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Abstract 

Influence of the electric field on the quantum point contact (QPC) differential conductance is studied in two cases of 
well-developed transmission spectrum of (a) step-like and (b) resonance character. These are exemplified by a symmetric 
rectangular constriction and double-bend constriction in two-dimensional electron gas. It is shown that an additional 
structure in the constriction-conductance dependence on the Fermi energy (referred sometimes as half integer quantiz- 
ation) reflects the specific field distribution in the contact region at moderate fields and is washed out by nonlinear field 
effects produced by the potential variation inside the contact. To study field effects, we suggest an analytical expression 
for the transmission probability, which includes as particular cases two models used previously to confirm and to reject 
the possibility of the QPC conductance quantization by value eZ/h. We also briefly discuss the case of resonance doubling 
accompanied by two-times decrease of the resonance intensity, representing another example of transformations in the 
QPC conductance, which have the same origin. 

1. Introduction 

The current carried by ballistic electrons con- 
fined in a two-dimensional (2D) infinite wire is 
quantized as a function of the Fermi energy. The 
current quantization is due to the fact that each 
propagating electron state associated with a 
subband (or mode) of the transverse quantization 
contributes 2eZ/h to the wire conductance [1]. In 
practice, this effect reveals itself, in particular, in the 
current through narrow (of the order of the Fermi 
wave length) constrictions in the two-dimensional 
electron gas (2DEG) [2, 3]. However, since such 
a constriction or quantum point contact (QPC) 
bears a little resemblance of an ideal 2D wire, the 
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manifestation of the QPC conductance quantiz- 
ation is far from just observing steps in the conduc- 
tance versus Fermi energy dependence, denoted 
hereinafter by 9(Ev). The constriction shape [4], 
impurities and other QPC irregularities [5, 6], the 
temperature [-7] considerably affects the Q P C  bal- 
listic conductance in the scale 2e2/h. Electric field 
effects are among those inevitably present in 
measurements of the QPC conductance. The role of 
the former factors extensively discussed in a num- 
ber of papers seems to be understood fairly well. 
With regard to the electric field effect, there still 
exist serious contradictions in theoretical predic- 
tions. In particular, some calculations claim that 
electric field produces additional steps in the 9 ver- 
sus Ev dependence [8-11],  while the others reject 
the existence of the definite structure similar 
to quantization in scales other than 2eZ/h [12]. 
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It should be emphasized that above-mentioned 
contradicting conclusions were obtained under dif- 
ferent assumptions concerning the applied poten- 
tial distribution in QPC. Therefore, it remains un- 
clear what is decisive for the presence or absence of 
the "additional quantization effect". 

In this work, the total voltage drop V is assumed 
to be a combination of an abrupt change in V at the 
ends of a rectangular constriction in 2DEG (non- 
adiabatic QPC model) supplemented by its linear 
variation inside the constriction, so that previous 
models [11, 12], which diverge in their predictions, 
are included as particular cases. This enable us to 
confirm that both results were correct within the 
postulated models. It will be shown that, on the one 
hand, an additional structure, which to an extent 
resembles the half-integer conductance quantiz- 
ation, indeed may appear in the g(Ev) dependence. 
But, on the other hand, since the particular form of 
this additional structure is strongly influenced by 
the magnitude and distribution of the applied volt- 
age (under certain conditions it does not at all 
appear), the new steps distinguished in g(EF) de- 
pendence can hardly be referred as additional con- 
ductance quantization. 

We also pay attention to peak doubling in the 
conductance spectrum. This effect has the same 
origin as the appearance of additional steps in the 
conductance versus Fermi energy dependence. 
Such a possibility is demonstrated by calculations 
of the conductance for a QPC shaped as a double 
bend constriction in 2DEG, which has been already 
realized experimentally and is suitable therefore for 
verification of the predicted effect. 

2 .  B a s i c  r e l a t i o n s  

We start our discussion with the Landauer for- 
mula for the QPC conductance at zero temperature: 

t e°+~ev 
= T(e, V)de 

g ~ 3U(E°-(1-fl)eV) 

= f lT(E ° + fleV) + (1 - f l )T (E  ° + (1 - f l )eV)  

f E~ +fleV T(e, V)de (1) + 
jUtE°-(1 fl)eV) OeV 

where U(x) = x (0) for x ~> 0 (<  0), E ° is the Fermi 
energy in the absence of the source-drain electric 
potential difference eV >1 O, and T(~:, V) denotes 
the through QPC transmission coefficient. 

Eq. (1) implies that the current carriers are at 
equilibrium on both sides of the contact, where the 
electrochemical potential is shifted (in comparison 
with the zero voltage case) by + fieV (0 ~< fl ~< 1) 
and - ( 1  - B)eV in the source and drain reservoirs, 
respectively. For  a symmetric QPC, in which case 
the transmission coefficient is independent of the 
applied potential sign, T(e, V) = T(e, - V), one 
has from Eq. (1) for small biases, eV/E ° ~ 1, 

g(v~o) = flTo( E° + fleV) 

+ (1 -- f l)To(E ° -  (1 - fl)eV) + O(eV/E°), (2) 

where To(c) - T(e, 0). 
Note that in an idealized case of fi = ½ and 

To(Ej < E ° < Ej+I) = j ,  where Ej is the energy of 
the jth propagating mode opening in an unbiased 
QPC, the linear-response QPC conductance is, in 
accordance with Eq. (2), a quantity that takes half 
integer values only (with the accuracy to correc- 
tions ..~eV/E°F). This is the result of Glasman and 
Khaetskii [8]. 

First, we consider the QPC model shown in 
Fig. l(a), which represents a particular realization 
of the wide-narrow-wide (WNW) structure 
(Fig. l(c)) with infinite width of wide parts and 
constriction parameters expressed in the lattice site 
numbers denoted hereinafter by N (width) and 
N 1 (length). The dynamics of a free electron in the 
given lattice is supposed to be determined by the 
electron transfer energy L (L < O) between the 
nearest lattice sites. In other words, the ls tight- 
binding model is used to describe electron propaga- 
tion through the constriction. 

Strictly speaking, the electron potential energy 
profile inside the contact must be found self-consis- 
tently by solving the Schr6dinger and the Poison 
equations. Instead, it is assumed to be constant on 
both sides of the constriction and to vary inside it in 
the following way: it is equal to fiVin on the border 
sites labeled by 1 in Fig. l(c) and falls linearly up to 
the value - (1 - fl)Vin on the sites labeled by N1. 

For the model just specified the transmission 
coefficient is usually found by means of numerical 
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Fig. 1. Models of rectangular (a) and double-bend (b) constric- 
tions in the two-dimensional electron gas (dashed areas are 
inaccessible for electrons). Lattice model of wide narrow wide 
configuration e includes model a as a particular case. The 
interrelation between the continuous and discrete parameters of 
constrictions a and e is given by l = (N1 - 1)a and w = (N + 1)a, 
where a is the lattice constant. 

solution of  the corresponding scattering problem. 
However,  the theory can be also advanced to nearly 
exact analytical expression for T(e, V). For the case 
V = 0, such an expression has been recently found 
[ 13]. The generalization of  the formalism suggested 
in the cited paper to the case of  an arbitrary bias is 
straightforward and, therefore, omitting details we 
present here only the final result for the transmis- 
sion coefficient (the electron energy e and the poten- 
tial difference eV are in units 21LI): 

where the quantities A f  = (2/nZ)kth s in2(k th j )  x 

[91(Ai(e  +v)) + i 3 ( A j ( e  +v))] ,  

f~  ..... " - ~  x / 1 - ( 2 - c o s x - e ) ~  
~ ( A j ( e ) )  = d x  ( c o s x  - c o s k t h j )  2 

• 2 n x  fsm (~,~), even j, 
X ~COS2/  rex ,~ 

~2kt~J, o d d  j ,  

L 3(Aj (e ) )  = d x  ~ / ( 2  - c o s  x - e):  - 1 

. . . . .  ~1 -~) (cos  x - c o s  k ,h j )  2 

• 2 n x  fstn (~,~), even j ,  
X /COS21 nx ~ ~2k,~,, o d d  j ,  

appear due to nonorthogonal i ty  of the basis func- 
tions which describe the transverse electron mot ion 
in wide and narrow parts of the W N W  structure, 

~ .  
the notation G,J.,, represents a certain combination 
of one-dimensional  Green functions which describe 
the longitudinal electron mot ion in a biased con- 
striction with N~ sites in length, namely, 

~ .  
[ J , ,  (z) Y~j+ a -u , ( z )  - Y,j(z)Jvj+ 1 -N,(z)]  G.~,.,(e, Vin) = 

J v j ( z ) Y ~ j u , ( z ) -  Y,,~(z)J,,j u,(z), n = n ' =  1, 

J~,+ ,(z) Y , ,+,  -u , (z )  

- Y,,j+l(Z)J~i+ 1 _u,(z), n = n' = Na, 

2/(nz) ,  n = I (N1) ,  n'  = NI(1) ,  

and also the following abbreviations are used 
kth = n / ( N  + 1), rJ+v = 2 - -  Cos(kthj )  - -  e +v,  e + v  -- 
e + ( 1 - - f l ) e V ,  e - v =  r,-- fleV, z = (Nl  -1)/eVi, ,  
vj = (2 - cos(kthj) -- e + fleVi,)z, J~(z), Y,.(z) - the 
Bessel functions of the first and second order, re- 
spectively. 

Eq. (3) has proved to be in excellent agreement 
with results of exact calculations. To  an extent this 
is not surprising since the reservoir- and constric- 
t ion-mode mixing is most ly  taken into account in 
overlapping integrals A +,  and exactly found Green 
functions include contribution coming from all 
modes  referred to an unbiased constriction. Note  
that for the symmetric Q P C  structure fl should be 
set equal to ½ (and this value was used in all calcu- 
lations presented here). However,  it is useful to have 

N ~(A;)~(Af)(G~,,1)2 
T ( e , V ) = 4  y__ ~j  . . + ~j  . 

, I - < v  ( G l a  tAj  )(Gu,,N, e l y  i A f )  ~i  2 2 '  
- =  . . . .  [(GN,.,] I 

(3) 
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a possibility for quick evaluation of field-asym- 
metry effects by varying the value of ft. For this 
reason Eq. (3) has been derived for arbitrary values 
of this parameter. 

As mentioned above, some models previously 
studied in the effective mass approximation are 
included in the present one as particular cases. The 
corresponding results can be restored by using 
Eq.(3) with sufficiently large N, precisely, in the 
continuum limit: kth ~ 0, a(N + 1) = const, where 
a is the lattice constant. In this limit, the relation- 
ship between the discrete and continuous para- 
meters of the constriction is as follows: 
a(N +1) = w the constriction width and 
a(Na - 1) = l - the constriction length, see Fig. 1. If 
we set fl = 0 and V = Vin, the electron potential 
profile coincides with that assumed by Castafio and 
Kirczenow [12]. By setting Vin = 0 we arrive at the 
model of an abrupt electric potential drop at the 
entrance and exit of the constriction considered by 
Hongqi Xu [11]. 

We are aware of only one analytical expression 
for the through constriction transmission coeffic- 
ient obtained so far and worth mentioning here. 
This is an expression suggested by Szafer and Stone 
[14]. Formally, it follows from Eq. (3) in the con- 
tinuum limit at V = 0, but differs in the definition 
of the overlapping integrals Aj. As a consequence, 
Eq.(3) describes the transmission spectrum with 
high precision, whereas its analogue in Ref. [14] 
does this with noticeable deviations from exact 
results (for more detailed discussion of this point 
see Ref. [13]). 

We now turn to the QPC model shown in 
Fig. l(b). The zero-field transmission coefficient for 
this type of constriction can be expressed in terms 
of solutions of the scattering problem for a single 
rectangular bend with one end connected to semi- 
infinite 2DEG reservoir [15]. The problem is con- 
siderably simplified by the restriction to the energy 
interval of the one-mode propagation. Further- 
more, we assume that the source and the drain 
leads have the length l, which is longer than the 
distance between the two bends l', see Fig. l(b). 
Since we are primarily interested in the electric field 
effects and not in the precise form of the transmis- 
sion spectrum, we may neglect to pay strict atten- 
tion to the fine structure originated from the inter- 

ference in the source and drain leads. In this case, 
an envelope of the QPC transmission spectrum 
follows the double bend transmission spectrum, 
which has been already discussed in detail [15]. It 
has been shown that specific features of this spec- 
trum for energies below the second mode opening 
are accurately reproduced by 

TO(eF) = 

(1 - -  Rsb(GF)) 2 + 4Rsb(eF)s in  2 [~0(q) + rcql ' /w] '  

(4) 

where q = x~ ~/~,'v- 1, ev is the Fermi energy in units 
of eth = h2rc2/(2m*w 2) the propagation threshold 
energy in the constriction, m* = h2/(2lLla 2) is the 
electron effective mass, Tsb ( e sb )  denotes the zero- 
field transmission (reflection) coefficient for an infi- 
nite wire with a single bend, and ~o is the phase 
acquired by an electron in the connecting wire as 
a result of a single reflection from one of the bends. 

The above-presented energy dependencies for 
the transmission coefficient through constrictions 
shaped as a rectangular channel (Fig. l(a), Eq. (3)) 
and as a double bend channel (Fig. l(b), Eq. (4)) are 
used below in the discussion of electric field effects 
in the QPC ballistic conductance. 

3. Discussion 

Long-dashed lines in Fig. 2 exemplify well- 
known structure of the linear-response conduct- 
ance calculated at negligible fields (g~wo) ~ To(e,v), 
eV ~ ev) plotted here for reference. It has the form 
of a staircase with the resonance structure superim- 
posed. Note that one should speak about QPC 
conductance quantization effect with some pre- 
caution since the step shape varies with ~:v and I/w. 
Nevertheless, with certain accuracy the QPC 
conductance is quantized and for definiteness we 
consider the first peak in any plateau of 9 as its 
beginning. With the reference to these points, the 
structure of nonlinear conductance plotted for the 
case Vin = 0 (solid lines) associates with the appear- 
ance of an additional conductance quantization. 
Indeed, each increase in g(eF) by 1 is preceded by an 
increase equal to ½. Similar transformations in g(ev) 
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Fig. 2. Q P C  conductance versus the Fermi energy for a rectan- 
gular constriction in 2 D E G  (Fig. l(a), Eqs. (1) and (3)): /~ ~ ½; 
V~, = 0 - solid lines, V,n = V - dotted solid lines, V = 0 long- 
dashed lines; short-dashed curves represent the l inear-response 
conductance gcw m for the case Vi, = 0, V ¢ 0 in the main figure 
and for Via = V in insets. Square dots  correspond to the applied 
voltage with V :;a V~. ~ 0. Calculations were performed for 
N1 = 19, N = 8 (I/w = (N1 - I ) / ( N  + 1 ) =  2). (In the given en- 
ergy interval, predictions of the tight-binding and effective-mass 
models  are undistinguished.) Values of the Fermi energy ~V and 
source~tra in  electric potential difference eV are in units of the 
through channel propagat ion  threshold energy eth = hart2~ 
(2m*w2). 

are produced by the electric field at other values of 
QPC parameters, voltages, and also at nonzero but 
low enough temperatures [11]. Field effects in the 
case V = Via (solid dotted lines) are essentially in 
contrast, especially for higher voltages. We see that 
even at smallest values of V, when the appearance 

of new "steps" becomes pronounced, the additional 
structure by no means can be regarded as half- 
quantization of the conductance. Moreover, while 
at eV = 0.25 this structure is well distinguished, it is 
about to be washed out by rather moderate fields 
(eV = 1), at which nonlinear field effects come into 
play, as one can see from the comparison of the 
linear-response (short-dashed lines) and nonlinear 
conductance represented in insets. Naturally, the 
combined voltage drop at the contact boundaries 
and inside it produces an intermediate effect in- 
dicated by square dots. It is noteworthy that in the 
case V = V i a  and /~ = 0, there is no structure in 
g(ev) which would resemble additional quantiz- 
ation, as it has been stated in Ref. [12]. 

Thus, it can be concluded that the "effect" of the 
additional quantization is, in fact, rather the matter 
of conductance-spectrum structure transforma- 
tions produced by the electric field and strongly 
dependent on its particular distribution in the con- 
tact region. The favorable conditions for the ap- 
pearance of a structure similar to conductance 
quantization are symmetric QPC realizations and 
the absence or weakness of the field inside the 
contact. Remarkably, in experiments of Patel et al. 
[9], where "half-quantization effect" has been ob- 
served, the QPC structure was rather symmetric. 

Fig. 3 displays typical transformations produced 
by the electric field in the linear-response conduc- 
tance of a constriction shaped as a double bend. 
The curves represented in this figure were obtained 
by the exact (numerical) solution of the scattering 
problem for a double-bend wire, but in the region 
of the fundamental mode propagation, 1 ~< ev <~ 4 
they are undistinguished from those calculated by 
using Eq. (4). 

Calculations have been performed for l'/w = 4, in 
which case in the region of the single-mode propa- 
gation (~v ~< 4) there exist eight interference reson- 
ances [15]. Besides, two lowest resonances (not 
resolved) originate from quasi-bound states which 
are present in this structure. The narrow energy 
interval of resonance tunneling (~v < 1) is not 
well defined in the approximation (4) and, 
therefore, this region is described in Fig. 3 rather 
schematically, than precisely. For the rest, the 
g(~F > 1) curves calculated for eV = + 0, 0.05, 0.1 
reliably reproduce characteristic transformations 
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Fig. 3. Transformations of the linear-response conductance 
(Eq. (2)) under the influence of the applied voltage in the case of 
a constriction shaped as a double bend (Fig. l(b)). Values of 
eV = 0 (physical limit), 0.1, and 0.2 are in units eth. 

of the conductance in response to the applied 
voltage increase. The nonlinear field effects for in- 
dicated values of V are negligible. As seen from 
Fig. 3, with the voltage increase narrow resonances 

are doubling. In accordance with Eq. (2), this effect 
is accompanied by the two-times reduction of the 
resonance intensity. So, if the resonance width ob- 
served in the linear-response conductance is small- 
er or comparable with eV energy, the number of 
resonances, which appear in the dependence 
gIV-~O)(~F), might be substantially different from 
that predicted for the QPC transmission spectrum 
and be varied by changes in the applied potential. It 
should be emphasized that doubling of resonances 
just pointed out is not the splitting effect in its true 
sense (as, e.g., the Stark effect). 

In conclusion, the dependence of the QPC differ- 
ential conductance on the applied voltage is studied 
with an account to the voltage drop at the bound- 
aries and inside the contact region. The field distri- 
bution assumed includes as particular cases two 
models used previously to confirm and to reject the 
possibility of the QPC conductance quantization 
by a value eZ/h. The results presented make this 
long term dispute seemed to be settled. It is also 
shown that in appropriately shaped constrictions, 
one can observe resonance doubling accompanied 
by two-times decrease of the resonance intensity. 
The latter effect (produced by the electric field in 
the linear-response QPC conductance) has the 
same origin as the appearance of additional steps. 
An analytical expression for the transmission prob- 
ability through a biased channel is suggested for the 
first time. 
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