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Molecular orbital coefficients and transition dipoles of real polyenes
Bryan E. Kohler
Department of Chemistry, University of California, Riverside, California 92521-0403

Lyuba I. Malysheva and Alexander I. Onipko
Bogolyubov Institute for Theoretical Physics, Kiev, 252143, Ukraine

~Received 30 May 1995; accepted 10 July 1995!

A simple four configuration model that quantitatively reproduces all of the 11Bu and 2
1Ag state 0-0

energies that have been measured in high resolution spectroscopic experiments has been described
previously. This model has been useful for explaining trends in the electronic properties of series of
unsubstituted and substituted linear polyenes. While this model led to analytical expressions for the
excitation energies, there were no closed form expressions for other quantities, such as the transition
dipoles, that depend explicitly on the coefficients of the one-electron molecular orbitals. This paper
derives exact expressions for the one-electron molecular orbital coefficients for an alternating chain
as well as exact expressions for the transition dipole moments. This facilitates a detailed
examination of the dependence of the transition dipole moments on the polyene length and
alternation parameter which leads to an expression that accurately describes the dependence of the
transition dipole moments on these chain parameters. The application of these expressions to an
analytical analysis of nonlinear response in linear polyenes will be the subject of a subsequent
paper. ©1995 American Institute of Physics.
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I. INTRODUCTION

It is well known that theory at the one-electro
~Hartree–Fock! level fails to correctly order the first and
second excited singlet states of linear polyenes and that
recting this failure requires explicit consideration of electro
electron interaction.1 Because of the extensive delocalizatio
and high correlation of thep electrons in linear polyenes
treatment of electron-electron interaction by configuration
mixing must be carried to at least the double configurati
interaction level. Exact calculations at this level for polyen
with three or four bonds in conjugation requires the use
supercomputers: for polyenes with more than eight dou
bonds they presently cannot be done. This unfortunate m
match between our ability to measure electronic properties
linear polyenes~for example, nonlinear optical response! and
our ability to provide correct microscopic interpretation
generates a need for simple models that can quickly a
reliably relate experimentally measured quantities to cha
distributions in the relevant electronic states.

Such a model has already been proposed.2 It is based on
only four configurations: the ground configuration (11Ag

state! where all bonding molecular orbitals are doubly occ
pied; two configurations generated from the ground state
promoting one and two electrons from the highest ene
occupied molecular orbital or HOMO to the lowest energ
unoccupied molecular orbital or LUMO (11Bu and Ag2
configurations, respectively!; and the symmetric linear com
bination of two degenerate configurations which correspo
to the promotion of an electron from the HOMO to th
LUMO11 and from the HOMO21 to the LUMO (Ag3
state!. This model only considers mixing of theAg2 andAg3
configurations which are treated empirically. The corr
sponding matrix element of the electron-electron repuls
operator is set equal toA1B/Nd , whereNd is the number of
double bonds in the polyene chain, and the constantsA and
6068 J. Chem. Phys. 103 (14), 8 October 1995 0021-9606/
Downloaded 04 Oct 2012 to 152.3.102.242. Redistribution subject to AIP 
or-
-

al
n
s
of
le
is-
of

s
nd
ge

-
by
y
y

d

-
n

B are chosen to reproduce the experimentally measured e
citation energies. Thus, the model is defined by these co
stants and the parameters of the one-electron Hamiltonian

The success of this simple model in accounting for th
S1 and S2 excitation energies of substituted and unsubst
tuted polyenes~see Ref. 3 for a review!, raises the challenge
of testing its ability to account for a wider variety of optical
properties. Some numerical calculations of linear and nonlin
ear optical responses have already been reported,4 but such
calculations cannot provide the depth of insight into nonlin
ear optical response that would follow from an analytica
description. The key step in obtaining this analytical descrip
tion is the derivation of expressions for the transition dipol
moments. Since the transition dipole moments are exqu
itely sensitive to the details of how electrons are distribute
along the polyene chain, such expressions would be e
tremely powerful tools.

In this paper we derive exact equations for the one
electron molecular orbital coefficients for an alternating
polyene chain. These then lead to analytical expressions
all transition dipole moments. This is the decisive step to
wards constructing an analytical theory of nonlinear respon
in the framework of the model proposed in Ref. 2. We con
clude with a detailed examination of the dependence of th
HOMO-LUMO transition dipoles of neutral and ionic poly-
enes on the chain length and alternation parameter.

II. HAMILTONIAN, EIGENFUNCTIONS AND ENERGY
SPECTRUM

A. Hamiltonian

The Hückel Hamiltonian is the simplest and most suc
cessfully parametrized one-electron Hamiltonian for describ
ing thep-electron electronic structure of linear polyenes. I
is employed here in a commonly used form with two param
eters: the electron resonance transfer energy between
95/103(14)/6068/8/$6.00 © 1995 American Institute of Physics
license or copyright; see http://jcp.aip.org/about/rights_and_permissions
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6069Kohler, Malysheva, and Onipko: Transition dipoles of polymers
nearest-neighbor CH groups in an undimerized polyenet0
(t0,0), and its change due to dimerization6ku expressed
in terms of the electron-phonon coupling constantk and the
C–C-bond alternationu along the molecule axis,5 see Fig. 1.

We start with the Hu¨ckel type electronic Hamiltonian fo
a terminated chain ofN CH groups (N52Nd) connected by
‘‘single’’ and ‘‘double’’ bonds as shown in Fig. 1. In the
tight-binding representation it has the form

H5
1

2 (
j51

N

~~12~21! j !@bdu j &^ j11u1~12d j ,1!bsu j &

3^ j21u#1~11~21! j !@~12d j ,N!bsu j &^ j11u1bdu j &

3^ j21u# !, ~1!

whereu j &[cj
1u0&, u0& is the vacuum wave function,cj

1 and
cj are the Fermi operators which create and destroyp elec-
trons of spin6 1

2 on thej th CH group~electron spin variables
are omitted for simplicity!, bs andbd are the hopping inte-
grals which determine the electron transfer energy betw
nearest neighbors connected by single and double bonds
spectively. It is implied in Eq.~1! that the stable polyene
state corresponds to the chain with double bonds at its e
We also assume that considering the ground and lowes
cited states,s electrons can be treated in the adiabatic
proximation, i.e. that they contribute only to the vibration
part of the total Hamiltonian.

For the present analysis it is convenient to introduce
stead of the hopping integrals new parameters

bs5b exp~2h!, bd5b exph, ~2!

which are related to parameters of the direct physical me
ing by the simple equations

t05b coshh, ku5b sinhh. ~3!

B. Energy spectrum and wave functions

The solutions to the Schro¨dinger equation with the
HamiltonianH can be represented by the expansion

um&5(
j51

N

Ajmu j &, ~4!

where Ajm is the j th component of eigenvectorAm ,
HAm5EmAm , in the site representation;Em denotes eigen-
values of theH operator.

FIG. 1. Linear polyene segment with four double bonds. The correct b
alternating polyene geometry can be obtained by shifting each CH g
from its position in an undimerized chain along thex-axis byu as shown by
arrows. We have assumed a bond alternating geometry that mimics
structure of octatetraene~Ref. 6!: CvC51.332 Å, C—C51.451 Å,
/CvC—C5125°, so thata51.235 Å,b50.641 Å, andu50.034 Å.
J. Chem. Phys., Vol. 103,
Downloaded 04 Oct 2012 to 152.3.102.242. Redistribution subject to AIP
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The eigenvector components can be found separately f
the half spaces of odd (j52l21, l51,2,...,Nd) and even
( j52l ) chain sites. Denoting two corresponding vectors by
Am
odd andAm

ev, one easily gets, say, for the ‘‘odd half space’’

~H02V!Am
odd5

Em
2

b2 Am
odd, ~5!

whereNd3Nd matrixesH
0 andV are defined by dimension-

less operators

H05(
l51

Nd

@2u l &^ l ucosh2h1~12d l1!u l21&

3^ l u1~12d lNd
!u l &^ l11u#, ~6!

and

V5d l l 8d l1u l &^ l 8uexp~22h!, ~7!

respectively. The components of vectorAm
ev are connected

with Am
odd vector components by the simple relations

Em

b
Alm
ev5~12d lNd

!Al11m
odd exp~2h!1Alm

odd exph. ~8!

The solution of Eq.~5! can be readily found by using the
Lifshitz method.7 Introducing the Green function operator
G5((Em /b)

22H0)21, Eq. ~5! can be rewritten in the form
of the Dison equation

Am
odd52GVAm

odd, ~9!

or, equivalently,

Alm
odd/A1m

odd52^ l uGu1&exp~22h!, ~10!

where the Green function matrix elements have been ob
tained in Ref. 8,

FIG. 2. Graphical solution to equation 12 for a linear polyene with four
double bonds. Only the four first roots of this equation, determined by
intersections of the horizontal line (52 exp 2h) with curves
sinNdj / sin(Nd11)j are shown. Just these roots numbered according t
their magnitude are used in one-electron energy spectrum~14!. For the case
of h50 andNd54 these roots are: 2pm/9, wherem 5 1, 2, 3, and 4.

nd
up

the
No. 14, 8 October 1995
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6070 Kohler, Malysheva, and Onipko: Transition dipoles of polymers
^ l uGu l 8&

5
2

Nd11 (
k51

Nd sin
pkl

Nd11
sin

pkl8

Nd11

SEm

b D 222S cosh 2h1 cos
pk

Nd11D
.

~11!

The condition of nontrivial solvability of Eq.~10! can be
written in the form

^1uGu1&5
sin Ndj

sin~Nd11!j
52 exp 2h ~12!

where the quantityj is related to eigenvalues of the Hami
tonianH by the following relation:

~Em /b!56A2~cosj1 cosh 2h!. ~13!

According to Eqs.~12! and~13!, N different eigenvalues
of H are determined byNd neighboring roots of Eq.~12! and
by the choice of the sign in Eq.~13!. We choose the first root
as shown in Fig. 2 so that it corresponds to the lowest el
tron energy for the positive sign in Eq.~13! (b is negative!.
Then, using two indexesmv andmc for numbering the first
positiveNd roots of Eq.~12!, distinguishing the sign choice
by indexesv ~valence states or bonding molecular orbital!
and c ~conduction states or antibonding molecular orbita!
we can write

Emv~c!

v~c! 52~1 !2ubu«mv~c!
~h!, ~14!

where «mv(c)
(h)5 1/A2A cosjmv(c)

1 cosh 2h. Note that
mv51 andmc51 correspond to the lowestv state energy
and to the highestc state energy, respectively, wherea
mv(c)5Nd represents the reversed case.

Equations~8!, ~10!, ~12!, and the normalization condi-
tion completely determine the components of the eigenv
torsAmv

v andAmc

c which take the form

Ajmv~c!

v~c! 5S 2 sin jmv~c!

~N11!sin jmv~c!
2 sin~N11!jmv~c!

D 1/2

35
~21!mv~c!11 sin

N112 j

2
jmv~c!

,

j52l21,

1~2 !sin
j

2
jmv~c!

, j52l ,

~15!

wheremv(c) 51,2,...,Nd . The phase in Eq.~15! is chosen so
that

Ajmv

v →A 2

N11
sin

pmv j

N11

and

Ajmc

c →A 2

N11
sin

p(N112mc) j

N11

ash→0.
Thus, the diagonal form of the Hamiltonian for a finit

polyene with alternating bonds reads
J. Chem. Phys., Vol. 103,
Downloaded 04 Oct 2012 to 152.3.102.242. Redistribution subject to AIP 
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H522ubuS (
mv51

Nd

«mv
~h!umv&^mvu

2 (
mc51

Nd

«mc
~h!umc&^mcu D . ~16!

The eigenstates of this Hamiltonian~or the Hückel molecular
orbitals for the polyene molecule! are

umv~c!&5(
j51

N

Ajmv~c!

v~c! u j &, ~17!

where coefficientsAjmv(c)

v(c) are defined in Eq.~15!.

The coordinate parts of the orbitals referred to in Sec.
correspond to the choice in Eq.~17! of AjNd

v andAjNd21
v for

the HOMO and HOMO-1, and ofAjNd

c andAjNd21
c for the

LUMO and LUMO11, respectively. This is the case of th
neutral polyene denoted as P. In the ionic forms of polye
with 2Nd22 ~P11) and 2Nd12 ~P22) p electrons on
2Nd carbon atoms, the highest occupied level in the grou
state of P11 and P22 corresponds tomv5Nd21 and
mc5Nd , respectively. So, the HOMO and LUMO for P11

are the HOMO-1 and HOMO defined above for P. Similarl
the HOMO and LUMO for P22 are the LUMO and
LUMO11 for P.

III. TRANSITION DIPOLES

A. General case

The intensity of an optical transition depends on th
transition dipole, the expectation value of the dipole mome
operator between the initial and final states. In the case
transitions from the ground state~assumed to correspond to
the single configuration where all valence states are dou
occupied! nonzero values only exist for excited state con
figurations that correspond to lifting an electron from one
Nd filled statesmv to one ofNd empty statesmc . If we
assume that thep electron atomic orbitals of different C
atoms do not overlap, the transition dipole mome
Mmv→mc

expressed in units ofea (e—the absolute value of
the electron charge,a—the distance along the chain axi
between the nearest-neighbor carbon atoms in an undim
ized chain, see Fig. 1! is given by the sum

Mmv→mc
52^mcuS (

j51

N

r j u j &^ j u D umv&. ~18!

The vectorar j5(xjyj ) determines the position of thej th
C atom in the Cartensian coordinates, and the one-elect
molecular wave functionsumv(c)& are defined in Eqs.~15!,
~17!. We use coordinates with thex-axis directed along the
No. 14, 8 October 1995
license or copyright; see http://jcp.aip.org/about/rights_and_permissions
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molecular axis as shown in Fig. 1, so thaty coordinates of C
atoms are equal to6b/2. The CvC and C—C bond lengths
were set to 1.332 Å and 1.451 Å, respectively, and
CvC—C bond angles were set to 125°.6 With this choice
we have for parameters shown in Fig. 1:a51.235 Å,
b50.641 Å, andu50.034 Å.
J. Chem. Phys., Vol. 103,
Downloaded 04 Oct 2012 to 152.3.102.242. Redistribution subject to AIP
ll

In terms ofAmv(c)

v(c) vector components defined in Eq.~15!,

Eq. ~18! can be rewritten in the form

Mxmv→mc
52S (

j51

N

~ jA jmv

v Ajmc

c !1
u

a
dmvmcD , ~19!
FIG. 3. HOMO–LUMO transition dipoles~in units of ea! per double bond in neutral and dicationic forms of alternating polyenes.a—curves 1, 2, and 3
representuMxu/Nd calculated forh5 0.08, 0.1333, and 0.2666, respectively; the correspondence between curves 18, 28, 38 and values ofuMx

11u/Nd is the
same; limN→`uMx

11u/Nd525/(3p)2'0.36 is indicated by the horizontal line.b—curves 1 and 18 representuMxu/Nd and uMx
11u/Nd , respectively, for

h520.1333.
No. 14, 8 October 1995
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Mymv→mc
5

b

2a
dmvmc

, ~20!

where we use the identity ( l51
Nd A2l21mv

v A2l21mc

c

52( l51
Nd A2lmv

v A2lmc

c 5 1
2dmvmc

.

Substituting in Eq.~19! explicit expressions forAjmv(c)

v(c)

one obtains

Mxmv→mc
5
1

2

exp2h1 1
2 ~N21!sinh 2h2«m

2 ~h!

~N11!«m
2 ~h!1 1

2 sinh 2h
2
u

a
,

~21!

for mv5mc5m and

Mxmv→mc
5
11~21!mv1mc

4

sin jmv
sin jmc

~«mv
~h!1«mc

~h!!2

3
1

A~N11!«mv

2 ~h!1 1
2 sinh 2h

3
1

A~N11!«mc

2 ~h!1 1
2 sinh 2h

, ~22!

for mv Þ mc . In sum over states formalisms for calculatin
nonlinear optical response intraband transition dipole ma
elements are also needed. In the valence band~transitions
between bonding molecular orbitals! these are
J. Chem. Phys., Vol. 103,
Downloaded 04 Oct 2012 to 152.3.102.242. Redistribution subject to AIP
g
rix

Mxmv→mv8
5
12~21!mv1mv8

4

sin jmv
sin jmv8

~«mv
~h!2«mv8

~h!!2

3
1

A~N11!«mv

2 ~h!1
1

2
sinh 2h

3
1

A~N11!«mv8
2

~h!1
1

2
sinh 2h

. ~23!

The expression forMxmc→m
c8
is the same.

Equations~21!–~23! determine exact dependences of the
transition dipole moments on the chain length and alternation
parameter. To get a transition dipole moment, one has to find
themvth andmcth roots of Eq.~12! for particular values ofN
andh and to use them together with the corresponding val-
ues of«mv

and«mc
in Eqs.~21!, ~22! or ~23!. Thus, provided

thatN, h, and«mv(c)
are known, the relations given above

immediately yield the transition dipole values which other-
wise require computer calculations which become very
lengthy for longer polyene chains.

Note that the calculated values ofuMmv→mc
u for the

HOMO–LUMO transition in polyenes with three and four
double bonds are~in debye!: 7.064 and 8.595, respectively.
These values~obtained for a slightly different geometry from
that used throughout the rest of this paper, namely: CvC
51.34 Å, C—C51.46 Å,/CvC—C5120o!9 are in excel-
lent agreement with those calculated for this geometry using
much more elaborate theoretical methods which give 7.285
and 8.694.9

For an undimerized chain the above equations reduce to
Mxmv→mc
5

1

N11 5 ~11~21!mv1mc!

sin
pmv

N11
sin

pmc

N11

S cos pmv

N11
1 cos

pmc

N11D
2 ,

~12~21!mv1mv8!

sin
pmv

N11
sin

pmv8

N11

S cos pmv

N11
2 cos

pmv8

N11D
2 , mc5mv8 .

~24!
ers

on
B. HOMO–LUMO transitions

As seen from expressions~21!–~23!, the value of the
transition dipole depends sensitively on the chain paramet
N andh, the type of the transition~interband or intraband!
and the level indexes. In this section, we focus our attenti
on the HOMO-LUMO transitions for P and P11 which are
of prime interest for comparison with experiment.

In accordance with its definition, thex-component of the
HOMO-LUMO transition dipole in P takes the form~Eq.
~21! with m5Nd , level indexes are omitted for simplicity!
No.
 licens
Mx1
u

a
5
1

2

exp 2h1N sinh 2h2 cosjNd
~N11!~cosjNd1 cosh 2h!1 sinh 2h

55
4Ndp

22, uhuN!1,

~2h!21, hN@1, h.0,

Nd , uhuN!1, h,0.

~25!
14, 8 October 1995
e or copyright; see http://jcp.aip.org/about/rights_and_permissions



The analogous quantity for P11, i.e.,Mx
11 ~which is equal toMx

22) is ~Eq. ~23! with mv5Nd21, mv85Nd)

Mx
115

2 sin jNd sin jNd21~A cosjNd1 cosh 2h2A cosjNd211 cosh 2h!22

A~N11!~cosjNd1 cosh 2h!1 sinh 2hA~N11!~cosjNd211 cosh 2h!1 sinh 2h

55
4Ndp

22, uhuN!1,

32Nd~3p!22, hN@1, h.0,

p221/2Nd
23/2h25/2, uhuN@1, h,0.

~26!

FIG. 4. HOMO-LUMO gap~in units of ubu) vsNd in P (DHL) and P
11 (DHL

11). Solid lines correspond toh50.1333~a! andh520.1333~b!, dashed lines
to h50.

6073Kohler, Malysheva, and Onipko: Transition dipoles of polymers
J. Chem. Phys., Vol. 103, No. 14, 8 October 1995
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6074 Kohler, Malysheva, and Onipko: Transition dipoles of polymers
Along with exact relations forMx andMx
11 , we give in

Eqs.~25!, ~26! the limiting expressions for transition dipole
found for long chains and small alternation (N@1, uhu!1)
under the conditionsuhuN!1 and uhuN@1. These expres-
sions clearly show the qualitative difference in the behav
of Mx andMx

11 and the dramatic dependence of these qu
tities on the sign ofh.

Consider first the caseh.0. We see that alternation
strongly suppresses the transition dipole in P but it ha
comparatively small effect onMx

11 , Fig. 3a. The maximal
increase ofMx with the increase of the chain length is a
tained in the region of the intermediate asymptotic
hN!1, whereMx /Nd54p22 ~which is the true asymptotics
in the undimerized chain!. However, in reality the increase o
Mx with N in the alternating chain is always less than pr
portional toN, and whenN→`, the dipole transitionMx

saturates at the value (2h)212u/a. At the same time, Eq.
~26! says thatMx;N if N@1 and either hN!1 or
hN@1. Since whenhN@1 the rate of increase ofMx

11 with
N is lower than whenhN!1, it can be concluded withou
calculations that the transition dipole per double bond
P11 decreases as the chain length increases when
N@1. Figure 3a shows the dependencesuMx(Nd)u/Nd and
uMx

11(Nd)u/Nd for some representative values of the alte
nation parameter. For moderate values ofh ~of the order of
0.2! the function uMx

11(Nd)u/Nd has a weak maximum a
Nd53.

The linear response is determined by the oscilla
strength of the HOMO-LUMO transition defined asFHL

5 F0DHLuMxu2 ~correspondingly,FHL
115F0DHL

11uMx
11u2),

whereDHL (DHL
11) is the HOMO-LUMO gap~in units of

ubu) andF052meubua2\22. SinceDHL for a neutral poly-
ene tends to the constant value of 4h asN→` ~see Fig. 4a!,
J. Chem. Phys., Vol. 103,
Downloaded 04 Oct 2012 to 152.3.102.242. Redistribution subject to AIP 
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whereasDHL
11;N22n21 in the same limit, the oscillator

strength in P and P11 (FHL andFHL
11) turn out to be nearly

equal ~in contrast to the dipole transitionsMx andMx
11).

Figure 5~curves 1 and 18) reproduces the dependence of th
oscillator strength on the number of double bonds calcula
for h50.1333. It is work emphasizing that the bond leng
alternation strongly supresses the intensity of linear abso
tion in long chains. Indeed, the maximum value of the osc
lator strengthFHL

max ~'FHL
max11! attained asN→` is approxi-

mately equal toh21F0. For the typical polyene parameter
h50.1333, b5230305 cm21, a51.235 Å, FHL

max'11,
whereas for the undimerized chain model the oscilla
strength in this limit is proportional to the chain length
limN→`FHL5 limN→`FNL

11516p23NdF0.
We turn now to the caseh,0. As seen from Eq.~12!,

under the condition 2uhu. ln(Nd 1 1)/Nd two states appear in
the gap between valence and conduction states, which
placed symmetrically above and below the zero energy. T
leads to radical changes in theNd-dependence of both tran
sition dipolesMx andMx

11 ~compare corresponding curve
in Figs. 3a and 3b!. The asymptotic behavior of the HOMO
LUMO gap in P and P11 also changes:DHL goes to zero
exponentially asN→`, and limN→`DHL

1152uhu. As a re-
sult, the oscillator strength of the HOMO-LUMO transitio
at negative values ofh is strongly suppressed in long chain
uhuN@1: FHL;N2 exp(2uhuN), FHL

11;N23 ~see curves 2
and 28 in Fig. 5!.

Thus, alternation produces significant effects on tran
tion dipoles and hence, on optical properties only in lo
chainsuhuN.1. These effects are qualitatively different fo
the HOMO-LUMO transitions in neutral and doubly ionize
polyene forms. Though distinctions between the behavior
FIG. 5. Oscillator strength of the HOMO–LUMO transition polarized along the polyene axis in units ofF052meubua2\22: curves 1 and 2 represent
FHL /F0 for h50.1333 andh520.1333, respectively; same is the correspondence between curves 2, 28 and values ofFHL

11/F0 .
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Mx andMx
11 ~which represent interband and intraband tran

sition dipoles, respectively! are concealed in the linear ab-
sorption, they can be revealed by using data on the HOM
LUMO gap dependence on the chain length which a
readily available.

IV. CONCLUSION

A compact closed form of the Hu¨ckel molecular orbitals
for real polyenes, which is nearly as simple as that for th
chain without alternation, has been derived. The expressio
for the Hückel molecular orbital coefficients obtained previ
ously in Ref. 10 are seemingly equivalent but have a mo
complex structure that does not favor practical application

The central result of this paper is exact analytical expre
sions for all transition dipoles in polyenes, which relate th
dipole transition values to the polyene length, alternation p
rameter, and energy of levels participating in the transitio
This provides an extremely efficient tool for studying the
optical response of polyenes. Here, as an example, we h
examined the effect of alternation on the HOMO-LUMO lin-
ear absorption of neutral and ionized polyenes. The no
J. Chem. Phys., Vol. 103,
Downloaded 04 Oct 2012 to 152.3.102.242. Redistribution subject to AIP li
-

-
e

e
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e
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-
e
-
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ve
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linear optical response is of immediate interest for the appl
cation of analytical results derived above. This work is
currently in progress.
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