal positive poles of Green functions of th
phenyl ring in aromatic and quinoid conformations given
Eqs.~B8! and~B9! in powers ofhph , we obtain to the low-
est power of the small parameter

uE
LUMO

M u'g~112hph
2 !, aromatic form,

~9!

uE
LUMO

M u'gS 12
5

3
hphD , quinoid form.

The behavior ofD
HL

52uE
LUMO

u as a function ofhph is a
reflection of the above dependences. Of course, in oligom
uE

LUMO
u acquires a quantitatively different dependence

hph but qualitatively it remains the same. As shown in A
pendix C, in the long chain limit this dependence can
expressed analytically for both benzenoid and quinoid for
of PPP. Precisely, for the former we have~in units ubu)

D
HL

~`!52AZmin1g2~2 cosh~2hph!21!, ~10!

where Zmin is the minimal ~in the absolute value! root of
equation

Z32~113g2!Z224g2@gcosh~2hph!1sinh2hph#Z

14g4sinh2hph50, ~11!

and for the latter

f
he
D
HL

~`!5A2A11g2exp~2hph!14g2exp~22hph!2@12g2exp~2hph!#A118S gexp~2hph!

12gexphph
D 2

. ~12!
o. 18, 8 November 1997
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7337Onipko, Klymenko, and Malysheva: HOMO-LUMO gap of conjugated oligomers
To describe the aromatic and quinoid PPV structures,
use for the former the equalized bond model of the phe
ring which, as shown above, is accurate to the linear orde
hph . Then, the HOMO-LUMO gap in the limitN→` is
determined byD

HL
(`)52Emin , whereEmin is the smallest

~in the absolute value! root of the polynomial~C10!, wherej
is set equal top ~see Appendix C!,

E62@3g2exp~22hph!12~g2cosh~2hph!1cosh~2h!!

1exp~22h!#E41$exp~24h!1g2@4exp~22hph!

3~g2exp~22hph!12cosh~2h!!1exp~2hph!

3~2cosh~2h!1exp~22h!!#%E22g2@exp~2hph24h!

14g2exp~2h24hph!

24gexp~2~hph1h!!#50. ~13!

When using the above equation for the benzenoid geome
hph should be set equal to zero, andh.0; the quinoid ge-
ometry implies thathph.0, and the sign ofh is negative.

Taking into account that for the equalized bond mo
E

LUMO

2 !1 we can solve Eq.~13! approximately, omitting
terms of the higher order thanE2. Thus, foruhu, hph!1 we
have

D
HL

~`!'2g
u2g21u

A4g4111g211

3H 11S 2
2g21g21

~2g21!2
1

g212

4g4111g211
D h

2S 8g222g21

~2g21!2
2g2

8g215

4g4111g211
D hphJ . ~14!

Predictions of the above equation are in a good qua
tative agreement with exact values ofD

HL
(`) calculated

from Eq. ~13! and represented in Table I. In particular, E
~14! indicates that for g51 we have D

HL
(`)50.5

2(67/32)(hph2h), i.e., that in the case of quinoid geomet
(h,0) the gap decrease in response to the increase of e
hph or uhu has the same rate. For example, the HOM
LUMO gap athph50.1 andh50 is equal to that athph50
andh520.1. For a more realistic model,gÞ1 but ug21u
!1, the changes of the gap produced by increasing
quinoid character of the phenyl rings in the chain~increase of
hph) and by increasing the difference between the dou
and single C-C bonds of the connecting structure~increase of
uhu) are nearly of equal importance.

It is of interest to compare the band gap and its respo
to the increase of the quinoid character in PPV and PPP
the long chain limit, the equalized bond model predicts
PPV about a 1.6 times narrower band gap~0.508ubu) than for
PPP that has(2(322A2)1/2ubu'0.828ubu). This is due to
the phenylene-vinylene~M12M2) resonance interaction
which lowers the LUMO level of the PPV monomer com
pared with that of a phenyl ring. Therefore, if thep conju-
gation does not differ much, it is an intrinsic property of PP
J. Chem. Phys., Vol. 107, N
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oligomers that they have a substantially smaller HOM
LUMO gap compared to PPPs. However, it must be emp
sized that this result is valid only under the assumption of
equal degree of conjugation in the PPP and PPV. In
language of the model given, this means that in both po
mers the intermonomer resonance interaction is essent
the same, which is not necessarily the case in real mater

As seen from Fig. 1, the increase of the quinoid char
ter of the backbone of PPP and PPV oligomers is associ
with the increase of one (hph) and two (hph , uhu) param-
eters, respectively. Therefore, similar changes in the rela
difference between double and single C-C bonds produc
stronger effect on the band gap in PPV than in PPP oli
mers; see Table I. In brief, the possibility of obtaining
stronger effect on the HOMO-LUMO gap of PPV by in
creasing the quinoid character is a consequence of the la
capability of the PPV backbone to change its geometry int
favorable direction.

As was mentioned above, in the infinite chain limit th
interrelation between the band gap and the backbone ge
etry of PPP has been already examined in great detail.2,3,20

However there is one important question that has not b
answered in previous studies; this question concerns the
iting behavior of the band gap as a function of the parame
of the backbone structure. What should be expected if
quinoid character is stronger than that prescribed by va
of the parameters used in the present and in previous ca
lations? For the PPP model this question is of theoret
interest only. But a nearly zero value of the gap obtained
PPV at g51, hph52h50.1 indicates that for this, and
probably for some other oligomers, closing of the band g
can be attained or nearly attained. What then are the co
tions of zero distance between the highest occupied and
lowest unoccupied levels?

Within the framework of the model given this questio
is answered here in a quite general form; see Appendix
For alternant oligomers this answer can be expressed in
form of particularly simple conditions. Namely,D

HL
(`)50

if

Gl ,l
M ~0!Gr ,r

M ~0!50 , ~15!

and

uGl,r
M~0!u>1, for M2M2 . . . 2M ,

uGl ,r
M1~0!Gl ,r

M2~0!u>1, for M12M22M12 . . . 2M22M1,
~16!

where the sign ‘‘5’’ in Eq. ~16! corresponds to the gap clos
ing as a result of band joining, whereas the fulfillment
inequality~16! is the existence of a twofold degenerate loc
level in the middle of the band gap in the limitN→`.

For PPPs and PPVs condition~16! predicts ~see Eq.
~B12! in Appendix B! that with the increase of the quinoi
character of the backbone the highest valence and low
conduction bands approach each other up to the gap clos
At this point equality~16! is fulfilled. Under a further in-
crease of the quinoid character~reflected in the increase o
the non-diagonal component of the monomer Green fu
o. 18, 8 November 1997
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7338 Onipko, Klymenko, and Malysheva: HOMO-LUMO gap of conjugated oligomers
tion! the bands diverge, but the HOMO and LUMO leve
preserve their fixed positions in the middle of the band g

For a rough estimate of parametershph , h, and g we
accept Harrison’sl 22 rule21 and setbC2C; l C2C

22 , where
l C2C, is the C-C bond length. Then, using the data
STO-3G calculations of optimized geometry of 50 mol
sodium doped polyparaphenylene20 which give l C2C2 l C5C

'0.1 Å (l C5C and l C2C refer to the C-C bonds that ar
parallel and inclined to the chain axis, respectively! we de-
termine that the extreme quinoid geometry of the PPP ba
bone can be characterized byhph'0.1,g'1.1. According to
~B12!, this set of parameters is far from satisfying the co
dition of gap closingg2152exp(23hph). Assuming that
upon PPV n-type doping these parameters can reach
same values and that the C-C bond difference between
rings is comparable to that within the rings, i.e
2h'hph'0.1, one comes to the conclusion that the ba
gap of n-type heavily doped PPV may be about four tim
smaller than that of PPP with a similar quinoid-like cont
bution to the electronic structure; see Table I. Just as in
case of PPP, this result is consistent with the condition
gap closing in PPVg2152exp@23(hph1uhu)# which for the
given parameters is much closer to fulfillment than the si
lar condition for PPP. Note that the above very crude e
mate does not account for polaronic effects which may e
more strongly influence the band gap.20

An effective increase of the quinoid-like contribution
the electronic structure of aromatic ring based polymers
also be attained by certain types of substitution as was d
onstrated for polythiophene and its derivatives.22 To examine
this possibility, use of the monomer Green function in t
way discussed in Appendix B can be especially useful si
it allows one to make a preliminary estimate of the subst
tion effect on the band gap at the monomer level. So, imp
tant in this analysis is not numbers but that knowledge
only the monomer Green function can be extremely help
in making the right choice of monomer to obtain the polym
band gap desired.

V. CONCLUSIONS

Quantum chemistry aided design of organic polymer23

implies first of all the ability of a theory at the least possib
cost to oversee properties of conjugated oligomers, which
of a fundamental and practical significance, and to show p
sible ways for their modification. From this point of view w
summarize briefly the main findings of the work.

One of the central results is represented by Eq.~5! which
shows that the HOMO-LUMO gap of conjugated oligome
with the exceptions that were specified, tends towards a c
stant value as the number of monomers increases in ac
dance with the lawD

HL
(N)2D

HL
(`);N22 which is in con-

trast with theN21 dependence expected from the experien
gathered for polymethine dyes.24,25 In view of the simplified
character of the model, this result needs to be confirmed
computational methods.

It was demonstrated that the above mentioned dep
dence prescribed by the exactly solvable model can be
J. Chem. Phys., Vol. 107, N
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markably well reproduced by approximation~5! in the entire
region of the oligomer length thus providing a quick a
reliable evaluation ofD

HL
(N) on the basis of only two pa

rametersD
HL

(2) andD
HL

(`). Needless to say, the precis
theoretical determination of the latter quantities is a mu
easier task than calculation of the HOMO-LUMO gap
each value of the oligomer length. So the proposed appr
mation can be efficiently used for a preliminary estimate
the HOMO-LUMO gap dependence as a function of t
monomer number and of the parameters of the oligom
backbone structure, and can be used in combination w
more elaborate theoretical models. Alternatively, the de
mination of constants in Eq.~5! from experiment, e.g., from
measurements of the 0-0 transition frequency, allows on
draw certain conclusions about the actual microscopic st
ture of the given oligomer by comparing experimental d
with the predictions concerning the HOMO-LUMO gap d
pendence on parameters of PPP and PPV oligomers m
above.

It was shown that thep electronic structure of a mono
mer is key to understanding the relationship between
oligomer backbone structure and the HOMO-LUMO g
value. In this respect, a determination of the conditions t
relate the HOMO-LUMO gap closing in the infinite cha
limit with certain properties of the monomer Green functi
is of special importance from both fundamental and pract
points of view. As to the first, this is, at least, not a freque
example when zeros~not poles! of the Green function have
direct physical meaning. As to the latter, the conditions o
tained allows one to estimate whether or not the narr
~zero! band gap of a designed polymer is realistic by exa
ining the Green function of its monomer.

Possible changes of the PPV band gap with the incre
of the quinoid character of the backbone are discussed ab
in great detail. For this we derived the analytical express
of the band structure as a function of the C-C bond diff
ence within and between phenyl rings, which implies a nu
ber of applications. It is shown that under the assumption
an equal degree of conjugation the band gap suppres
effect of the increased quinoid character of PPV is subs
tially larger than a similar effect predicted previously f
PPP. Apart from all this, the result confirms the heuris
power of the conditions of band gap closing derived here
issues a challenge to find the most favorable monomer
ometries for obtaining polymeric materials with a small
even zero band gap.
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7339Onipko, Klymenko, and Malysheva: HOMO-LUMO gap of conjugated oligomers
APPENDIX A

For our purposes it is convenient to rewrite the set
equations~1! in an equivalent form

f 1~E!52 cosj, ~A1!

1

f 1~E!2 f 2
21~E!

5
sin~Nj!

sin~~N11!j!
. ~A2!

First, let us consider the case of the polyene chain, where
energy is a simple function ofj,

E56A2~cosh 2h1cosj!, ~A3!

and

sin~Nj!

sin~~N11!j!
5C, ~A4!

C52exp(2h). The latter notation is introduced since th
asymptotic solutions of~A4!, which refer to the band-edg
energies, can be found for an arbitrary value of constanC,
not just for its particular value in the Lennard-Jones eq
tion.

For C,21 the in-band solutions to~A4!, 0<jk<p,
satisfy the following inequalities:

pk

N11
<jk<

2pk

2N11
, k51,2, . . . ,N, ~A5!

where j1 (→0 as N→`) and j
N

(→p as N→`) corre-
spond to the band-edge states. If2N/(N11),C,0, Eq.
~A4! has an imaginary solution forj

N
which corresponds to

an in-gap~local! state.26 Such a special situation is not in
cluded in the present discussion.~The conditions of local
state appearance are the focus of Appendix B.! We note,
however, that the asymptotic behavior of solutions to~A4!,
which determine the band-edge energies and are found
C,21 ~see Eq.~A7!! is also valid forC.21 ~but CÞ0),
although the proof of this asymptotic in the latter case
slightly different.

The use of Eq.~A5! allows one to solve Eq.~A4! ap-
proximately by using the secant method27

jk'
2pk

2N11

3F 12
1

2~N11!

~11C!sinS pk

2N11D
~11C!sinS pk

2N11D2sinS pk

N11D G .

~A6!

Equation~A6! is exact forC521 ~i.e., h50). It can
easily be verified that the above expression is in a g
agreement with the exact~numerical! solutions of Eq.~A4!
for N>4 and that the accuracy of this approximation
creases very rapidly with the increase ofN.
J. Chem. Phys., Vol. 107, N
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An important conclusion that follows from Eq.~A6! is
that the asymptotic behavior of the band-edge solutionsj1

and j
N
, which determine the energies at the band edges

independent ofC,

lim
N→`

j15
p

N
, lim

N→`

j
N
5p2

p

N
, if C,21, ~A7!

and limN→`j15p/N, limN→`j
N
5p2p/(2N), if C521.

As a consequence, all four band-edge energies of p
ene have identical asymptotics,

lim
N→`

Eedge~N!5Eedge~`!1
D

N2
, ~A8!

where the values ofEedge(`) ~assumedÞ0) andD are de-
termined by the structure of the energy bands. In particu
for the inner band edges~HOMO and LUMO levels of poly-
ene;j5p2p/N) we have

uEedge~N!u52sinhuhu1
p2

4N2sinhuhu
, ~A9!

and for the outer band edges we have

uEedge~N!u52 coshh2
p2

4N2 coshh
. ~A10!

Obviously, the only exception of~A8! is the case of zero
band gap,h50 (C521), when, in accordance with~A3!
and ~A6!, in the limit N→`, the HOMO ~LUMO! energy
behaves asN21. It is also worth mentioning that, if the ban
gap is small (uhu!1) but finite, the use of asymptotic depe
dence~A7! in the dispersion law~A3! reveals the existence
of intermediate asymptotics:E

LUMO
52E

HOMO
;N21 in the

region N@1 but uhuN!p, which is replaced by the true
asymptotics~A9! at uhuN@p. The latter observation is in
good agreement with numerical results presented in Fig
and 3, which show that the larger the band gap, the better
approximation~5!, i.e., theN22 law is ‘‘switching on’’ at
smaller values ofN.

The example presented above highlights the followin
~i! the values ofj, which determine the band-edge energi
approach their limiting values 0 orp as N21; as a conse-
quence, the energies of edge states have the asymptoti
the kind ~A8! if the neighboring bands remain separated
the limit N→`; ~ii ! in the case of zero gap~band joining! the
asymptotic behavior of band-edge energy changes qua
tively and becomes;N21. Now we prove these two state
ments in the general case.

For energies near the band edges andN@1 Eq.~A2! can
be represented in the form

1

f 1~Eedge~`!!2 f 2
21~Eedge~`!!

1«~N!5
sin~Nj!

sin~~N11!j!
,

~A11!

where

lim
N→`

«~N!50, ~A12!
o. 18, 8 November 1997
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7340 Onipko, Klymenko, and Malysheva: HOMO-LUMO gap of conjugated oligomers
andEedge(`) is one of the solutions to Eq.~A1! with j50
or j5p. Correspondingly, we are seeking only for tho
solutions to Eq.~A11! that determine the values ofj for the
edge states in the long chain limit,j5d or j5p2d8, and
satisfy the condition

lim
N→`

d50, lim
N→`

d850. ~A13!

Note that the function 1/@ f 1(E)2 f 2
21(E)# is a polyno-

mial that takes zero values at the monomer energies. Th
fore, the absolute value of the first term on the left-hand s
of Eq. ~A11! is always non-zero.~Of course, the case o
degenerated bands, which has no dependence onN is ex-
cluded.!

In zero approximation, i.e., setting«(N)50, Eq. ~A11!
can be solved in exactly the same way as Eq.~A4!, so that
we obtain

d5d85
p

N
. ~A14!

Expanding the left-hand side of Eq.~A1! in powers of
E2Eedge(`), and the right-hand side in powers ofd, we
arrive at~compare with~A8!–~A10!!

Eedge~N!5Eedge~`!1
p2

N2f 18~Eedge!

3H 21, if Eedge~`! corresponds toj50,

1, if Eedge~`! corresponds toj5p.

~A15!

The latter equation implies thatf 18(Eedge(`))Þ0. If for
some of band-edge energies, say, thej th, f 18(Eedge

( j ) (`))50,
it means that the neighboring bands join each other
E5Eedge

( j ) . Indeed, the equation for the band-edge energ
f 1(E)6250 can be represented in the form

P 21~E!~E2Eedge
~1! !~E2Eedge

~2! ! . . . ~E2Eedge
~ j ! !2 . . .

~E2Eedge
~NM21!

!50, ~A16!

where NM is the number of non-degenerated bands in
given oligomer, andP (E) is a polynomial, whose degree
less thanNM . Thus, in such a case, expanding the left-ha
side of ~A1! in powers ofE2Eedge

( j ) we have to retain the
second order term. Then, instead of~A15! we obtain

E~N!5Eedge~`!1
A2p

NAu f 19~Eedge~`!!u

3H 21, if Eedge~`! corresponds toj50,

1, if Eedge~`! corresponds toj5p.

~A17!

Thus, in conjugated oligomers of the typeM–M– . . . –M
the dependence of band-edge energies on the chain leng
characterized by universal asymptotic behavior:
J. Chem. Phys., Vol. 107, N
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lim
N→`

uEedge~N!2Eedge~`!u;N22, ~A18!

if the bands are separated, and

lim
N→`

uEedge~N!2Eedge~`!u;N21 ~A19!

in the case of band joining. This result survives as long as
model Hamiltonian used remains applicable.

APPENDIX B

In general, two qualitatively different cases o
asymptotic behavior of the 0-0 transition excitation energy
a function of the oligomer length should be distinguished

~i! limN→`D
HL

(N)5const as is assumed in the text; a
~ii ! limN→`D

HL
(N)50.

The zero limit is realized due to the HOMO and LUM
states approaching each other asN→`. These states can b
either band-like states or in-gap states. In the former, the z
limiting value ofD

HL
is due to joining the upper valence an

lower conduction bands, whereas in the latter these ba
remain separate.

Suppose first that in the limitN→` there are no discrete
~local! levels between the highest filled and lowest unfill
bands. According to Eq.~1!, at the band edges,j50, p, the
following equations must be satisfied:f 1(E)6250 and
u f 2(E)u51. Since in the infinite chain limit there are no di
ferences in the band structure of oligomers M2M2 . . .2M
and M2M2 . . .2M2M1, for both types of oligomers the
equations just indicated can be rewritten as

Gl ,l
M ~E!Gr ,r

M ~E!50, ~B1!

and

uGl ,r
M ~E!u51. ~B2!

Thus, if in the energy interval of interest there exis
only one solutionto Eq. ~B1!, substituting this solution into
Eq. ~B2! gives the necessary and sufficient condition of jo
ing the bands; see examples below.

Using Eq.~1!, it is easy to show that in the limitN→`,
the energies of discrete states~if there are any in the polyme
p electron spectrum! must obey the following equation:

12 f 1~E! f 2~E!1 f 2
2~E!50. ~B3!

In the case of oligomers M2M2 . . .2M, i.e., under the
substitution of expressions off 1(E) and f 2(E) from Eq.~2!,
Eq. ~B3! takes the form of Eq.~B1!. For M12M22M12 . . .
2M22M1 we have instead of~B1!

~Gl ,r
M2~E!!21@Gl ,l

M2~E!Gr ,r
M2~E!2~Gl ,r

M2~E!!2#

3@12Gl ,l
M1~E!Gr ,r

M2~E!2Gl ,l
M2~E!Gr ,r

M1~E!#

1Gl ,l
M1~E!Gr ,r

M1~E!@Gl ,l
M2~E!Gr ,r

M2~E!

2~Gl ,r
M2~E!!2#250. ~B4!

It also can be proved that at the energy of discrete st
o. 18, 8 November 1997
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uGl ,r
M ~E!u.1, ~B5!

and

UGl ,r
M1~E!

Gl ,r
M2~E!

@Gl ,l
M2~E!Gr ,r

M2~E!2~Gl ,r
M2~E!!2#U.1, ~B6!

for the first and second types of oligomers under consid
ation, respectively.

The condition for the existence of in-gap states follo
from the substitution of the solution to Eq.~B1! ~or ~B4!!
into Eq. ~B5! ~or ~B6!!. If such a state does exist, theN22

law of HOMO-LUMO gap decrease is no longer valid.
To utilize the general conditions of band joining and

the existence of local states formulated above, one need
explicit expressions of monomer Green functions that are
Eqs. ~B1!–~B6!. For the oligomers of focus these are v
nylene, phenylene, and phenylenevinylene groups. Find
the matrix elements of the operator (E2HM)21, whereHM

is the Hückel Hamiltonian of the above indicated groups
its conventional representation,28 is straightforward and
gives (E is in units ofb)

Gl ,l
M ~E!5Gr ,r

M ~E!5
Eexp~2h!

E22exp~2h!
,

~B7!

Gl ,r
M ~E!5

1

E22exp~2h!
,

M—vinylene;

Gl ,l
M ~E!5Gr ,r

M ~E!

5
E@E222g2cosh~2hph!2g2#

~E224g2cosh2hph!@E22g2~2cosh~2hph!21!#
,

Gl ,r
M ~E!5

2g3cosh~hph!

~E224g2cosh2hph!@E22g2~2cosh~2hph!21!#
,

~B8!

M—phenylene~aromatic geometry!;

Gl ,l
M ~E!5Gr ,r

M ~E!

5
E@E22g2exp~2hph!22g2exp~22hph!#

@E222g2exp~22hph!#
22g2exp~2hph!E

2
,

Gl ,r
M ~E!5

2g3exp~2hph!

@E222g2exp~22hph!#
22g2exp~2hph!E

2
,

~B9!

M—phenylene~quinoid geometry!;
J. Chem. Phys., Vol. 107, N
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DGl ,l
M ~E!5exp~2h!E$@E22g2exp~2hph!

22g2exp~22hph!#@E22exp~2h!#

2exp~22h!@E22g2exp~2hph!#%,

D~E!Gr ,r
M ~E!5exp~2h!E$@E222g2exp~22hph#

2

2g2exp~2hph!E
22exp~22h!@E2

22g2exp~22hph!2g2exp~2hph!#%,

~B10!

D~E!Gl ,r
M ~E!52g3exp~2~h1hph!!,

where

D~E!5$@E222g2exp~22hph!#
22g2exp~2hph!E

2%

3@E22exp~2h!#

2exp~22h!E2@E22g2exp~2hph!

22g2exp~22hph!#, ~B11!

M—phenylenevinylene.
In the above equations, parameterh distinguishes short

and long C-C bonds in the polyene chain~Eq. ~B7!! and
between phenyl rings~Eqs.~B10! and~B11!!; parameterhph

has a similar meaning but with respect to C-C bonds wit
the rings, while parameterg accounts for the difference in
electron transfer interaction within and between phe
rings. A more detailed definition of the characteristic para
eters is given in the body of the text; see also Fig. 1. T
Green functions~B10! refer to the aromatic (hph50, h.0)
and quinoid (hphÞ0, h,0) structure of the PPV backbone

The equations for the Green function matrix eleme
just presented complete the definition of explicit expressi
of functions f 1(E) and f 2(E) for the specific cases of poly
ene, polyparaphenylene, and polyparaphenylenevinylene
gomers discussed in this article.

It should be emphasized that according to the Gre
function definition the eigenvalues of the monomer Ham
tonian, which correspond to zero amplitudes of the wa
function at thel th or r th site or both, are not present amon
poles of the Green function matrix elements which refer
the sites indicated. Therefore, apart from the fourp electron
levels defined in Eqs.~B8! and ~B9!, the phenyl spectrum
contains two additional levels at energie
E56gA2 cosh(2hph)21 ~which are doubly degenerate, se
Eq. ~B8!! in the case of the aromatic structure of the rin
andE56gexphph ~which are non-degenerate! in the case of
the quinoid structure. The former correspond to states wi
node at thel or r site, whereas the latter corresponds to sta
with two nodes at these same sites. Just this one differe
between monomer electron states gives rise to the qualita
difference of the band structure of PPP with aromatic a
quinoid geometries of the backbone; see Appendix C.

Similar to thep electron spectrum of the phenyl ring
the spectrum of the phenylenevinylene group determined
poles of the Green functions~B10! is not complete and two
o. 18, 8 November 1997
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7342 Onipko, Klymenko, and Malysheva: HOMO-LUMO gap of conjugated oligomers
levels ~with energiesE56g exphph) should be added
These levels correspond to states with nodes at thel th and
r th sites of phenylene and vinylene and are not split the
fore by the intermonomer interaction. And again, similar
PPP oligomers, in the case of aromatic-like geometry
can expect an increase in the number of bands in the P
spectrum due to the bond alternation within the phenyl ri

Now we turn to the question of whether the HOMO
LUMO gap of the oligomers of focus can be zero in the lim
N→`, and if yes, is this due to the conduction and valen
bands joining or due to the existence of local states.

It should be mentioned first that for the type of olig
mers given the gap closing can occur only at zero energ
the on-site energy of carbon. Taking into account the defi
tion of the Green function components, it is easy to see
both Eq.~B1! and Eq.~B4! have the solutionE50. Substi-
tuting this value into Eqs.~B2!, ~B5!, and ~B6! it can be
concluded that the HOMO-LUMO gap closing due to joinin
the lowest conduction and the highest valence bands or
to the existence of a twofold degenerated discrete level in
middle of the gap takes place under the following conditio

h<0 ,

g21>2~2cosh~2hph!21!coshhph , ~B12!

g21>2exp~23hph!,

and

g21>2exp~3~h2hph!!

in polyenes, the benzenoid form of PPP, the quinoid form
PPP, and PPV, respectively.

The above relations make it apparent of that the b
gap depends on the geometry of oligomer backbone. In
ticular, it is seen that the anomalously narrow band gap
PPV given in Table I atg51, hph52h50.1 was indeed to
be expected.

APPENDIX C

Here we derive equations that determine thep electron
energy spectrum of the minimal length (N52) and infinite
oligomers of polyene, polyparaphenylene~in quinoid and
benzenoid forms!, and polyparaphenylenevinylene.

By substituting explicit expressions off 1(E) and f 2(E)
in Eq. ~7!, we obtain

12Gl ,l
M ~E!Gr ,r

M ~E!50 ~C1!

and

12Gl ,l
M1~E!Gr ,r

M2~E!2Gl ,l
M2~E!Gr ,r

M1~E!

1Gl ,l
M1~E!Gr ,r

M1~E!@Gl ,l
M2~E!Gr ,r

M2~E!2~Gl ,r
M2~E!!2#50,

~C2!

which are the secular equations for molecules M2M and
M12M22M1, respectively.

If Gl ,l
M (E)5Gr ,r

M (E), as is the case in vinylene and ph
nylene, the above equations can be rewritten in a m
simple form. Specifically, Eq.~C1! would read
J. Chem. Phys., Vol. 107, N
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11Gl ,l
M ~E!50,

~C1a!
12Gl ,l

M ~E!50,

and Eq.~C2! takes the form

12Gl ,l
M1~E!~Gl ,l

M2~E!1Gl ,r
M2~E!!50,

~C2a!
12Gl ,l

M1~E!~Gl ,l
M2~E!2Gl ,r

M2~E!!50.

The continuous spectrum of infinite oligomers is det
mined by

f 1~E!22 cosj50, ~C3!

where, again, for the oligomers under consideration the
pression of functionf 1(E) can be simplified in a similar
way. Note also that, since the perturbation of band states
a local defect goes to zero asN→`, one can use the defini
tion of f 1(E) given in Eq.~2! for determining the dispersion
law of both types of oligomers.

1. Polyenes

For polyenes finding solutions to Eqs.~C1a! and ~C3!
with the Green functions defined in~B7! is elementary, so
for the HOMO-LUMO gap (52uE

LUMO
u) we have

D
HL

~2!5exp~2h!~A4exp~4h!1121!,
~C4!

D
HL

~`!54sinhuhu.

2. Polyparaphenylenes

Taking the definitions of the Green functions~B8! and
~B9! into account, it is easy to see that, due
Gl ,l

M (E)52Gl ,l
M (2E) for both benzenoid and quinoid geom

etries of phenyl ring, two equations~C1a! have the same
form. So, the non-degeneratedp electron levels of dipheny
6E124 correspond to the roots of the following equation:

E41E32g2@4 cosh~2hph!11#E22g2@2 cosh~2hph!11#E

12g4@2 cosh~2hph!21#@cosh~2hph!11#50 ~C5!

for benzenoid-like structure, and

E41E32g2@exp~2hph!14exp~22hph!#E
2

2g2@exp~2hph!12exp~22hph!#E

14g4exp~24hph!50 ~C6!

for quinoid structure.
Corresponding to this, the HOMO-LUMO gap of diphe

nyl is determined by the smallest of these roots in the ab
lute value. For a number of parametershph andg the values
of D

HL
(2) of diphenyl are presented in Table I.

It is interesting to note that as seen from the phenyl r
symmetry,N52 is the only case where PPP oligomers of t
benzenoid- and quinoid-like structures have the equal n
ber of split p electron levels. ForN>3 there are 6N non-
degenerate states in the case of benzenoid-like geometry
4N non-degenerate and twoN-fold degenerate states in th
case of quinoid-like geometry. In the infinite chain limit, w
o. 18, 8 November 1997
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obtain equations of the third and second order in powersE2

which determine thep electron bands of the former an
latter structures, respectively.

Precisely six bands of the benzenoid-like PPP can
defined as E126(N→`,j)56AZ1g2(2 cosh(2hph)21),
whereZ is a solution to
s
PP

u

a

l

n
til-

n

J. Chem. Phys., Vol. 107, N
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Z32~113g2!Z224g2@g cosh~2hph!cosj

1sinh2hph]Z14g4sinh2hph50. ~C7!

The above equation results from Eq.~C3! after substituting
the explicit expressions of the Green functions~B8!. The
four bands of quinoid-like PPP are determined by
E124~N→`,j!56
1

A2
$11g2 exp~2hph!14g2 exp~22hph!

6A@12g2 exp~2hph!#
218g2 exp~22hph!@11g2exp~2hph!12g exphphcosj#%1/2. ~C8!
-
ec-

nd

x-
an

PP
at-
re

R.

v.

sp.

p.
~the latter equation has been reported previously!.3

The minimal positive value of rootsE126(N→`,0) and
E124(N→`,0) determines the band bottom of the lowe
conduction band of the benzenoid and quinoid form of P
respectively, and thus, the value ofD

HL
(`), as defined in

Eqs.~10!, ~11!, and~12!.

3. Polyparaphenylenevinylenes

The substitution of the vinylene and phenylene gro
Green functions defined in Eqs.~B7! and ~B8! in Eq. ~C2a!
yields

E56exp~h!E42@4g2exp~22hph!1g2exp~2hph!

1exp~22h!#E37g2 exp~h!@4 exp~22hph!

1exp~2hph!#E
21g2@4g2 exp~24hph!

1exp~22h!~exp~2hph!62 exp~22hph!!#E

24g4 exp~h24hph!50 , ~C9!

where the upper and lower signs correspond to the upper
lower equations in~C2a!, respectively.

Equation~C9! ~with both signs! determines the position
of 10 non-degeneratep electron levels of stilbene.~There
are also two twofold degenerate levels with energies equa
6gexphph.) It can be shown thatE

LUMO
is one of the solu-

tions to Eq.~C9! and has the lower sign in it. This solutio
was used to obtain values of the HOMO-LUMO gap of s
bene shown in Table I.

By substituting the Green function~B10! in ~C3! with
function f 1(E) defined in Eq.~2! we obtain

E62@g2~4 exp~22hph!1exp~2hph!12 cosh~2h!

1exp~22h!#E41$exp~24h!

1g2@4 exp~22hph!~g2 exp~22hph!12 cosh~2h!!

1exp~2hph!~2 cosh~2h!1exp~22h!!#%E2

2g2@exp~2hph24h!14g2exp~2h24hph!

14g exp~2~hph1h!!cosj#50. ~C10!

From the above equation one can easily derive an a
t
,

p

nd

to

a-

lytical expression of the dispersion law of three valence~or
symmetrical conduction! bands of PPV as a function of pa
rameters characteristic of the structure. Note in this conn
tion that atj5p three roots of Eq.~C10! ~that is, of Eq.~13!
in the body of the text! uE1u<uE2u<uE3u determine the bot-
tom of the first (uE1u) and third (uE3u) conduction bands, and
the top of the second conduction band (uE2u), whereas at
j50 these roots give the position of the top of the first a
third conduction bands~values of uE1u and uE3u, respec-
tively!, and of the bottom of the second band.

Thus, the proposed formalism allows one to find the e
pression of band energies of quite complex polymers in
analytical form. To our knowledge, Eqs.~C7! and ~C10!,
which determine the band structure, respectively, of P
~where the aromatic-like geometry is mimicked by altern
ing bonds within phenyl rings! and PPV are presented he
for the first time.
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