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Abstract. Ballistic electron transport in a n-shaped quantum wire is investigated. 
The device conductance and bound-state energies are calculated on the basis 
of the tight-binding formalism. It is shown that the transmission coefficient as a 
function of the distance between the source and drain wires of the n structure 
d is represented by a quasi-periodic sequence of unity transmission separated 
by valleys of nearly zero transmission. This is the case in the energy region of 
the stop-band behaviour of a right-angle-bend waveguide of the same width w. 
The bound-state spectrum of the n and double-bend structures is studied in 
the entire region of variations of the parameter 01 = d/w. In the double bend, 
the lowest bound-state energy A b  is shown to be a non-monotonic function 
of 01, which is zero at a = -1 (the limiting case of a straight wire), reaches its 
maximum AEbm x 0.15 (in units of the energy of the propagation threshold Eth) at 
01 x -0.3, and then tends to the asymptotic value FJ 0.07, which corresponds to 
the bound-state energy in a right-angle-bend waveguide. Special emphasis is paid 
to the possibility of experimental identification of quantum interference effects. 

Advances in modem nanotechnology, in particular the 
development of submicron lithography and the split- 
gate technique, have made possible the fabrication 
of iateral structures with different geometnes, where 
electrons undergo two-dimensional (2D) motion. The 
lateral confinement of the high-mobility 2D electron gas 
at the semiconductor interface in heterostructures like 
AI,Ga,-,As/GaAs provides the conditions for ballistic 
transport, i.e. the electron free path is larger than the 
characteristic size of the device. Furthermore, the 
latter is comparable to or larger than the de Broglie 
wavelength. Under such conditions, the conducting 
properties of the device are completely determined by 
both quantum size effects and quantum interference 
effects. 

Electron ballistic transport in various 2D geometries 
that are of interest for device applications has been 
a subject of many experimental [1-5] and theoretical 
[6-181 studies. Despite significant progress in this 
field, there is a lack of one-to-one correspondence 
between theoretical predictions and experiment [5]. Here 
we point out that in a simple i7-shaped two-terminal 
structure (figure i(a, 6)) with the parameters modified 
by the gate voltage, quantum interference effects in the 
region of the fundamental mode propagation can be 
reliably identified. This possibility arises from the fact 
that a right-angle-bend waveguide is characterized by the 
resonant-reflection (stop-bend) point in its transmission 
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spectrum. Because of this and the interference of 
electron waves in the shoulder that connects the source 
and drain wires in the i7 structure (see figure I@)), the 
transmission coefficient in the region of ile stop-band 
behaviour of the n structure can be drastically changed 
by small variations in the distance d ,  providing the wire 
width w remains constant. The resulting changes should 
manifest themselves as repeated sharp peaks followed by 
nearly zero conductance. 

The double-bend structure (figure l(c)), which has 
already been realized experimentally [5 ] ,  has a similar 
transmission spectrum and thus it possesses the same 
property. But in the latter case it is difficult to 
conceive of appropriate expenmental conditions to 
produce the predicted effect. Therefore, we focus our 
attention primarily on electron propagation in II-shaped 
waveguides. On the other hand, it is also of interest 
to consider the double-bend structure, and particularly 
to trace the dependence of the bound-state spectrum 
on variations of d from d = --w to d = 00. This 
dependence has previously been studied only in the 
region 0 < d 6 03 in [15]. 

We begin with an explicit form of the basic equations 
for the model. These equations are very similar to 
those for the double-bend and single-bend structures 
also considered. To describe ballistic electron transport 
through the structures shown in figure 1, we use the one- 
particle Hamiltonian in the tight-binding representation 
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a) I11 
N 

Figure i. Schematic diagrams of the n-shaped (a) 
and double-bend (c) waveguides (the correspondence 
between the parameters in the discrete and continuous 
models is: a(N + 1) = w,  a(Nt - 1) = d ,  where a is 
the lattice constant). (b)  Split-gate configuration of the n 
Structure. Shaded regions correspond to areas depleted 

the two-dimensional electron gas in the source and drain 
resewoirs. Broken lines indicate the modified channel 
which has the same width but different shoulder length d.  

by !he sppfi& ~ s t e  volgges ';b and Vg2, 2DEG denotes 

where the summation over m and n covers all sites 
of a regular plane lattice that forms the structure of 
the given shape confined by the hard-wall potential. 
' lhe  summation o v a  m' and n' is performed over the 
lattice sites nearest to the site ( m ,  n); a:," (a,,,") is 
the electron creation (annihilation) operator at the site 
( m ,  n) .  E is the electron site energy and L is the energy of 
the resonant electron transfer between the neighbouring 
MLLIGC S I L ~ S .  Xote ihai, if passing to the continuum limit 
(see below), solutions of the Schrodinger equation with 
the Hamiltonian ( 1 )  are completely equivalent to the 
description in the framework of the continuous model 
of the structure [I71 (for a more detailed formulation of 
the model see [18]). 

The solution of the time-independent Schrlidinger 
equation 

(2) H\V = E *  
which describes the electron motion in the n structure 
is given by 

(3) 

- 

I".&:-- -:A.. 

. .  

where the label y = I, II, III refers to the regions shown 
in figure I@). Further specification of the problem is 
determined by the form of the amplitudes 

which suggests that there are incident and reflected 
electron waves in the source lead I and only transmitted 
electron waves in the drain lead III. For simplicity. both 
leads are supposed to be infinite. The choice of the site 
coordinates used in equations (4) and (5) is shown by 
arrows in figure l(a) In this case, 1 Q m ,  m' Q N ,  n Q 0 
(for the inner region U 1 < n < N ,  - ( N I  - 1) 6 m Q 0). 
N is the wire width and N I  is the distance between 
the leads I and III expressed as the number of lattice 
sites. For the double-bend structure shown in figure l(c), 
the exponent in equation (5)  should be replaced by 
exp[ik,(n - N - l)] with n > N + 1. The energy of 
incident electrons is E = E + 2L(cos ko + c o s [ ~ j ~ / ( N  + 
!)!!; the wa~cvec!o:s. kJ in eqi;a:ions (3) and (4) fur both 
propagating j Q j o  and evanescent j 2 jo  modes obey 
the energy conservation law: 

cos kjO + cos[nJo/(N + I)] = cos k, + cos[irj/(N + l)]. 
U&.." nn.nr:̂ ..̂  (1, <E\ I- o..lEi r,,~arrurra ( J ~ > J  111 quaiion (ij, one can 

easily exclude the inner part of the wavefunction 
by means of the Green function technique, as was 
demonstrated previously for similar structures [17]. Note 
that, as distinct from the technique used by Sols et 
al [8] where the treatment of the wire discontinuities 
demands considerable computational effort, we arrive 
at explicit equations fOT quantities of direct physical 
interest-the amplitudes of reflected and transmitted 
waves. In this sense our approach is equivalent to 
the standard matching procedure with a sinzle but 
obviously important advantage: the divergency known 
to be inherent in the continuous model is removed. 

The resulting equation is 

sink, exp[-i(N + l ) k j ]  
sin[(N + l)k,] 2, = (8) 

and 

sin[(N + N l ) k y ]  f fi,, sin[(N + I)k,-l 
X . (9) (COS kj - COS  COS k y  - COS cy) 
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in the region of the first-subband energy. Therefore, 
one can expect the stop-band behaviour in the single- 
mode transmission. This quantum interference effect 
is a specific property of two-terminal systems and is 
illustrated below for the single-bend, double-bend and 
ll structures. It is not expected for systems with a 
larger number of terminals (wire intersections, etc) since, 
in general, the equation fk, = 0, as well as rk, = 0, 
is complex. An exception in this sense is the T-type 
intersection. Because of its symmetry, this structure can 
act like a two-terminal one, which has the resonance 
reflection slightly below the opening of the second-mode 
propagation [13]. 

In what follows we restrict ourselves to the energy 
region of the fundamental mode propagation. The 
quantities of interest to us here are the transmission 
coefficient T = Itx,]' and the device conductance at 

Passing to the continuum limit, N + CO, w = 
(N + 1)a = const, (NI - 1)/(N + 1) = d / w  = const, 
it is convenient to set E = -4L and m* = -E2/2La2, 
where L < 0 for the positive effective mass and a is 
the lattice constant. Then equations (6) and (7) can be 
transformed to 

m 

(1 1) 

sin[(l + cy)rqj.] + At;.. sinnqj. 
(q,? - jfa)(qj, - ja) 

X 

&gvp eqoat;ofis 2 = dhzt &*mn the !ongit.mniona! 
wavevectors qj are expressed in units of the propagation- 
threshold wavevector kfi = n / w  so that E/Em = 
q i  + j i ,  qj = (4: + j i  - j 2 ) l I 2  and Eh = fi2ki/2m*; 

= 1 for the ll structure and f i  = (-l)j+' for the 
do&k-bezd smdcme. 

The equations derived above have the form 

U 

where S;, = Z,.Sjj. - Q;., = SFj,  which can be regarded 
as canonical for two-terminal structures with any kind of 
square-comer discontinuities but with input and output 
leads of the same width. In particular, the only change 
"tal DLlVUlU uc LllauC 111 cquauur, ('.&, U) UCISLLIUF. * >u,g,c 
right-angle bend is that Q;, (or Q$) should be replaced 
by ?cGjj, (or fG;,,) where 

.,... .L....> L. _..>. I- 1 _ _  ,.*, ._ >---2L- - -:--I- 

Some of the transmission properties of the structures 
discussed here can be predicted without solving the 
equations for the S matrix. For instance, let us consider 
me case of me minimai &stance beiween ia.ds mid 
EI (NI = 1 for the discrete model and d = 0 for 
the continuous one) when the I3 shucture transforms 
into a semi-infinite wire of width 2w with a cut in 
its middle. In this structure the amplitudes of the 
rpunr+na tr.lnrm;++n~ nn..ai TA- mA~n. 

except that corresponding to the incident wave mode. 
This follows directly from equations (6) and (10). since 
Q,. = 0 for NI = 1 and Q;? = 0 for d = 0. The 
double-bend structure with d = 0 evidently does not 
pnssess SEC!! 2 ppeertj. FLtheF.c?re, i! is PIC" --a tc? 
show that in accordance with equation (12) (see also 
the corresponding definitions of the coefficients in it) 
the equation tk, = 0 (equivalently x: = x;) is real 

.1....1,1.. U,,.. " I U I U I I . I L U U  .TU"..., -1 - . A L L  I". U l l ' Y U l  

Figure 2. Dependence of the transmission coefficient T 
on electron wavenumber k,/kF in il-structures with d = w 
for different wire widths w = ( N  + l)a, N = 2, 4, 6. 9. 20; 
C.A. corresponds to the continuum limit (see text) and &* 
is the threshold wavevector of the second-mode opening. 
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Figure 3. Transmission coefficient as a function of wavenumber (normalized 
to the propagation threshold wavevector nlw) for different ratios dlw =a. 
Full and broken curyes correspond to the n- and double-bend structures 
respectively. The long-broken curve represents the transmission spectrum of 
a right-angle bend waveguide. 

zero temperature and negligible bias voltage, G = 
(2e2/h)T(EF)  119, 201, where EF is the Fermi energy 
of the electron gas at zero bias. 

First we note that the difference between the discrete 
and continuous models can be disregarded for Wire 
widths N 2 20. For narrower wires the discrete nature 
is important; see figure 2. Thus the continuous model 
is reliable for wire widths +., 10 nm or greater. This 
restriction is assumed to be obeyed in all the results 
presented below. 

As expected, the transport properties of the l7 and 
double-bend structures are appreciably different only 
for small values of the parameter a = d / w ;  see 
figure 3. They are already practically identical when 
a = 1. The curve that corresponds to a = 3 is 
essentially the same as that calculated for the double- 
bend structure (the latter has been studied in detail by 
Weisshaar et d [5, 101). It represents a single-bend 
transmission dependence (broken curve) with a typical 
interference pattern superimposed. The larger the value 
of a, the greater number of resonant peaks observable 
in the transmission coefficient. Every new peak arises 
near the threshold of second-mode propagation andlhen 
(with the further increase of a) shifts towards lower 
electron energies. Figure 4(a) shows the motion and 
shape transformations of new peaks in the transmission 

~. spectrum with increasing a. If the energy of electrons 
enrering the &shaped device is fixed at or near the 
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point of zero transmission, an increase (or decrease) of a 
will result in a quasi-periodic change in the transmission 
coefficient (figure 4(h)): areas of low transmission, 
including the point where T = 0, are separated by 
sharp peaks of the resonant transmission T = 1. 
The conductance of the l7 smcture is determined by 
the transmission coefficient (at zero temperature and 
negligible bias voltage), so to observe the predicted 
behaviour of the transmission it is necessary to increase, 
say, the lower negative gate voltage Vi  (figure l(b)) 
and to decrease the upper gate voltage (or vice versa) in 
coordination, in order to keep the wire width constant 
while changing the distance d. This can be done in 
principle by using equal and opposite changes in gate 
voltage which vary d without affecting w to first order. 
A possible construction of a IT-shaped channel and of 
the necessary modifications (achieved if AV; = -A VS) 
is shown in figure I@). Usually variations of the gate 
voltage result in a depletion area of the same extent in 
the longitudinal and lateral directions, i.e. the distance 
d changes by the same amount as the width of the 
wire w; see figure l(c). Then the dependence of G 
on d or equivalently on w will be qualitatively different 
from that shown in figure 4(b). In the latter case the 
dependence G(w) would have a very similar shape to the 
transmission spectrum shown in figure 3 for a = 3, as 
was demonstrated by the calculations of Weisshaar er al 
p, Lo;. The co!Epkx sm'ct!!re nf GCJ! with a !?"er 
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Figure 4. (a) Transmission coefficient T(k) for 
different values of a = 3. 3.1. 3.2 (from left to right). 
(6) Dependence of the transmission coefficient Ton a for 
fixed k, wfx = 1.5. 

of close resonant peaks makes the comparison with real 
experiment Imhiguous. LQ this respect the c!ez-cct 
switch-type characteristic shown in figure 4(6) seems 
to be. much easier for identification. We believe that 
the observation of such a dependence is quite possible 
and, if put into practice, will help elucidate quantum 
interference effects which. to our knowledge. have not 
been reliably identified in 2D electron waveguides. 

In the energy region that is of most interest here (near 
the opening of the second mode) the simplified model 
of the n-structure with infinite source and drain leads is 
supposed to reproduce sufficiently well the characteristic 
of the device shown in figure I@), providing that 
the length of the leads is greater than d. At the 
same time, it cannot be used to model the device 
conductivity near the threshold of electron propagation 
of a structure embedded in the split-gate configuration, 
which begins and ends in an effectively infinite 2D 
electron gas. An additional effect expected in this region 
is resonant tunnelling through the bound states that are 
known to reside near wire discontinuities [S, 9, 14-18]. 
The bound-state spectrum of the l7 and double-bend 
structures is shown in figure 5 as a function of (Y = d / w ;  
(Y t -1. For the case of a > 0, the results presented are 
essentially the same as calculated previously [15]. But 
unlike the latter we also include the region -1 < (Y < 0 
for the double-bend structure. 

It is remarkable that the difference in the bound-state 
energies of the ll and double-bend structures is small 
even when d tends to zero. When d + 00, the energy 
of the double-degenerate bound state coincides with that 

'0.15 

g 
\ 0.10 a 
? 
2 0.05 
L 

0.00 
-2 0 2 4 6 8 10 12 14 

Ci 

Figure 5. Bound-state energies versus a in the nstructure 
(fufi curves) and doubie-bend siructure (broken curves). 

for a single bend, AEb = (Em - &,)/E* = 0.0696 
19, iSj. A noticeable splitting of tihe even-parity (upper 
curve) and odd-pa& (lower curve) bound states is 
observed at a i 6. The odd-parity state disappears at 
(Y % 0.5 for both structures. The splitting originates 
from the interaction (via the continuous spectrum of the 

with the discrete levels in the vicinities of the structure 
bends. Obviously, since there is no direct interaction 
between the two bends, the bound-state splitting in 
2D waveguides is a purely quantum mechanical effect, 
,U"L 1lr.C LLLG GhlDLCLlCC "I U W C l C L C  1C"GlD 111 C'.arrLra.kJ 

unbound systems [9]. 
As pointed out above, there exists only one bound 

state in the region -1 Q a Q 0.5. The deepest 
discrete level corresponds to the double-bend structure 

suggested in [15]). In this case AEbTb, rs 0.148. When 
a! tends to -1 (and the structure transforms into a straight 
wire.) AETb) falls to zero. The maximum departure of 
the bound state from the continuous spectrum in the l7 
structure (at a = 0) is noticeably greater than in the 
double-bend structure, AEGY, = 0.161. 

To conclude, equations for the S-matrix of electrons 
scattered in the n, double- and single-bend structures 
have been presented for the first time in a simple 
explicit form. On this basis the bound-state spectrum 
and conductance of the degenerate Fermi gas in 
these structures have been calculated. It has been 
demonstrated that, as a result of the quantum interference 
in a rI-structure device, a quasi-periodic sequence of 
zero and sharp-spike conductance can be observed under 
varied gate voltages. The effect seems to be available 
for identification in a relevant experimental set-up. 
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