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Abstract

It is shown that the zero-temperature linear-response quantum point contact (QPC) conduc-
tance is fractionally quantized in units 2¢2/h whenever the zero-field through QPC transmission
coefficient is quantized. The same origins has the predicted effect of splitting in the conduc-
tance spectrum of sharp transmission peaks and dips. For a QPC modeled by a 2D rectangular
channel, an analytical expression for the differential nonlinear conductance is proposed which
includes effects of an abrupt potential drop at the QPC borders with the electron gas reservoirs
and a linear potential variation inside the channel.

INTRODUCTION

Advances in nanostructure technology made available small structures (devices) which can
be passed through by electrons stic regime of electron motion are exhibited by a quantum
point contact (QPC) [1]. (Here, the term QPC refers to constrictions of arbitrary geometry
in a two-dimensional electron gas (2DEG) with a characteristic width of the order of the
Fermi wavelength). One of the first quantum effects discovered in QPCs was the conductance
quantization [2,3]. An elementary explanation of the phenomenon relies on the conductance
quantization in an ideal infinite 2D wire which is due to the fact that each propagating electron
state associated with subbands (modes) of the transverse quantization contributes 2¢*/h to the
wire conductance. Naturally, the manifestation of this effect in a real QPC depends on how
much the latter looks like the ideal wire.

Despite the origins of the QPC conductance quantization are in general well understood,
there are some contradictions in theoretical predictions with regard to the observation of the
effect. Glazman and Khaetskii [4] showed that in addition to integer steps in the QPC con-
ductance dependence on the Fermi energy, also half integer steps should appear in the same
dependence, if the applied voltage V' is dropped equally on both sides of an adiabatic contact.
In subsequent papers of Martin-Moreno et. al. [5] and Hongqi Xu [6], the prediction of the half
quantization of the conductance was confirmed for QPCs modeled by a saddle-point potential
and a rectangular channel, respectively. However, the exact quantum mechanical calculations
of Castafio and Kirchenow [7] and Lent, Sivaprakasam, and Kirkner [8] performed for the case
of a linear variation of an electric potential along a rectangular channel are in conflict with the
prediction of Glazman and Khaetskii - no structure that could be interpreted as an additional
quantization has been found in the conductance-vs-Fermi energy dependence. At the same
time, as distinct from the very first experiments of van Wees et. al. [2] and Wharam et. al.
[3], the half quantization was really observed by Patel et. al. [9)].

The aim of this work is to show that the effect of the fractional quantization can be ex-
pected whenever the applied voltage V' shifts the opening energies of the propagating modes
in the contact. Besides, the QPC conductance for a rectangular channel is presented in an
analytical form which accurately describes nonlinear electric field effects. To our knowledge,
the corresponding expression for the transmission coefficient (equation (6)) is found for the
first time.
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GENERAL CONSIDERATION

The linear-response zero-temperature QPC conductance g (m units 2e2/h) is often identified
with the through QPC transmission coefficient Tp taken at the Fermi energy E% [1]

go=T(e= Eg" V=0)= TO(EE‘), (1)

though a precise form of the Landauer formula valid at zero temperature and arbitrary electric
potentials reads
d [FF

9= 357 ey T(e,V)de. (2)

Consider a symmetric QPC. In this case, the applied voltage shifts the Fermi energy in
2DEG on both sides of the contact equally but with opposite signs of the shift in the source
and drain reservoirs, see Fig. la. One may assume therefore that T'(ev,V) = T(ev, V),
where ey = ¢ + eV/2 (T(ev) and T(e) are of course different functions but we preserve for
them the same notation). For the model in focus, equation (2) can be rewritten in the linear
approximation as

a E‘}‘+EV/2
/ To(ev)dey =

9 =5 (To(ER + €V/[2) + To(EY — eV/2)) . (3)
eV JEo-evya

N -

Evidently that in comparison with definition (1), equation (3) predicts a very much different
behavior of go in the energy interval eV, whenever the zero field transmission coefficient 7y as
a function of energy possesses a singular behavior in the same scale. In particular, (3) predicts
that the QPC conductance in units 2¢%/h is quantized as half integers, if the transmission
coefficient is quantized as integers.

At the same time, it is easy to show that equation (1) is valid in linear response, if the
Fermi energy in the source 2DEG remains unshifted by an applied voltage as it was assumed by
Castafio and Kirczenow [7]. Therefore, it is not at all surprising that the fractional conductance
quantization does not reveal itself in calculations performed for a QPC model used in [7]. Tt
is also interesting to note that a QPC used in experiments of van Wees et. al. [2] was not
symmetric (no fractional quantization observed), whereas that one used by Patel et. al. [9]
was symmetric (experimental confirmation of fractional quantization).

It is worth emphasizing that in accordance with (3) any singular structure in the zero
field transmission spectrum (such as sharp resonance peaks and dips) will be splitted in the
conductance spectrum of a symmetric QPC.

RECTANGULAR CHANNEL

Consider now the fractional conductance quantization effect in a QPC shaped as a rectangular
channel.

In accordance with the Landauer approach [10], to calculate the QPC conductance one has
to know the energy dependence of the through QPC total transmission coefficient

T V) =30 3 il )

Js=1j4=1

where t;,;, is the probability amplitude of the transmission from j, mode in the source reservoir
to j; mode of the drain reservoir, and J, and 7, are the highest propagating modes in the source
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Figure 1: Occupation of electron states in the source and drain reservoirs connected by a QPC
at zero temperature — a, and the electric potential drop distribution accepted for the given QPC
model - b. The total voltage drop V = V,,; + Vs is step-like at the QPC entrance and exit and
varies linearly inside the QPC. The particular case V,,: = 0, Bin = 0 corresponds to the QPC model
used in [7,8], and Vi, = 0 — in [6]; the case Bour = Bin = B = 1/2 represents a symmetric QPC.
The notation ¢ = ey — BeV (E% = Er — BeV), see Eqs. 1 and 2, denotes an electron energy (the
Fermi energy) counted from the conductance band bottom in the source reservoir.

and drain reservoirs, respectively. The transmission and reflection probability amplitudes are
related to the amplitude of an incident flux by a set of linear equations which can be easily found
from the condition of the continuity of the electron wave function and of its derivatives [7].
An alternative approach exploits the Green-function method in the tight binding formulation
of the corresponding scattering problem [11-13]. In the latter case, a discrete lattice in the
form of a wide-narrow-wide structure is used to mimick the QPC geometry. The dynamics of a
free electron in the lattice is determined by the electron transfer energy L between the nearest
lattice sites. The electron energy is confined within the interval 4{L| and at any sites, except
those lying at the borders, can be represented in units 2{L| by

2 — cos kj, — cos 7"+-L1 - BeV/2, in source,
ey ={ 2—cosk; —cos ﬁ"i—l— + (1\'}1__11 — ﬂ;neV;n) (1 — 8ny1), in channel, (5)

2 — cos kj, — cos VW+L1 + (1 - B)eV/2, in drain.

In (5), M and N are the width of the wide and narrow parts of the wide-narrow-wide structure,
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respectively, k; is a dimensionless wave vector of a jth mode plane wave.

Using the technique proposed in [12,13] (see also [14] for more details of the tight-binding
QPC model description), one can pass in (4) to new unknowns which in essence represent the
wave function amplitudes at the channel border with 2DEG. A remarkable advantage of using
the new quantities is that they obey equations which mostly account for the mode mixing
effects in the through QPC transmission process in the diagonal approximation. Note that
a similar (but not equivalent) approximation, called the mean field approximation, has been
proposed by Szafer and Stone [15] in their study of the linear response QPC conductance.
In the diagonal approximation, the total transmission coeflicient can be found analytically.
Omitting the details of the derivation procedure, we present here only the final expression of
T(ev,V) found for the electron potential profile shown in Fig. 1b

T(ev,V) = 4 i R(ADR(4}) (Gh,.1)

. . _ iy S ~o12]¥ (6)
(G{,x — &y — 1A}L) (Gg\rl,zvl —ely — ZAj) - [vabl]

where N and N, stand for the channel width and length in the number of lattice sites, re-
spectively, ey =2 —coskuj —exv, b =7/(N+ 1), eqv =+ (1 = BleV, e_y =€ — eV
(0 < B <1), AF = R(AT) +iS(AT) = R(4;(exv)) +iS(Aj(exv)),

{
arccos(l—¢) SlIl2 ("'_1".) even j
e

2 . . 1—(2—cosz —¢)?
ORI O

[ 2 —cosz—e)? — 1
S(Ay(e)) = i sin? kunj PRVACEIZELTEEY . ()
72 (cosz — cos kipj)?
arccos(1—¢) cos? ( T ) Odd]

and

[1; ()Y 11-m,(2) = Yo, (2)iy1-my ()] G (e, V) =

Jv; (z)YVJ—M (2) = nj(Z)JuJ—Nx(z)r n=n'=1,
9)

JVj+1(z)YVj+1—N1 (z) - Y'/j+1(Z)JVj+1—N1 (2)7 n=n'= Nl7
2/(7('2), n= 1(N1)7 n,:Nl(l)a

where z = (N; — 1)/eV, v; = zeiv, and J,(z), Y,(z) are the Bessel functions of the first and
second order, respectively.

Calculations of the differential conductance using (6) in (2) restore the exact calculations,
in particular those ones presented in [6,7,15], with a surprising accuracy.

As was mentioned above, the transmission coefficient defined in (6) includes some QPC
models studied previously. In particular, Szafer and Stone [15] found an analytical expression
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Figure 2: Manifestations of the fractional conductance quantization produced by an electric field
in symmetric QPCs: 8 = 1/2; Vi, = 0 — solid lines, V,,; = 0 — dotted lines, V = 0 — dashed
fines. Indicated values of the electric potential difference are given in units of the through channel
propagation threshold energy.

for Ty in the effective mass approximation. Their result generalized with an account to a step-
like voltage drop at the channel entrance and exit follows from (6) at Vi, = 0 in the continuum
limit, &k, — 0, Na = const
lim T(ev,V)=Tr, V)=
ken—0
_ f: 4q12-§R(A§+)§R(A§')/ sin®(mq;l/w)
j=1 qj cot(rg;l/w) — iA"f—) (q,- cot(mg;l/w) — iAC-+) - q2-/ sinz(ﬂ'qjl/Lu)l2 ’

where e = ¢} + j* denotes the dimensionless Fermi energy in units of the through QPC
propagation- threshold energy, and the matrix elements A'”k appeared in (10) are determined

by AT = Jim (ko)™ 1A%,

AtV = 0 the expression under the sum sign in (10) differs from that one obtained in Ref.
[15] only by the definition of the matrix elements A°+ AT

(10)
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Setting V.. in (6) equal to zero, we come to the model of a biased channel without additional
potential drops at the channel edges. At 8 = 0, the dependence g(cr) coincides perfectly
with that calculated by Castafio and Kirczenow [7]. There is no structure which could be
interpreted as the half quantization. However, when we set in (6) 8 # 0, the additional
quantization appears, see Fig. 2. For the applied potential much less than the propagation
threshold energy, the difference (only quantitative) between the two models, namely V;, = 0,
Vout # 0 and Vi, # 0, V,,e = 0, is very small. On the other hand, manifestation of nonlinear
field effects are far from being the same in the cases of the abrupt and linear changes in the
applied potential. A detailed discussion of these effectes will be published elsewhere.

In summary, it is shown that the fractional quantization is a universal feature of phase-
coherent ballistic conduction through a QPC. Its manifestation, however, is strongly dependent
on the QPC structure.
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