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S P E C T R U M  O F  L O C A L  S T A T E S  O F  H E T E R O P O L Y M E R S  

L. I. Malysheva and A. I. Onipko UDC 539.192;541.1 

The well-known Lennard-Jones equation describing the spectrum of x-electrons in polyenes is extended to the 

case of heteropolyenes. The explicit form of the conditions (relating the alternation parameter, length of the 
heteropolyene and difference in Coulomb integrals for the heteroatom and carbon atom) which determine the 

appearance and disappearance of local states of x-electrons in heteropolyenes of the types X - ( C H ) 2 N - X ,  

X+ - (CH)2N - X - ,  and X -  (CH)2N -CH2 is obtained. The spectrum of local states is also obtained in analytic 
form in the infinite-chain approximation. It is shown that the position of the intragap levels which determine 
the frequencies of the lowest dipole-allowed transitions in heteropolyenes is totally dependent on the above 
parameters, so that by varying them, one can change the position of the absorption and luminescence bands 

over a wide range. The results obtained can be used in a search for optically active compounds with specified 
properties. 

The search for new materials based on organic compounds and having promising electrooptical properties is 

inconceivable without a detailed knowledge of the nature of the electronic structure of molecules, and for conjugated molecules, 
a knowledge of the x-electron structure. 

It is well known that the simplest and most successfully parametrized Hamiltonian used to describe the a'-electron 

structure of conjugated molecules is the H~ickel Hamiltonian. This model has been elaborated in great detail for application 

to linear molecules with equal distances between the carbon atoms (see, for example, [1, 2]), and thus is oriented toward 

applications to polymethine dyes. Considerably less attention has been given in the literature to the case of heteropolyenes, 

where the C - C  bond lengths alternate substantially. Thus, the single- and double-impurity problems in semi-infinite alternating 

chains in the Htackel approximation were studied by Kventsel' [3, 4]. This model can be applied to heteropolyenes of the types 

X-(CH)2N - X ,  and X-(CH)2Na-CH 2. The results obtained in [3] in the solution of the single-impurity problem were 
extended to the case of t-mite-length molecules by Castano and Karadakov [5]. 

Primary attention in the above studies was given to local states of x electrons, the formation of which may lead to 
radical changes in the electrical and optical properties of heteropolyenes. Nevertheless, a number of questions pertaining to 

the pattern of formation of local states in heteropolyenes have remained unanswered. Essentially, only the case of local states 
in the X-(CH)2Nd-CH 2 structure has been exhaustively described, and only on conditions that the terminal bonds of the 

heteropolyene remain double; see [3, 5]. These results are clearly insufficient for even a qualitative prediction of the position 
of local levels in other types of heteropolyenes. Moreover, the practically unstudied case of single terminal bonds certainly 

deserves no less attention, since, as was found by numerical calculations [6], it corresponds to the optimal geometry of 

heteropolyenes in the lowest dipole-allowed excited state and also of the ionic forms of heteropolyenes in the ground state. 

This paper presents a detailed study of local levels in the r-electron spectrum of the main types of heteropolyenes with 
both double and single bonds between the terminal atoms and the main hydrocarbon chain. 

SECULAR EQUATION 

For the general model of a heteropolyene X-(CH)2N d-  Y, the electronic structure in the Hiackel approximation is 
described by the equation 
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where Aj and E are the unknown coefficients of molecular orbitals (MO) and the energy of x-electron states, respectively, and 

the matrix elements of the Hamiltonian Hjj, = Hj,j = ~ ~,jH~j,dr (integration over the electron coordinates of the atoms j and 

j ' )  are determined in a standard manner: Hii = e x, e v  (ex(y) = Ctx(y) - -  a c) for j = 1, N = 2N d + 2 respectively, Hii = 

0 for j  ;e 1, N; HI2 = Bx, HN-Zlq = By, l-Ijj+1 = B exp ~7 forj  = 3, 5 . . . . .  N - -  3; l-Ij.lj = /3  exp ( - n )  for j  = 3, 5 . . . . .  
N - -  1; Hj #j, = 0 for all the remaining values of j and j ' .  In this determination of the resonance integrals, the double bonds 

at the ends of the chain correspond to the case ~/ > O. Subsequently, the absolute value of the resonance integral I B I is used 

as the energy unit. 

The solution of Eq. (1) with an unperturbed Hamiltonian H °, i.e., for Hj~j = 0 and Bx = By = B, is known [7]. (We 

note that the positive sign of the alternation parameter 7/ in Eq. (1) corresponds to double terminal bonds of an unperturbed 

chain.) The explicit form of the Green's functions G = (E - -  H ° ) -  t can also be obtained [8]. Therefore, since the perturbation 

of the polyene chain may be local in character when the terminal atoms are replaced, the solution of the problem is conveniently 

carried out by use of the Lifshitz method [9]. 

By using the standard procedure of representing the solutions of systems of linear equations in terms of the Green's 

functions, one can show that the existence condition of nontrivial solutions of the system (1) is 

z - ex)  z - e r )  
(2) 

( E  - e x ) ( e  - er) 

where Gjj, are the matrix elements of the Green's function in the strong-coupling representation. These matrix elements can 

be represented in explicit form as functions of the variable ~ [8], which is related to the energy of ~'-electron states as follows: 

E = ±,,f2(cosh (2~) + cos ~. Thus, Eq. (2) constitutes a transcendental equation whose roots determine the energy spectrum 

for given values of parameters Nd, ~, BX(y) and ~xc:) and which replaces the system of Nth-order linear equations. 

There are no fundamental difficulties in using the derived equations as the basis for ~n analysis of the spectrum of local 

states for a general model of heteropolyenes. However, to avoid cumbersome formulas, we will confine ourselves to examining 

the three main types of heteropolyenes, X-(CH)2Nd-X,  X + - ( C H ) 2 N d - X -  and X- (CH)2Nd-CH 2. We will also consider 
the fact that as a rule, the chief role in the replacement of terminal atoms is played by perturbation of Coulombic integrals. 

Therefore, we will always assume below that Bx = By = B. We note that an arbitrary heteropolyene may be regarded as an 

intermediate case of the above types of heteropolyenes. Consequently, the results obtained below give a representation of all 

the main trends of the influence of terminal heteroatoms on the ~--electron spectrum. 

Since the spectrum of local states of different types of heteropolyenes is distinguished by several characteristics, we 

will constder each of them separately. 

HETEROPOLYENES OF THE TYPE X-(CH)2N d-  X 

Using the explicit form of the Green's functions [8] and assuming that ex(v) = e, we can reduce Eq. (2) to the form 

E2~ sin((N d + 2~) + (exp( -2t/)-2Ee )sin((N,t + l~j) [ ~---- 

sin((N+l'g/2) - 2esin(N¢/'2) 
sin((~r-DV2) 

(3) 

From Eq. (3) it is easy to obtain secular equations for simpler models, equations which are widely used to interpret the 

electronic spectra of linear conjugated molecules. In particular, for e = O, we have from Eq. (3) the following well-known 

Lennard-Jones equation describing the spectrum of an ideal polyene [10]: 
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TABLE 1. Determination of  Regions with Different Numbers of  lntragap (In) and Extraband (Out) Local 

States in Heteropolyenes of  Types X- (CH)2N - X ,  X + - ( C H ) 2 r % - X  - and X - ( C H ) 2 N d - C H 2 .  The 

Region(R) l Corresponds to [ e l  < el, I I - - e  I < I t [  < e 2 , l l l - e  2 _< [ e l  < %, I V - -  [ e l  

> e 3 

Type 
*/>0 R 

< in N~+I 
N~ 

in out 

2. 7 > in N~+I  
Nd 

in ] out 

X - - . . . - - X  I 0 0 0 0 

H 1 1 1 1 

IH 1 2 1 2 
IV 0 2 2 2 

X÷-- . . . - -X-  I 0 0 0 0 

II 0 2 0 2 

Ill 0 2 2 2 

X--...---CH 2 I 0 0 0 0 

II 0 0 

[] I I 

,~l< 

Type < lnNd + 2 
7 <  0 R N , ~ + I  

(a) 

in I out 

Na +2 
INN--- ~ < 

N, t+2   41,11<21n ¥ i 
Co) 

in I out 

Determination of e i 

2t,71> 
N a + 2  

>tnNa + i 

(c) 

e z = e 1 + 2(2N,f~h r / +  e-q) - '  

e, = [e -q + 2(2N~sinhr/ - e-~)-'[ 

et = e- '~/l  + 2e-'(2N, cosh r/ + e- ' )  -t 

e 2 = e-q~/l + 2e-'(2Ndsinh ~ -  e - ' ) - '  

q = e - '  + (2(N,r + I)cosh r/)-' 

e 2 = e - '  + (2(N~ + l)sinh r/)-' 

in I out 

X - - . . . - - X  I 0 0 0 0 2 0 

1I 1 0 1 0 1 0 

[ ]  0 1 0 1 0 1 

IV 0 2 0 2 0 2 

X÷-- . . . - -X-  I 0 0 0 0 2 0 

I1 0 0 0 0 0 0 

[ ]  0 2 0 2 0 2 

X--...---CH 2 I 0 0 0 0 2 0 

II 0 1 1 0 1 0 

HI I I I l I I 

Determination of e i 

t t = l e h l -  2(2N,sinhlr/I + J ' l ) - ' l  

e 2 = d, l  

e~ = d,l + 2(2N,,cosh,1 + el'I) -' 

e z = e l , l q i  + 2e~( '2N/7.oshr/+ el 'b -' 

e, = e hI + (2(N~ + l)cosh r/)-' (a) 

e, = _ J , t  + (2(Na + l)sinhlr/I) -E Co) 

c, = e J't - (2(N~ + l)sinhlr/I)-' (c) 

e a = - e  Id + ('2(N, + l)sinhlr/])-' (a) 

e 2 = e I~1 + (2(N 4+l )coshr / )  -~ Co) 

e 2 = e" + (2(N~ + l)cosh~/)-' (c) 

sin ((N,~ + l~)/sin (OV a + 2)~) = - exp 0-~). (4) 

In the limit I e I -" 00, it follows from Eq. (3) that in addition to two levels with infinite energy, there exist 2N d levels with 

t-mite energy, the position of which is determined from Eq. (4), where N d + 1 should be replaced by N d, and ~ should be 

replaced by -r / .  In the case of a chain with nonalternating bonds, ~ = 0, and instead of Eq. (3), we have 
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cos ((~ + l~/4Vcos ( ( ,v  - I )~ /4)  = 

sin ((N + l)~/4)/sin ((N - 1)~!4) -- c. (5) 

Results of  an analysis of the solutions of Eq. (3) which determine the local levels of the system are shown in Table 

1 for positive and negative values of  the alternation parameter. It is evident that a change in the number of  local states in the 

s ~ t r u m  takes place at three critical values of  perturbation e i, i = 1, 2, 3, which determine four regions of  [ e I values to 

which correspond different numbers of  local states inside the gap [ E [ < 2 sinh [ n [ and outside the bands [ E [ > 2 

cosh .0. The e i values depend on the number of  double bonds N d, on the magnitude and sign of the alternation parameter .0, 

and on the relationship between these parameters (the determinations of  e (i) are given in Table 1). 

For ~/ > 0 and, in addition, 2"0 > ln((N a + I)/N d) in region I (see Table 1), no local states exist; in region II, there 

is one intragap and one extraband local state; in region III, there is one more extraband local state, and in region IV, the 

heteropolyene spectrum has two intragap and two extraband states. If however 2n < In ((N d + D/No), the situation is 

distinguished only by the fact that in region IV there exist only two extraband local states. Thus, when the latter condition 

holds, for any perturbation of terminal atoms that is as large as desired, no more than one intragap local state can arise. This 

property of  the spectrum of symmetric heteropolyenes was first pointed out by Kventsel [4]. It is also of interest to note that 

perturbation of terminal atoms may give rise to two, three, or four local levels. The presence of only one local level in the 

spectrum of this type of heteropolyenes is impossible. 

We note that in [4], the conditions of appearance of intragap local states (only for )7 > 0) were obtained in a certain 

asymptotic limit. It is apparently for this reason that the corresponding results from the work cited are correct only in the limit 

N d --, ¢~, i.e., when e I = e 2 = e 3 = exp(-.0).  
In the case .0 < 0 (which was not considered in [4]), on the basis of Eq. (3), it can be shown that when the condition 

21Tll > In((Na + 2 ) / ( N  a + 1)) (6) 

holds and I e ] < e t, the spectrum of symmetric heteropolyenes has two intragap levels; when I e ] = e t, one of these 

levels disappears (i.e., the state corresponding to either the lowest unoccupied MO (LUMO), if e > 0, or highest occupied 

MO (HOMO), if e < 0, is convened from a local to a band state); when I e I = e 2, the disappearance of the second 

intraband state takes place simultaneously with the appearance of an extraband local state. Finally, when [ e I = e3, a second 

extraband state appears (see Table 1). 
When the opposite of  inequality (6) holds, no local states exist in region I. Only an intragap state appears at I e I = 

e l, which when I e I = e2 again converts to a band state. The behavior of  the extraband local states remains qualitatively 

the same, so that in the case of  negative values of  the alternation parameter, the spectrum of a symmetric heteropolyene may 

show the presence of  one local state, two local states, or no local state. 

H E T E R O P O L Y E N E S  OF T H E  T Y P E  X + -(CH)2N d -  X -  

In this case, the ~--electron spectrum is given by the equation 

e 2 = exp ( - 2)7) x 

expr/sin((N a + 2)/5) + e x p ( -  r/)sin((Na + 1)~) 
× 

(7) 

s i n ( ( N  + 1)/5,,2) 
sin((N - 1)~/2)" 

As is evident from Table 1, the existence conditions and pattern of appearance of local states in the spectrum of this type of 

beteropolyenes differ appreciably from those discussed above. Thus, when 2.0 < ln((N d + I)/N d and the alternation parameter 
is positive, the appearance of intragap local states is completely impossible no matter how large the perturbation of the terminal 

atoms. If, however, the condition 4 ] )1 ] < ln((N d + 2)/(Na + 1)) holds, then outside the dependence on the sign of )1 and 

at any values of  ] e ] , the ~r-electron spectrum of the structure X + - ( C H ) 2 N a - X -  contains no intragap local states. It is also 
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TABLE 2. Energy of MO Closest to the Fermi Level 

Type , State 

Energy, u. [~ l  

7 > 0  7 < 0  

e > 0  c < 0  e < 0  

X - 4 C H ) ~ . . - - X  

X*--(CI'l)~a..--X- 

X--(CI-I)~:.---CH 2 

I'12C--4CH)~,..--"CH 2 

LUMO+I 2sinh 7 ~ 2sinh 17 ] 7.sinh I q [ 

LUM0 2sinh 7 q ~ - q  
HOMO -E~ -2sinh 7 E :  -E~ 

HOMO-I - E :  -2sinh q -2sinhlq[ -2sinh 17 [ 

LUMO+I 2sinh 7 2sinh q 2sinh I q [ 2sinh [ r/[ 

LUMO E: E: E: E: 

HOMO -~ -~ -~ -~ 
HOMO--I -2sinh 7 -2sinh 7 -2$inh [ q [ -2sinh [ 7 I 

LUMO+I 2sinh ~ 2sinh 7 2sinh 17 [ 2sinh [ 7 [ 

LUMO 2sinh 7 E~ £ :  0 

HOMO -E :  -2sinh 7 0 -~'= 

HOM0-1 -2sinh 7 -2sinh 7 -2sinh 171 -2sinh 17 I 

LUMO+I 2.sinh 7 2sinh 17 [ 

LUMO 2sinh 7 0 

HOMO -2sinh 7 0 

HOMO-1 -2sinh 7 -2sinh ] 71 

useful to emphasize that in this case, in contrast to symmetric heteropolyenes, as the magnitude of the perturbation I e [ 
changes, in contrast to symmetric beteropolyenes, the transformation of the states corresponding to HOMO and LUMO from 
band to local states or vice versa takes place simultaneously. Thus, the presence in the spectrum of X + -(CH)2Nd-X- of 
intragap local states signifies that both indicated states are local (in a symmetric heteropolyene, at least one of them is a band 
state). Since the properties of local and band states differ very substantially, it may be expected that the optical properties of 
the indicated heteropolyenes, which in many ways are determined precisely by HOMO and LUMO, will also be substantially 
different. 

HETEROPOLYENES OF THE X-  - ( C I - I ) 2 N  d - CH 2 

The spectrum of local states for this type of heteropolyenes is determined by the equation 

e ffi exp (-2.7) sin ((Nd + l)/j) + sin ((Nd +2)/j) ~,..__ 
F_~in ((N a + 1)~) 

sin ((N + t)~/2) 
sin (0~/2) (8) 

and for ~ > 0 was studied fairly closely in [3, 5]. We will therefore mention here the most significant characteristics of this 
spectrum, which pertain only to the case of negative values of the alternation parameter. A complete list of the conditions 
determining the appearance of local states, their number, and position (inside the gap and/or outside the bands) is given in 
Table 1. 
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Let us note first of  all that in contrast to the types of  heteropolyenes discussed above, for which the determination of 

the regions with different numbers of  local .'.tates (i.e., determination of the critical values of  I e I ) depend on the ratio of  

to N d, in the case under consideration this dependence holds only when ~ < 0. In [3], this important fact was overlooked. 

As follows from Table 1, not only the determination of the critical values of [ t I , but also the order of appearance (as I e I 

increases) of  the intragap and extraband states in the a--electron spectrum depends on this ratio. Namely, if the condition 4 I n I 

> ln((N d + 2)/(N d + 1)) holds, the intragap state for I t I = el initially appears. Conversely, when the inequality 4 I rl I 

< ln((N d + 2)/(N d + 1)) holds, the extraband state arises first in the spectrum of local states. It should be emphasized that 

outside the dependence on the magnitude (~ ;e 0) and sign of ~, when I e I > ~2, there is always one intragap and one 

extraband state in the spectrum of  X- (CH)2N d - C H  2. This fact is emphasized, since in [3] it was erroneously concluded that 

in the case of  negative values of  71, there exists one and only one local state for any perturbation. 

S P E C T R U M  OF L O C A L  STATES IN T H E  A S Y M P T O T I C  L I M I T  

The study of this limit is of  great interest, since the position of the local levels can be obtained in analytic form (as 

was done in [3] for heteropolyenes of the type X- (CH)2Nd-CH2) .  
Using (3), (7), and (8), one can show that in the limit N O ---, oo, all three equations have the same solutions for ~5 = 

i~ and/ i '  = i(~" --/~): 

2 exp 6 = ,/(~z _ exp ( - 2r/)) z + 4~Zexp (2~7) - 

- exp(-2~7) + r 2, 

2 exp 6'  = ¢(E ~ - exp ( -  2r/)) ~ + 4e 'exp (2r/) + 

+ e x p ( - 2 r / )  - ,,2. (9) 

This does not mean, however, that the number and position of local levels in different types of  heteropolyenes will also be the 

same. The positions of  the intragap levels in the asymptotic limit are shown in Table 2, which gives the energies of  four MO 

closest to the Fermi level in the ideal polyene (E F = 0). The symbol Ein °* w a s  introduced for the quantity Ein °* = (2cosh(2n) 
- -  2 c o s h [ l n ( l / 2 ) ( ~  - -  exp ( -2~) )  2 + 4t2exp(2~) + exp ( -2~ )  - -  ~)]) t /2.  The existence conditions of  the intragap ~r- 

electron states in this limit converge to I e I > e x p ( - 7 )  if ~ > 0 and I 2e I < exp( I ~ I ) if ~ < 0. 

The position of the extraband levels which exist when I e I > e x p ( - n )  is determined by the quantity Eout = = (2 
cosh(2~) + 2 cosh x [ln(1/2)(~(e 2 - -  exp ( -2~) )  2 + 4e2exp(2~) - -  e x p ( - 2 ~ )  + e2)]) t/2. In X - ( C H ) 2 s d - X ,  it is the doubly 

degenerate level with energy Eout = ( I e I > 0) or -Eout** ( I e I < 0); in X + - ( C H ) 2 N ~ - X -  the energy of the two 

extraband levels is -t-~ut**; the position of the extraband (nondegenerate) level in X - ( C H ) 2 s d - C H 2  is the same as in a 

symmetric polyene. 

A P P L I C A T I O N  OF T H E O R Y  

As an illustration of possible applications of  the results obtained above, we will consider the change in the frequency 

of the lowest dipole-allowed transition as a function of the perturbation parameter e and of the state (neutral or ionic) in a 

symmetric substitution of the terminal carbon atoms in hexatriene (N d = 2). The dependence of the position of the a--electron 

levels on e in this system, calculated in accordance with Eq. (3) for n --- 0.13 (experimental value of the alternation parameter 

in the neutral form of the molecule [11]) and r/ = - 0 . 1 3  (postulated value of this parameter in its ionic forms [6]) is shown 

in Fig. la  and b, respectively. 
It is evident that the distance between the (N/2)th and (N/2 + l)th levels, i.e.~ between the HOMO and LUMO levels, 

which determines the frequencies v, ~,+ + and ~ - -  of the relevant transition in the neutral, dicationic and dianionic forms of 

the given heteropolyene, depends substantially on e. Thus, if for e = O, ~, = 1.25 in units of I ~ff I = 30305 cm (this value 

practically coincides with the experimental value [11]), and z, + + = ~ , - -  = 0.96, then for e = - 1  (substitution with nitrogen 

atoms) or - 2  (substitution with oxygen atoms), the indicated frequencies shift by the following amounts: A~ = 0.08(0.11); 
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Fig. 1. Dependence of  the position of  x-electron levels on e-in hexatriene in a symmetric perturbation of  
terminal carbon atoms: a) ~ = 0.1333 (short bonds on the ends of  the molecule); b) 77 = - 0 . 1 3 3 3  (long bonds 
on the ends of  the molecule).  The edges of  the spectrum of  the band states are shown by continuous horizontal 
lines for the values ( [ E [ = 0.2674 and 2.0178. The points on the right correspond to the positions of  the 
a--electron levels in the limit e -,' o0. Vertical dashes on the e axis denote the critical values of  the perturbation 

(see determination of  e i, i = 1, 2, 3, in Table 1); from left to right: e I = 0.87 (a), 0.05 (b); e 2 = 1.28 (a), 
1.14 (b); e 3 = 5.0 (a), 0.51 (b). The illustrated curves correspond to positive perturbation values. The 
spectrum for ~ < 0 is obtained by specular reflection of  the positions of  the levels relative to the e axis. 

~Pt(2) = - 0 . 2 2 ( 0 . 1 )  and '~P1(2) = 0.34(0.5)  (the subscript corresponds to the value of  [ e [ ). Let us emphasize that both the 
large absolute value of  the frequency shift and the nonmonotonicity of  its dependence on [ e [ in the case of  ~, are determined 
by the "participation" of  the local state in the determination of  the transition frequency. Using the data of  Table 1, one can 
easily see, for example, that in the determination of  p, the LUMO level corresponds to the local intragap state. 

Thus, variation of  the terminal atoms of  the heteropolyene and of  its charge (the latter can be changed by an appropriate 
selection of  the solvent) is an effective method of  modifying the absorption spectrum of  this class of  compounds. Additional 
possibilities in this regard are provided by changing the type of  substitution. The secular equations (3), (7) and (8) obtained 

in this work as well as the existence conditions of  local states in the main types of  heteropolyenes make it possible to carry 
out a rapid determination of  the parameters of  the heteropolyene which are necessary to obtain the frequency of  the absorption 
maximum in the specified portion of  the spectrum. In the next publication, we hope to discuss in more detail the expected 
manifestation of  the effects of  heterosubstitution in the absorption of  neutral and charged forms of  polyenes. 
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