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Abstract 

The Lennard-Jones equation, which determines the 7~ electron spectrum of unsubstituted polyenes H2C-( CH),,,-CH2, is generalized to 
the case of heteropolyenes X-(CH),N, -Y. The closed form of the exact Htickel molecular orbitals for heteropolyenes is derived. The 
dependence of the local state spectrum on characteristic parameters is examined analytically for three types of heteropolyene, X-( CH),,- 
X, X+-(CH)2Nd-X; and X-( CH)2N,-CH2. The criteria of the existence of local states and their position in the asymptotic limit are established 
for both signs of the alternation parameters. The results obtained predict strong and qualitatively different effects of the substitution on the 
optical response of the indicated types of heteropolyenes, and they can be used, therefore, in search of new compounds, which are optically 
active in the desired frequency region. The theory is also applied for the analysis of the dependence of all 7~ electron levels in heteropolyenes 
on the electron site-energy perturbation caused by heteroatoms. 
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1. Introduction 

It is known that the Hiickel Hamiltonian is the simplest 
and most successful parameterized one-electron Hamiltonian 
for describing n electron electronic structure of conjugated 
molecules. For heteropolyenes this model essentially 
includes two parameters referred to the polyene as such [ 1,2], 
namely, the number of double bonds N,, and the alternation 
parameter 17, plus parameters of heteroatoms. The Htickel 
model has been elaborated in great detail for linear molecules 
with non-alternating bonds, see, e.g. [ 3-61 and Refs. therein, 
being thus oriented primarily on polymethine dyes, in which, 
as is well established experimentally, the bond alternation is 
absent. The case of heteropolyenes in this respect has received 
so far much less attention. 

In the Htickel approximation, the one- and two-impurity 
problems in the semi-infinite alternating chains have been 
studied by Kventsel [7,8]. That model can be applied to 
heteropolyenes of the type X-( CH),,-X and X-( CH) 2Nd- 
CH2. The results obtained in [ 71 for the one-impurity prob- 
lem have been generalized to the case of finite molecules by 
CastaAo and Karadakov [ 91. It was shown in cited works 
that, under certain relations between characteristic parame- 
ters, in the heteropolyene spectrum the local states can exist 
in the gap between the valence and conduction bands (such 
states do not appear in hetero-substituted polymethines). 
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However, the results connected with the behaviour of local 
states only, as was the case in [7-g], cannot be used for the 
direct comparison with the experiment. For example, to pre- 
dict the influence of the hetero-substitution on the frequency 
of the maximum of the long-wave absorption, one needs to 
trace the dependence on heteroatom parameters of rr electron 
energy levels that correspond to the highest occupied MO 
(HOMO) and lowest unoccupied MO (LUMO) . A number 
of applications demands the knowledge of analogous depend- 
ences for other levels, e.g. HOMO - 1 and LUMO + 1, and, 
apart from the spectrum data, also the molecular orbital coef- 
ficients. Moreover, in papers cited above the classification of 
local states has been clarified only for the case of asymmet- 
rical polyenes and only for those that are terminated by short 
(double) bonds. But, as was recently found [ lo], the optimal 
geometry for ionic forms of heteropolyenes in the ground 
state, as well as for neutral heteropolyenes in the lowest 
dipole-allowed excited state, corresponds to long (single) 
bonds at the molecule ends. The v electron structure of het- 
eropolyenes for the case of ‘reversed’ alternation is therefore 
of principal importance, but it is practically unstudied. 

The white spots mentioned, as well as the rapidly increas- 
ing amount of experimental data, which need a simple model 
for quick and reliable interpretation, put forward the urgent 
task of further development of the Htickel model. It should 
be noted in this connection that using the one-electron 
approximation in the case of polyenes has been repeatedly 
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criticized in the literature, see, e.g., [ 11,121. Indeed, the elec- 
tron correlation has proven to be of principal importance for 
polyene compounds in determining their 7i electron spectrum. 
Moreover, even at the one-electron level the assumption that 
the alternation parameter is constant prohibits the existence 
of the soliton- and polaron-type states which play an impor- 
tant role in long polyenes and polyacetylene materials 
[ 12,131. But at the same time, it has been convincingly dem- 
onstrated experimentally that the Htickel model with an 
appropriate choice of parameters gives excellent agreement 
with numerous spectroscopy data on the second singlet exci- 
tation (l’B, state). Moreover, combining this model with 
the inclusion of the configurational interaction in the basis of 
the Htickel MOs allows Kohler to reproduce quantitatively 
all of the 2’A, and l’B, state O-O energies that have been 
measured in high-resolution spectroscopic experiments [ 141. 
In our opinion, these strong sides of the Htickel model provide 
more than enough reasons for its further elaboration in vari- 
ous aspects. 

In recent work of the present authors [ 151, the exact 
expressions for the Htickel MOs and HOMO-LUMO tran- 
sition dipoles for a finite chain with alternating bonds have 
been found and applied for the detailed analysis of the charge 
and bond-order distributions and linear optical response in 
linear polyenes. In [ 161 the formal results of [ 151 have been 
used for the derivation of the closed form for arbitrary inter- 
band and intraband transition dipoles that make the analysis 
of the non-linear response of polyenes straightforward. Here 
we address to the full-scale solution of the Schrodinger equa- 
tion for the Htickel model of heteropolyenes. 

This paper is organized as follows. Section 2 and the 
Appendix give the general solution of the problem. In Section 
3 this solution is specified for three types of heteropolyenes, 
X-(CH),,,-X, X+-(CH),,-X-, and X-(CH)2Nd-CH2. 
The regularities of the local state spectrum in these hetero- 
polyenes are examined in great detail. This section also pres- 
ents analytical results in the long chain limit. In Section 4 we 
discuss the gross effect of substitution on the IT electron 
spectrum in different types of heteropolyenes. Section 5 sum- 
marizes the main findings of this work. 

2. General solution 

Any of n electron states of a dimerized chain with 
N= 2N, + 2 atoms can be represented by the expansion of the 
type: 

UJ= tA/Pj (1) 

where pj is the IT electron atomic orbital of the jth atom 
(indexesj = 1 and j = Nrefer to heteroatoms), and the expan- 
sion coefficients Aj obey the Schrbdinger equation: 

5 Hjj,Aj, = EAj (2) 
j! = 1 

where E is the 7~ electron energy in a hetero-substituted 
polyene. The matrix elements HJ,= Hj,j=I~jH~j, are taken 
here in the commonly accepted form, namely: Hjj= +, ey 

( EX( Y) = QX(X) - ~42) for j = 1, N, respectively, and Hjj= 0 for 
j+l,N; Hl2=&, H,t,-1N=&, Hjj+i=pexpvforj=3,5, 
..*, N-3; Hj-v=fiexp(-T) for j=3, 5, ..,, N-l; and 
Hj+jt=O for all other values ofj and j’. For the given defi- 
nition of resonance integrals, the positive sign of r] corre- 
sponds to double bonds in the ideal polyene, excy, =O, 
Pxcn = p. In the following, I PI is used as the energy unit. 

Excluding from Eq. (2) the coefficients Al and A,,,: 

and expanding Aj+ ,, j= 1, 2, , , ., 2N,, over unperturbed 
orthonormalized solutions to Eq. (2) (i.e., with pxcr, = 0), 
after some algebra one easily arrives at 

(4) 

The quantities Gj,j, in the above equation represent the matrix 
elements of the Green function operator for the unperturbed 
problem G= (E-Z”‘) -‘, where the Hamiltonian Z” 
describes a dimerized chain of 2N, identical atoms with single 
bonds at its ends, 

Accordingly to Eq. (4), the condition, providing for the 
existence of a non-zero solution of Eq. (2) is 

Eqs. (3)-(5) supplemented by the normalization condition: 

(6) 

completely determine the IT electron energy levels and cor- 
responding molecular orbital coefficients for a dimerized 
finite chain with arbitrary values of alternation (7) and per- 
turbation ( ex, ey, px, &) parameters. 

Obviously, the reformulation of the Schrodinger problem 
in terms of the Green function is sensible only under the 
condition that the latter can be found in an explicit form. 
Fortunately, for the case of polyenes this can be done. 

Despite that the eigen functions of&?” are known [ 15,161, 
finding the matrix elements Gj,j, in their standard represen- 
tation (as a bilinear expansion over the molecular orbital 
coefficients) by direct summation is very problematic, if at 
all possible. Instead, we use the relation between the needed 
Green function for an alternating chain with the even number 
of atoms as that for the same chain but one atom shorter. 
Since the latter can be easily found, the procedure of obtaining 
explicit expressions for Gj,j, is reduced to elementary algebra 
(see Appendix for details), 
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As demonstrated below, using Eqs. (3)-(6)) one can 
examine the dependence on characteristic parameters of any 
desired rr electron level or corresponding MO. This is not a 
trivial task, especially for longer heteropolyenes, when one 
tries to’use for this purpose Eq. (2). While, in general, the 
quantities of physical interest for heteropolyenes can be found 
only numerically, the local state spectrum, which is of crucial 
importance for the understanding the electronic properties of 
heteropolyenes, can be examined analytically. 

3. Local states 

In order to escape cumbersome formulae, we restrict our- 
selves to three particular types of heteropolyenes, X- 
(CH),,,-X, X+-(CH),,,-X-, and X-(CH)2Nd-CH2, and 
neglect the perturbation of resonant integrals, which is usually 
less important. Knowing the rr electron structure of the het- 
eropolyene types indicated, one can oversee the effects of 
substitution of the end C atoms by heteroatoms with arbitrary 
parameters. 

3. I. Molecules of the type X-(CH),,,-X 

Setting in Eq. (5) eX=ey=e and ,Bx=Pr=exp v, and 
using explicit expressions (AlO) and (A12) for the Green 
function matrix elements appearing in the secular equation, 
the latter can be transformed to the form: 

exp( -q)Z-‘[sin((N,+2)[) +(exp( -2q) -2Ee) 

sin((N,+ l)[)] +P=O (7) 

where E= &- [2(cosh 2Tfcos &)ll”, Z=exp( - 7j) 
sin( (Nd + 1) [) + exp 77 sin(N,&. Note that a quite different 
(and much more complex) form for the secular equation has 
been derived in [ 81. 

The normalizing factor of the MO coefficients can be also 
significantly simplified by noting that with account to Eq. 
(7): 

K=(sin[)-‘[Eexp(-q) sin((N,,+l)[)-EZ] 

=11 (8) 

where the choice of the sign depends on which of the follow- 
ing equations: 

Z-‘[Eexp( -v) sin((Nd+l)& -sin 51 =E 

Z-‘[Eexp(-7) sin((N,+l)&+sin&=e (9) 

is used to determine the 7 electron energy: plus in Eq. (8) 
corresponds to the upper equation, and minus to the lower 
one. It is easy to verify that the set (9) is equivalent to Eq. 
(7). 

Performing in Eq. (6) the summation and using identity 
(8) one gets the following expression for [AZ I 2: 

(E- E)~ 

[2exp(2rl) I&l21 -’ 

=[eexpT-Kcos((N,+l)t)][EN,sint 

+K sin(Nd) (exp( - rl) 
+exp~cos&]/[sin~sin((N,+l)[)Z] (10) 

The secular equations for more simple models, which have 
been extensively used previously in discussions of electronic 
properties of linear conjugated molecules, can be easily 
obtained from Eq. (7) as particular cases. For e=O, Eq. (7) 
reduces to the Lennard-Jones equation [ 1 ] : 

sin((Nd+ 115) 
sin((Nd+2)0 

= -exp(2T) (11) 

In the limit I E] + ~0, it is easy to see from Eq. (7) that 
apart from two levels with EN E, there exist 2N, levels with 
finite energies, which are again determined by Eq. ( 11)) 
where Nd + 1 should be replaced by Ndr and 7 by - r). 

Finally, in the case of an undimerized chain, 7’0, one 
readily obtains from Eq. (7) : 

cos( (N-t 1) 5/4) = sin( (N+ 1)5/4) 
cos( (N- 1)5/4) ” sin( (N- 1)(/4) =e (12) 

where 5 is related to the T electron energy by E= 
2 cos( t/2). In this limit, the form of the secular equation is 
independent of the parity of N, and Eqs. (12) are valid for 
chains with even and odd number of atoms in the chain. 
Various analytical representations of the solution to this equa- 
tion in the long chain approximation have been found in 
[3,4,61. 

The analysis of Eq. (7) (or set (9) ) shows that there can 
be N=2N,+2 roots within the interval 01 [<n. These 
correspond to extended or band-like rr electron states, the 
energies of which are within two intervals defined as 2 sinh 
I 7 I < 1 E I < 2 cash ‘I. However, the number of real solutions 
which give different energies can be less than N. In this case, 
there appear complex roots, i.e., Eq. (7) has non-trivial solu- 
tions for 6 and (or) 6’ related to 5 by [= i6 and e= r+ ia’. 
The energy of corresponding T electron levels is either out- 
side the above indicated intervals, if there are solutions for 6 
(out-of-band levels with I El > 2 cash q), or in the gap 
between these intervals if there are solutions for 8 (in-gap 
levels with I E I < 2 sinh I 7 I ) . In both cases the corresponding 
electron states are local, as can be seen from the definition of 
their molecular orbitals. In the limit r] + 0, the in-gap local 
states do not exist (see Eq. ( 12) ) . 

The manifestation of local states in heteropolyenes that are 
terminated by short ( 77 > 0) and long ( 7 < 0) bonds is qual- 
itatively different. Therefore, these two cases are examined 
below separately. 

v > 0. In the unsubstituted polyene, E = 0, all N states are 
band-like and the energies of these N,, + 1 valence and N,, + 1 
conduction states, which are determined by Eq. ( 11)) are 
located symmetrically below and above zero, respectively. In 
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the opposite limit I el = ~0, the finite part of the energy spec- 
trum includes 2N, levels, the position of which is also deter- 
mined by Eq. (11) but with the negative sign in the exponent 
and Nd+ 1 replaced by Nd. Formally, this corresponds to a 
dimerized chain with single bonds at its ends. In such a sys- 
tem, under the condition: 

(13) 

there are two levels, which correspond to electron local states 
placed symmetrically just below and above zero. 

Suppose first that inequality (13) is held. Then, as it can 
be easily proved by using Eq. (7)) there are no local states 
in a hetero-substituted polyene, if 

IEI <eif)=exp( -7) (14) 

there is one in-gap state and one out-of-band local state, if 

&!) 5 I EI < ~:,2) =exp( - 7) + 
2 

2N, cash 77 + eXp( - ‘27) 

(15) 
there are two out-of-band states and one in-gap state, if 

6~,2)44<e~,3)= exp(-q)+ 
2 

2Nd sinh 7 - eXp( - ?l) 

and finally, if 
(16) 

I El 2 EL?) (17) 

in the spectrum of the given type of the hetero-substituted 
polyenes there exist two in-gap and two out-of-band local 
levels. 

Note that at IEI =E$) for E>O (e<O) the HOMO 
(LUMO) state executes the transformation from the band- 
like to the local state, and correspondingly, at / el = eij) the 
same transformation occurs with the HOMO- 1 
(LUMO+ 1) state. Shifting with the increase of Iel, the 
HO-MO_- (or LUMO) level crosses zero at 1.~1 = 
4, = exp ( q( 2Nd i- 1) ) . This result is valid also for 7 < 0. 

Under the condition: 

(18) 

the behaviour of the local electron states with the increases 
of I E/ differs from that just described above only in that, at 
IEI = CT , ec3) the HOMO (LUMO) state executes the reverse 
transformation from the local to the band-like state. As a 
consequence, for I el 2 E,, , (3) there exist only two out-of-band 
local states. One can conclude therefore that, provided con- 
dition ( 18) is fulfilled, an arbitrary large perturbation is 
insufficient for the creation of two in-band local states. This 
property of the spectrum of symmetrical heteropolyenes (if 
77 > 0) was first noticed by Kventsel [ 81. 

Thus, in the given type of heteropolyenes, the regularities 
of the appearance and disappearance of local states in the 

spectrum of hetero-substitutedpolyenes, both in-gap and out- 
of-band local states, are completely determined by relations 
( 13)-( 18)) which directly follow from the exact secular Eq. 
(7). It is worth emphasizing that for 77 > 0 there can exist 
two, three, four or no local levels. The presence of only one 
local state in the T electron spectrum of the structure X- 
(CH),,,-X with r] > 0 is impossible. 

In [8], the conditions of the appearance of in-gap local 
states have been obtained (only for r > 0) in some asymp- 
totic limit. Probably for this reason the corresponding results 
of the cited paper, which pretend to be valid for finite values 
of Nd, turn out to be correct only in the limit Nd+~, when 
inequalities (14)-( 17) reduce to one. 

q < 0. This case has not been previously investigated. The 
reason was that real polyenes have double bonds at their ends, 
i.e., that 7 > 0. However, as already mentioned in the Intro- 
duction, it is expected [lo] that the optimal geometry of the 
lowest dipole allowed excited state in neutral heteropolyenes 
and of the ground state of ionic heteropolyene forms corre- 
sponds to single bonds at the chain ends. Besides, studying 
this case for large I EI is helpful for the understanding prop- 
erties of heteropolyenes with 77 > 0. 

Similarly to the above consideration, four regions can be 
distinguished by using Eq. (7). If inequality: 

(1% 

is held, the critical values of I ~1, at which changes in the 
number of the in-gap or (and) out-of-band local states occur, 
are now determined by the following relations: 

E(l)= exp( 171) - 
2 

CT 
2NdsinhlTl +exp( 1771) 

(20) 

ec3’=exp( 171) + CT 
2 

Inequality (19) represents the condition of the existence 
of two local states (HOMO and LUMO) in an unsubstituted 
dimerized chain with N atoms and single bonds at its ends. 
These two local states are present in the spectrum until 
l-3 <&!).TheLUMO(e>O) orHOMO(e<O) statetrans- 
forms into a state of the band-like type at I EI = ezf), so that, 
in the region ~6:) I; I E] < @, there exists only one in-gap 
local state. This state disappears at 1 el = e,$p’ simultaneously 
with the appearance of an out-of-band local state, and at 
I EI = ez:) the second out-of-band state appears. As a conse- 
quence, for I el 2 E,, (3) there exist two out-of-band local states. 

If the reverse to inequality (19) is fulfilled, there are no 
local states for 1~1 < &!), i.e., the HOMO and LUMO states 
are of the band-like type. The HOMO state transforms into 
an in-gap local state at I EI = E::) and back into a band-like 
state at I.4 = E::). The behaviour of out-of-band local states 
remains qualitatively unchanged. Thus, in the case of the 
negative sign of the alternation parameter, there can be one, 
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two or no local states in the T electron spectrum of molecules 
X-( CH) 2Nd-X. 

3.2. Molecules of the type X’--(CH),,,-X- 
-- 

This case is interesting not only because molecules of this 
type really exist, e.g., X+ = B (e=l), X-=N (E= -l), 
but also as the model of molecular quantum wires, where the 
electron site energies of the end atoms are shifted oppositely 
due to the contact with external positive and negative elec- 
trodes. Therefore, the dependence of the IT electron spectrum 
dependence on E can be helpful for the understanding of the 
molecular wire response to the applied potential - currently, 
one of most challenging issues in the field of molecular elec- 
tronics [ 171. 

Setting Q= - ey= E and pxcr) =exp rl in Eqs. (5) and 
(6)) one obtains for the normalizing factor: 

(E-E)* 

2 exp(2q) IA212 

=E[(2N,+3-sin((2N,+3)& sin-‘& 

X (exp( -217) +cos n/2 

-.?exp~Zsin((N,+l)&]/ 

[(Eexp(-7) WWd+ >O +QZl (21) 

where 5 is determined by solutions to 

~4exp(-2~)Z-1[exp~sin((fV,t2)~)texp(-q) 

sin( (Nf 1) 5/2) 
sin((~d+l)RlI,,,=sin((N-1)~,2) (22) 

TheNd -t 1 solutions of Eq. (22)) which are chosen exactly 
in the same way as described above, determine 2(Nd + 1) T 
electron energies. Obviously, the valence and conduction lev- 
els in this system are lying symmetrically below and above 
zero, irrespective of the sign and value of E. Due to this fact, 
the calculation of the 7~ electron spectrum is considerably 
simplified. 

The regions with the different number of local states are 
now determined by 

d*) = exp ( - 77) CT 

If 2 
112 

w 77 
2Nd sinh 77 - exp( ’ r1>0 - 7) 

I/2 

1t 
2 

w 77 
2Nd cash 7 i- eXp( - 7) ’ 17<0 

(23) 

Forq>Oande<e,, (‘I there are no local states, if condition 
( 13) is fulfilled (this is similar to the case of symmetrical 
heteropolyenes) . Two symmetrical out-of-band states appear 
at E= EC), which are the only local states in the region 
~2:) I E < E:;). And at values of E? ~2;) there exist two in- 
gap and two out-of-band local states. 

A sound distinction from the case considered in the pre- 
ceding subsection is that in-gap local states cannot be induced 
in the structure X’--( CH) 2Nd -X- by arbitrary large pertur- 
bation, if condition ( 18) is valid. 

For the negative sign of 7 and under condition ( 19)) two 
in-gap local states exist until E < ~2:). The ‘TT electron spectrum 
does not contain local states, if E$) I E< E::‘, and in the 
region E? e:f) it contains two out-of-band local states. If the 
inequality reversed to (19) is fulfilled, in-gap states cannot 
exist at any value of I ~1. Thus, under the condition: 

(24) 

the ‘in electron spectrum of heteropolyenes X’-( CH) 2,vd-X- 
does not contain in-gap local states independent of the sign 
of the alternation parameter and the absolute value of the 
Coulomb integral of heteroatoms. 

It is also worth emphasizing that due to the fact that in the 
given type of heteropolyenes, both HOMO and LUMO states 
can be local, their optical response, in particular, its depend- 
ence on the chain length, is expected to be substantially dif- 
ferent from that in symmetrical heteropolyenes. 

3.3. Molecules of the type X-(CH),,CH, 

As mentioned above, the one-impurity problem in finite 
polyenes has been addressed by Castafio and Karadakov [ 91, 
and by Kventsel [7] in the case of the semi-infinite chain 
with alternating bonds. But the behaviour of local states in 
the case of the negative sign of the alternation parameter has 
not been properly examined in those papers. 
, The normalization factor and the T electron spectrum are 

now determined by Eqs. (5) and (6), where ex= E, +=O, 
and Pxcn = exp 7, i.e., by 

(E- 2) 
exp(2q) 141’ 

exp(2rl) , 
=lf 

2E2 sir? ( ( Nd + 1) 5) (@+exP(27)))@(&+ 1) 

-E2 sin( (Nd+ l){) cos(N,&) sin-‘t 

+2 sin(N,t) sin( (Nd+2)& 

X(l+exp(-2q))]+2sin2t) 05) 

and 
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E= 
exp( -27) sin( (Nd+ l)[) +sin((N,+2)5> 

Esin( (Nd+ l)[) 7-0 

= +sW(N+ 1)5/2) 
sin( N[/2) (26) 

respectively. 
For E= 0 Eq. (26) coincides with the Lennard-Jones Eq. 

(1 l), whereas in the limit I el + 03, the finite part of the 
spectrum corresponds to a dimerized chain consisting of 
2N, + 1 C atoms, that is (see Appendix): E=O, 
I$(‘)= + (-) [2[cosh(27) +cos(~~~/(N~))]]“~, where 
k takes positive integer values, 1,2, . . . , Nd. One of 7i electron 
levels is infinitely distant, E - E. 

For finite perturbations the analysis of Eq. (26) again has 
to be carried out separately for positive and negative signs of 
7, since the dependence of local levels on E in these two cases 
is substantially different. 

77 > 0. As distinct from the case of symmetrical hetero- 
polyenes, there exist only three regions, which are determined 
by 

1 
6, (i)=exp( -7) + 

2(N,+ 1) cash v 

and 

P) = exp( - 7) + 
1 

CT 2(N, + 1) sinh 7 (27) 

and which are distinguished from one another by the number 
of local states: no local states, if I el < eif), one out-of-band 
local state, if e(l) I I e I < d2) CT cT , and one out-of-band and one 
in-gap local state, if E> e,, . (‘) These conditions coincide with 
those obtained in [ 91. 

Unlike the case of two heteroatoms, the qualitative behav- 
iour of the spectrum is independent of the particular relation 
between the chain length and the value of the alternation 
parameter. It can also be concluded from the analysis of Eq. 
(26) that the HOMO level cannot be raised above zero (or 
the LUMO level be lowered below zero) by an arbitrary large 
perturbation of only one end atom. 

q < 0. In this case, the qualitative behaviour of the spec- 
trum becomes dependent on the relation between the chain 
length and alternation parameter, Precisely, if inequality ( 19) 
is fulfilled, i.e., the HOMO and LUMO states in the unper- 
turbed chain are local, they remain as the local type until 

I.51 <&!)=exp 171 - 
1 

2(N,+ 1) sinh 1~1 (28) 

At IE] =.&‘) the LUMO (if e>O) or HOMO (if e<O) 
state transforms into a band-like state. The spectrum contains 
one in-gap local state in the interval: 

&)s 1.~1 <@=exp 19-j + 
1 

2(N, + 1) cash r) (29) 

and at 1~1 = E;:) an out-of-band local state appears. So, in 

region I EI > ei:) there exist one in-gap and one out-of-band 
local state. As I ~1 + ~0, the energy of the former tends to zero, 
whereas the energy of the latter goes to infinity. 

As it can be shown from Eq. (26), if inequality (24) is 
fulfilled, the above definition of critical values &‘, i= 1, 2, 
changes in the following way: 1 

2(/V,+ 1) sinh lql -exp Iql, ITI >+ln$$, a 
d (1) = %r 

1 
2( Nd + 1) cash 77 +exp 171, Irll <$ln$$, b 

d 

1 

2(N,+ 1) cash 77 +exp 171, 171 >:I,$$, d 
a 

(2) = EC, 
1 

2(/V,,+ 1) sinh lql -exp 171, Iv1 <ilnNe, b 
d 

(30) 
Now there are no local states for 1~1 <CL,‘). At I E] = &!), 

depending on the relation between Nd and 171, either an in- 
gap (a) or out-of-band (b) local state appears (sceEq. (30)) 
which remains the only local state in the region 
E:,‘) I 1 E( < e::). And the second local state, either an out-of- 
band (a) or in-gap (b) state appears at I ~1 = E$), so that in 
region e 2 ei,2) two local states of both types are present in 
the spectrum. 

The effect of a single impurity on the IT electron spectrum 
of a semi-infinite alternating chain has been examined by 
Kventsel [ 71, His results related to the case 77 < 0 need some 
comments. First, the crucial role of the relation between Nd 
and I 71 in determining the spectrum of local states has not 
been recognized. In the other words, the conditions (19), 
(24)) and (30a,b), which determine the above-discussed dif- 
ferent types of the local state spectrum have been overlooked. 
Second, it has been concluded in [7] that “. . . for arbitrary 
value A Q (here E) there is one and only one ‘surface’ (i.e. 
local) level”. This statement is obviously not correct. 

Summarizing, the character and evolution of the local state 
spectrum in structures X-( CH)ZN,,-CH2 with v < 0 in 
response to changes of E are substantially dependent on the 
relation between Nd and I?], Under condition ( 19)) there are 
two in-gap local states, if 1~1 < eif), one in-gap state in region 
Ep I I El < Eg’, and one in-gap and one out-of-band state, if 
IEl2Ecr * (‘) Under condition (24) there are no local states in 
the first of the indicated regions. The relation between Nd and 
I 77 I in this case also determines which of local states, the in- 
gap or out-of-band, appears first at I EI = ehf ) (see Eq. (30) ) I 
For values of I E/ z e$) there always exist one in-gap and one 
out-of-band state independent of the sign and magnitude of 
the alternation parameter. 

3.4. Asymptotic limit 

To conclude this section we consider energies of the fron- 
tier MOs in the asymptotic limit Nd-+m. In this case, the 
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Table 1 
Frontier MO energies in the asymptotic limit 

Heteropolyene type State Energy (in units /p / ) 

E>O E<O E>O E<O 

X-(CHh,v,,-- X 

.X+-(CH),,,X- 

X-(CH)wd-- CH? 

Ideal polyene H,C-( CH) w +_- (J-L 

LUMO + 1 2 sinh 7) GZ 2sinh 1~1 2 sinhlql 
LLJMO 2 sinh 7 %I %I -Gz 
HOMO -Gl -2sinhT G -Ep, 
HOMO - 1 -J% -2sinhq -2sinh 171 -2 sinhlql 
LUMO + 1 2 sinh 7) 2 sinh 77 2sinh 171 2sinh Iv/ 
LUMO Gl Gt K GZ 
HOMO -Gt -Ei”, -G -G 
HOMO - 1 -2 sinh 7) -2sinh 1~1 - 2 sinh 17 -2 sinh 1~1 
LUMO + 1 2 sinh 71 2 sinh 77 2 sinh 1~1 2 sinh 171 
LUMO 2 sinh 71 G GE 0 
HOMO -G -2 sinh TJ 0 -Gl 
HOMO - 1 - 2 sinh 77 -2sinhq -2 sinh 171 -2sinh Iv/ 
LUMO t 1 2 sinh 77 2 sinh 77 2sinh 171 2 sinh 1~1 
LUMO 2 sinh 77 2 sinh 7) 0 0 
HOMO - 2 sinh 77 -2sinhT 0 0 
HOMO - 1 - 2 sinh 17 -2 sinh 77 -2 sinh 1~1 -2sinh 1~1 

secular equation has analytical solutions for the energies of 
local states, providing a helpful estimate of the hetero-sub- 
stitution effect on the relative position of the frontier MO 
energies, which is of particular interest for the comparison 
with experiment. 

It can be shown that three secular equations considered 
above, i.e., Eqs. (7)) (22) and (26)) give the same solution 
for 6and 6’: 

exp 8=i{[(?-exp(-2q))2+4Pexp(2q)]112 

-exp( -27) +8} 

and 

exp 8’=$[($-exp(-2~))2+4$exp(2~)]‘/2 

+ exp( - 29~) - P} 

which determine non-zero energies of local states, 

(31) 

(32) 

The in-gap local state energies for all three types of het- 
eropolyenes are summarized in Table 1, where we use the 
notation: 

Ei”,= 2cosh(27)-2cosh 
( [ 

lni([($-exp(-2q))2 

l/2 

+4E2exp(2~~)]“~+exp( -2~) -8) I) 
In the asymptotic limit, the conditions of the existence 

of in-gap local states reduce to the following ones: 
I~l>exp(-~),if~>O,andI~l<exp(1~/),ifr/<O. 

The’energy of out-of-band local states is determined by the 
following quantity: 

cut= 2cosh(27)+2cosh lni ([(i!-exp( -2~))~ 

I) 
112 

f42 exp(27))] 1’2 -exp( -2~) +E2) 

In structures X-( CH) 2Nd+co- X, the energy of the out-of- 
band local state is equal to + ( - ) J$“, for E > 0 ( E < 0) (it 
corresponds to a double degenerate state) ; in X+- 
(CW 2Nd-,m-X- to &KU, for two levels below and above 
the continuous spectrum; and in X-( CH),,,,,-CH, there 
exists the same but non-degenerate out-of-band local state as 
in the symmetrical heteropolyene. The condition of the exis- 
tence of out-of-band local states is I ~1 > exp(,- 17). 

As seen from Table 1, the relative position of the frontier 
MOs is substantially influenced by the substitution of end C 
atoms and, additionally, it is very sensitive to the type of 
substitution. 

In real (finite) heteropolyenes, the dependence of the 
energy difference between the T electron states responsible 
for the most intense optical transitions (e.g. ELUMo - EHOMO) 
on I E/ is far more complex than that presented in Table 1. 
Because of this and also because of its importance, it deserves 
special discussion that will be given in a forthcoming 
publication. 

4. T-Electron spectrum 

In this section we discuss the dependence of the full T 
electron spectrum of heteropolyenes on the perturbation 
introduced by the presence of heteroatoms. The effects of 
hetero-substitution are exemplified by two representative 
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Fig. 1. Graphical solution of Eqs. (9) for / 71 =0.1333, the experimental value [ 171, and Nd chosen to fulfill conditions (13), ( 19) (N,=2), and (18), (24) 
(Nd =4). Curves * and + (0 and 0) correspond to the dependence of the left-hand side of the upper (lower) equation on x (the variable defined in the text) 
for E> 0 and E< 0, respectively. The horizontal lines correspond to E= ~2) =0.87 (~7=0.1333) and E= ecr (2)=1.14 (q=-O.l333).Thesolutionsaregiven 
by the x coordinate of intersections of curves * , t , 0, and 0 with the horizontal line. 

cases of hexatriene (Nd = 2) and decapentatriene ( Nd = 4), 
calculated for the typical value of the alternation parameter, 
I 77 I = 0.13 [ 181. It is worth emphasizing that the n-electron 
spectrum transformations in response to changes of the per- 
turbation ‘visualized’ below for Nd = 4 remain qualitatively 
similar in longer chains. Therefore, we take a comparatively 
small value of N,, in order to make transparent graphical 
illustrations. Using Eq. (9), ( 12)) or (26)) one can easily 
obtain the exact T electron spectrum practically for an arbi- 
trary chain length. The asymptotic limit N,, +cc can be 
described analytically (see Section 3.4). 

Consider first symmetrical substitution, in which case in- 
equality ( 13) is valid for the heterodecapentatriene, whereas 
( 18) for the heterohexatriene. A useful look at the hetero- 
polyene n electron spectrum is provided by the graphical 
solution of Eq. (7). In practice, it is more convenient to use 
for this purpose Eqs. (9). The analysis of these equations 
shows that they have real roots for 0 < [< ‘TT, 6 < 0 ([= is), 
and 6’ I 277 ([= T + is’), which determine Zr\i, + 2 T elec- 
tron energies. Therefore, the intersections of curves, which 
represent the dependence of the left-hand side of Eqs. (9) on 

x (x=6 for x<O, x=5 for O<x<n, and x=6’ for 
n<x_<27) with the horizontal line at the value of E in the 
ordinate axis, give all desired solutions of Eqs. (9). The 
dependence of the left-hand side of Eqs. (9) on x is shown 
in Fig. 1: curves :i: and + (0 and 0) correspond to the left- 
hand side of the upper (lower) equation for E > 0 and E < 0, 
respectively. The horizontal line corresponds to E= 6::) in 
Fig. l(a) (7=0.1333) and E=@ in Fig. l(b) (q= 
-0.1333). 

In this representation of solutions to Eqs. (9), the inter- 
sections with the e-line occurred within intervals x<O, 
0 IX< r and T <x I 27~ and correspond to energies of out- 
of-band local states, band-like states and in-gap local states, 
respectively. Hence, the critical values of 1~1 defined in Eqs. 
(14)-( 17) are determined by intersections of curves shown 
with vertical lines x = 0 and x = T, For the given choice of 
parameters and r) > 0 these critical values, I$), i= 1,2,3, are 
equal to 0.87, 1.28,5.0 for hexatriene, and to 0.87, 1.1, 11.2 
for decapentatriene. In the case 77 < 0, then the critical values 
of IE] are: e,(f)=0.05, 1.14, 1.53 (N,=2) and 0.24, 1.14, 
1.36 (N,, = 4) for i= 1, 2, 3, respectively. Intersections of 
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Fig. 2. Dependence of the position of rr electron levels in heteropolyenes of the type X-(CH) 2Nd-X on E= cr, - cyc, the difference in the Coulomb integrals 
between the guest (X) and host (C) atoms. The heteropolyene parameters are the same as in Fig. 1. The edges of the spectrum of band-like states correspond 
to IEI =0.2674,2.0178, the horizontal lines. The last points on the right show the level positions in the limit ~=a. The critical values of 1~1 (see definitions 
in Eqs. (14)-( 16) and (20) ) are marked by vertical strokes in the c-axis from left to right: E, (‘)=0.87 (a, N,=2, 4), 0.05 (b, N,=2), 0.24 (b, N,=4); 
@=l 28 (a, N,=2), 1.1 (a, N,=4), 1.14 (b, N,=2, 4); Q (3)=5.0 (a, N,=2) 11.2 (a, N,=4), 1.53 (b, N,=2), 1.36 (b, N,=4). The value of l 0 
(~HoM~(e,$ =0) is equal to 1.95 (a,N,=2), 3.35 (a, N,=4), 0.51 (b, N,=2), and0.30 (b, N,=4). 

curves with each other at E= e:f) indicate that, at this value 
of I ~1, Nd valence and N,, conduction band-like states are 
placed symmetrically below and above zero. 

Note that if inequality ( 13) is fulfilled (as for Nd = 4) and 
17 > 0, the last ‘curve to the right intersects with the vertical 
line x= T twice (see Fig. 1 (a)). This corresponds to the 
transformation of the HOMO (if E > 0) or LUMO (if E < 0) 
state into an in-gap local state at a smaller value of I el and 
to the reverse transformation into a band-like state at a larger 
value of I E/ . Under condition ( 18) (as for Nd = 2 and same 
value of 7)) two curves intersect with line x= 7~. This indi- 
cates that, with the increase of I ~1, first the HOMO or LUMO 
state and then the HOMO - 1 or LUMO + 1 state execute 
transformation from the band-like to the local state. The 
behaviour of the last curves to the right in Fig. 1 (b) (q < 0) 
can be interpreted in a similar way. 

substitutors, for which the value of 1 EI usually varies from 1 
to 3, is very likely. In particular, it is seen from Fig. 1 (a) 
that, in hexatriene and decapentatriene, the substitution of 
end carbon atoms by boron ( E = 1) should result in the trans- 
formation of the HOMO state into an in-gap local state. The 
same transformation but with the LUMO state is expected in 
the case of the substitution by nitrogen (E = - 1) or oxygen 
(E= - 1, -2) atoms. 

The overall changes of the spectrum in response to the 
increase of E ( > 0) are displayed in Fig. 2. The critical values 
&) i = 1, 2 and 3 are marked by vertical strokes on the cr 3 
e-axis from the left to right. Besides, the values of 
e. = exp( 77( 2N, + 1) ) , at which the HOMO (LUMO) level 
crosses zero, are also indicated. These are: 1.95 (7 = 0.133)) 
0.51 (q= -0.133) and 3.35 (~=0.133), 0.30 (q= 
- 0.133) for Nd = 2 and Nd = 4, respectively. 

From the practical point of view it is interesting to note The appearance (disappearance) of local states in this 
that the magnitude of I E I needed for the appearance (disap- figure corresponds to intersections of dotted curves (each 
pearance) of in-gap local states is quite moderate. Therefore, represents the v electron energy dependence on E) with hor- 
the change in the nature of the HOMO or LUMO state in real izontal lines which show boundaries of band-like states in the 
polyenes under the substitution of end C atoms by possible valence and conduction bands. The in-gap states are lying 
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Fig. 3. Same dependence as in Fig. 2 (and same correspondence) for Xc-(CH),-X-. The critical values of 1~1 (see definitions in Eq. (23)) are: $j) = I.08 
(a,Nd=2), 0.974 (a,N,=4), 1.32 (b,N,=2),0.49 (b,N,=4); @=3.12 (a,N,=4), 1.21 (b,N,=4). 

between two inner horizontal lines. The last dots to the right 
indicate the position of 2N, IT electron levels in the limit E = m 
(two levels are infinitely distant). The HOMO and LUMO 
levels are represented by the (Nd + 1) th and (Nd t 2) th 
curves from below, respectively. 

The dependences presented in Fig. 2 give a representative 
visual quantitative picture of the evolution of all IT electron 
levels in symmetrical heteropolyenes with changes of the 
Coulomb energy of heteroatoms. In calculations, E has been 
assumed to be positive, i.e., the electron site energy on het- 
eroatoms to be higher than that on C atoms. For negative 
values of E the corresponding picture can be obtained by 
simply replacing positive and negative energies in Fig. 2. 

Now we briefly discuss the main distinctions of the 7i 
electron spectrum in heteropolyenes of the types X+- 
(CH) 2Nd-X- and (CH),,,-CH, (Figs. 3 and 4)) respec- 
tively, where the representation of the results (parameters, 
notations, etc.) is completely identical to that in Fig. 2. 

The spectrum of X+-(CH),,,,-X- is symmetrical with 
respect to zero at any value of E and, therefore, only the 
dependence of the conduction IT electron levels is shown in 
Fig. 3. The most remarkable feature of this dependence is 
that, under the positive sign of the alternation parameter, the 
LUMO level is lowering with the increase of I ~1, whereas 
the rest of the Nd conduction levels go up. This is not so for 
q<O, in which case all conduction levels are rising (all 

valence levels are lowering) with I ~1 (see Fig. 3 (b) ) . Thus, 
it can be unambiguously concluded that the HOMO-LUMO 
gap in this type of heteropolyene is monotonically decreasing 
(if 77 > 0) or increasing (if 77 < 0) as a function of 1~1, inde- 
pendent of the heteropolyene length. In contrast, the HOMO- 
LUMO gap versus IEI dependence in symmetrical 
heteropolyenes can be qualitatively different (and also non- 
monotonic) in heteropolyenes of different length. 

As seen from Fig. 4 (and was expected) the dependence 
of the n electron spectrum on 1~1 in asymmetrical hetero- 
polyenes is qualitatively similar to that observed in symmet- 
rical ones. It is obviously weaker. In particular, the HOMO 
(LUMO) level cannot cross zero energy. There are only two 
critical values of I el (indicated by vertical strokes) at which 
certain T electron states are transformed from the band-like 
type to the local type and vice versa. An important distinction 
of this kind of heteropolyene is that, in the limit 1~1 + w, the 
HOMO (or LUMO) state has zero energy, the property char- 
acteristic for polymethines. 

5. Conclusions 

Using the Green function formalism, the Hiickel problem 
is exactly solved for the model of finite polyenes, which 
incorporates the bond length alternation and the possible 
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change of the Coulomb and resonance integrals produced by 
the substitution of end C atoms by heteroatoms. For three 
major types of heteropolyenes, X-( CH) 2Nd-X, Xf- 
( CH)2Nd-X-, and X-( CH) 2Nd-CH2, the eigen-value prob- 
lem, which demands solving a set of 2N, + 2 linear equations, 
is reduced to the solution of only one transcendent equation. 
This provides a powerful tool for studying the whole IT elec- 
tron spectrum as a function of characteristic parameters. The 
closed form of the MO coefficients in terms of solutions of 
the secular equation is also found. These fomral results make 
available any desired characteristic of the indicated types of 
heteropolyenes for a quick and reliable analysis. 

In fact, the model considered above has much wider appli- 
cations. In particular, the system X+-(CH),,-X- obvi- 
ously belongs to the type of donor/conjugated-bridge/ 
acceptor (DBA) sequence which is intensively discussed in 
the literature in the context of potential molecular wires, 
switches, etc. (see, e.g., [ 19,201 and Refs. therein). The 
exact results presented in Section 3.2 suggest both a helpful 
guide for more elaborate quantum-mechanical calculations 
such as in [ 191, and a reliable test for heuristic DBA models 
[ 201. The use of molecular orbital coefficients defined in 
Eqs. (3), (4) and (6) in calculations of the donor-acceptor 
electron transfer rate, second-harmonic generation and other 
quantities of interest is straightforward, but this is another 
story that deserves separate discussion. 

In this paper we focus mainly on the local state spectrum 
and its dependence on characteristic parameters in both cases 
of double and single bonds on the heteropolyene ends. How- 
ever, the relations derived in Sections 3.1-3.3 with the 
replacement e--t gefi remain valid in the case of an arbitrary 
end group (including the perturbation of the end C-C bonds). 
Of course, the effective (energy-dependent) ‘parameter’ eeff 
should be specified for each particular substituent. In terms 
of Hiickel parameters this can be done for the end group of 
arbitrary complexity. 

In the case of heteropolyenes, a number of new results as 
well as some corrections to previous conclusions have been 
presented throughout the discussion. These results establish, 
in particular, the relationship between the heteropolyene par- 
ameters and peculiarities of in-gap local states which are 
directly reflected in the optical response of heteropolyenes. 
Therefore, the regularities discovered can guide the search of 
polyene-based compounds with novel optical and electrical 
properties. Concrete suggestions developed on the basis of 
the above-presented theory are in preparation. 
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Appendix 

Expressions for Green functions 

Keeping in mind that, apart from calculations of the ‘in electron energies and molecular orbital coefficients for heteropolyenes, 
the Green functions appearing in Eqs. (4)-(6) can be used in a number of other applications, e.g. studying electronic properties 
of branched polyenes [ 211, we present in this Appendix the full list of the Green function matrix elements. 

The matrix elements Gj,j,, which describe an alternating chain with an even number of atoms, are connected with the Green 
function for a chain with an odd number of atoms (denoted below as ~j,j,) by the following relations: 

Gj,j, = Gj,j, + GjsN- IeN- l,jt 
Eexp( -2~j) -G,,i’ 

j,j’ #N 

and 

GN,jr=exp( - ~1 
6N- l,jr 

E exp( - 2~7) - Gi,i’ 
j’#N 

where the Green functions G and e refer to chains with N= 2N, + 2 and 2N, + 1 atoms, respectively. 
In an unperturbed polymethine chain with 2N, + 1 atoms, apart from Nd valence (v) and Nd conduction (c) IT electron states 

(their MO coefficients are denoted below by A$“(‘), k= 1, 2, . . ., NJ, there is an electron state with zero energy. For the MO 
coefficients of the latter state, the non-bonding orbital, we will use the notation Ajo. In terms of the MO coefficients, the matrix 
elements of 6 take the form: 

(A3) 

Finding the unperturbed solution to Eq. (2) for odd values of N is elementary and gives for the bonding and anti-bonding 
MO coefficients: 

+ exp( - q) sin 

where l$“(‘) = + (-)[2[cosh(27) +cos(nk/(N,+1))]]1’2, and for the non-bonding MO coefficients: 

1 - exp(h) 1 
l/2 

(-1)o’-“‘2exp((j-1)~) 
1 -exp(2(N+ 1)~) ’ 

j=21- 1 
A;= 

I 0, j=21 

Substituting Eqs. (A4) and (A5) in Eq. (A3) and performing summation, one obtains: 

Esin(l& sin((N,-1’+1)() 
) 151’ 

62[,21’ = 

sintsin((N,+l)& 

[sin(@) +exp( -277) sin((l-l)Q][sin((N,-l’+l)n +exp( -277) sin((N,-1’+2)~], I~5;, 

626 1,21’- 1 = 

Eexp(-27) sincsin((N,+l)& 

(A4) 

(At2 

(A7) 
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I exp ’ 
sin(@ sin((N,+I’+l)& 

sin [sin( (Nd + 1) 5) +exp( -7) 
sin(@) sin((N,-i’+2)8, 1<1, 

sin csin((N,+l)n 

sin((N,-z+1)5)Csin(ln+exp(-2~7) sin((l-lIDI, I=L, 
exp( -q) sin .$sin( (Nd+ l).$) 

Using the above equations in Eqs. (Al) and (A2) we get: 

Esin(l&[exp( -27) sin((N,-1’+l)n +sin((N,-I’+2)&], 111, 

G 
sine[exp(-27) sin((N,+l)n+sin((Ndt2)5>] 

21,21’ = 

l-l’, 121’ 

E[sin(@ texp( -27) sin((l-l)[)] sin((Nd-L/+2)5), 111, 

G21- 1,21’- I = 

sin[[exp(-2~)sin((N,tl)&+sin((N,t2)&] 

(‘48) 

C-49) 

(AlO) 

E2 sin( It) sin( (N,, - I’ t 2) 0 

sint[exp(-7) sin((Ndtl)LJ)+exp~sin((N,t2)~)]’ ‘<I’ 
G Z&21’ - 1 = (All) 

[sin(IO+exp(-27) sin((Z-l)&][exp(-27) sin((Nd-I-tl)[)+sin((i?J,-i+2)5)], 1=1, 
exp(-7) sin[[exp(-27) sin((N,+l)[)+sin((N,+2)()] 

G21- l,21! = 
[sin(l&+exp(-27) sin((l-l>O][exp(-27) sin((Nd-I’tl)& tsin((N,-I’t2)[)], 1<1, 

exp(-v) sint[exp(-27) sin((N,+l)atsin((N,t2)&] 
(A121 
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