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J. Phys.: Condens. Matter 5 (1993) 5215-5224. Printed in the UK 
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discontinuities with an application to the through right-angle 
bend transmission 
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t Giushkov Institute of Cybernetics of the Academy of Science of fhe Ukraine, Kiev-207, 
252207, Ukraine 
$ Bogolyubov Institute for Theoretical Physics of the Academy of Science of the Ukmine. 
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Abstract An e x x t  solution of the Scaaering problem in ZD squareamer discontinuities 
is presented in an explicit form. This suggests an efficient computational procedure for 
characteristics of electron ballistic h s p o r l  in square-comer s h w d  waveguides. Using the 
proposed method, bound-state energies, mode-to-mode as well as tolA and averaged transmission 
probabilities. in a square-cnmer right-angle bend have been calculated. Conductance and 
eleclron-filtering propenies of the system are found to be challenging problems for its practical 
realization. 

1. Introduction 

Partly because of the possibility of device applications, and patly due to some novel 
phenomena such as existence of bound states in classically unbound systems and modulation 
of current by quantum interference, wavelike electron transport in two-dimensional (2D) 
nanostructures has received considerable attention in recent years. [I-IO]. A number of 
promising electron waveguide geometries have been examined by m a s  of the recursive 
Green function method [4], mode matching [1,7-91 and specially designed techniques 
[2,5,6,10,11]. The scattering problem in these stmctures is essentially computational, 
because the mode mixing in the region of the waveguide discontinuities involves an infinite 
number of the degrees of freedom of the electron motion. 

In [2,4-6], the treatment of the electron-scattering region is completely computational. 
I n  [1,7-10], the use of an appropriate analytic form for the electron wavefunction in the 
scattering region rationalizes essentially numerical calculations. Note that only in 19,101, 
equations for the scattering matrix (in the case of crossed wires) have been presented in 
an explicit form. In this paper, the analytical description is advanced to present an explicit 
expression for the exact solution of the scattering problem. Equations (18)-(21) represent 
this solution and the main result of the work. 

Although the derivation of basic equations is performed here for a particular (and 
deliberately the simplest) waveguide geomehy, the form of the obtained equations for 
the S matrix is canonical, i.e. it is valid for an arbitrary square-comer geometry of 
discontinuities, including systems with a large number of terminals (the latter case differs 
simply in the number of equations of the type (18)). Note, in addition, that ballistic transport 
characteristics in a square-comer right-angle waveguide have already been a d d r d  in the 
literature [7,11] but only very briefly. 

In section 2 we present an analytic solution for the scattering (reflection and 
transmission) amplitudes in a right-angle bend. General properties of the reflection 
0953-8984/93/L95215+10$07.50 @ 1993 IOP Publishing Ltd 5215 
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and transmission probabilities are discussed in section 3. In section 4, we investigate 
the dependence of the bound-state energy in the L-shaped structure on the wire width. 
Calculations of the transmission characteristics of the right-angle bend are given in section 5, 
and the main results are briefly summarized in section 6. 
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2. Statement of the problem and hasic equations 

Let the electron motion inside a quantum waveguide be governed by the time-independent 
Schriidinger equation HY = EY with the Hamiltonian (in the tight-binding representation) 

H = -4L UiaR + L aga,,, 
R6R R 

and the wavefunction 

In (1) and (2), a i ,  U R  are the Fermi creation and annihilation operators of an electron on 
the site R with coordinates (m,  n), 6R connects the site R with its nearest neighbours, and 
L is the overlap integral of electron wavefunctions in the neighbouring sites. Equations for 
the expansion coefficients 'VR can be found by substituting (2) in (1) and multiplying the 
result by ( O ~ U R ,  where 10) is the vacuum wavefunction. Note that, by setting the lattice 
site electron energy in the resulting equations to be equal to -4L with L = -RZ /2m'az, 
(a  is the lattice constant m' is the effective electronic mass), we make our model, in the 
continuum limit, completely equivalent to the effective mass approximation [lo]. 

m 

0 0 - . o  0 

n 

... ... __. 

I down I 

Figure 1. Schematic representation of an L- 

shaped 20 waveguide. In the lattice, which 
corresponds to the discrete model of the bend, 
the lattice-site coordinates m and n (in unitr 
of a, the periodicity of the lattice) vary in the 
interval from -m to N .  Full lines show the 
boundary of the waveguide in the continuum 
limit ( N  + m, N a  = constant). In this case, 
w = ( N  + 1 ) a  is the waveguide width. W 
circular righl-angle bend with m inner radius 
of the bend curvature and with the outer radius 
equal to w is represented by the dotied curve. 

For an L-shaped 2D waveguide, it is convenient to consider the electron wavefunction 
of the system in each of the three regions, namely. lefi, in and down (see figure 1). with the 
following numbering of the lattice sites R 1 Q m < N ,  n 6 0 in the region 'left', m < 0, 
I < n < N in the region 'down', and 1 < m < N ,  1 < n < N in the region 'in'. In these 
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regions the expansion coefficients W R  obey the following equations: 

E + 4 L  
-*m,m.n L *m-i,n(l - L I )  + *m+I,n(l - 6 m . ~ )  + '4m.m-i + *m,n+i 

l < m < N ,  n<O (3) 
E f 4 L  

L -*m,n = Qm-1.n + *m+l.n + *m.v-1(1 -&,I)  + Y m , n + 1 ( 1  -&,N) 

m < O ,  l < n < N  (4) 
E + 4 L  

L -*m,n = *m-l,n + *m+I,n(l - 6 m . N )  f *m.n-l + *m,n+l(l -&,N) 

l < m < N ,  l < n < N .  (5) 

Stationary solutions to the Schmdinger equation, which describe incident and reflected 
electron fluxes in the input (left) lead and the transmitted flux in the output (down) lead, 
can be taken in the fom 

where xj = nj/(N + 1) is the quantum number of the transverse electron motion, and kj is 
the dimensionless longitudinal wavevector of the jth mode. Note that the coefficients (6) 
and (7) satisfy (3) and (4)  except those with I < m 6 N, n = 0 and m = 0, 1 < n < N, 
respectively. 

The energy of electrons in the waveguide is determined by the mode number j o  and the 
wavevector kjo of the incident flux: 

E ~L(cosx~,    COS^^@ - 2). (8) 

While j o  and kjo are fixed in the boundary condition of the scattering problem, all other kj 
in (6) and (7) are found from the energy conservation law 

(9) COS kjo + COS xj0 COS kj + COS xj. 
Solutions to (9) can be either real or imaginary, i.e. the expansions (6) and (7) include 
propagating and evanescent modes of electronic waves. 

In the intersection region of the 'left' and 'down' leads, the electron wavefunction is 
given by 

+ E$IG, exp(ikjm) + 4, exp(-ik,m)l sino(in). (10) 

To express the coefficients of the above expansion through the amplitudes of the reflected 
and transmitted waves, we can use (5 )  for all the boundary sites of the region in: 1 < m < N, 
n = N: m = N, 1 < a  < N; 1 < m  < N , n  = I; m = 1 , l  < n  6 N. This way of 
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excluding the unknowns Ax,, B ,  , Ckj and &, is similar to the matching procedure exploited 
in the continuous description of the scattering process, but one has to deal with somewhat 
simpler equations. A more general treatment of square-comer discontinuities offers the 
Green function technique [ 101. 

Y A Klimenko et a1 

Using (IO) in ( 5 )  for the boundary sites, after some evident algebra we obtain 

The substitution of this expression in (3). (4) for 1 Q m Q N ,  n = 0 and m = 0, 1 < n < N 
gives 

where the following abbreviations are used: - 
rk,,kh sj.jo + rk,,kh 

Equations (12) are simplified further by introducing the new variables 
(15) * 

xk,,k,o = ik,.kjo ?kj.kh 

for which 
N 

ZjXi,k,o = Fiio Gji‘X$,,k,o (16) 

or 
S*Xi = F. (17) 

In (17). Si, = ZiSjr T Gjy, X’ = C O I ( X ~ . ~ , ~ ,  . . ., X$,kh), and F is the vector column 
with the only non-zero element on the 30th place, Fjjo = -2isinkj& 

i’=l 

The set (16) can be rewritten in a triangular form 
j - 1  

J k 1  

where the coefficients are defined by the following recurrent relations: 

-A * 
zj xk,.kh = ’;o * e$x$,kjo 

5;”6;i! 8$ =Gjy* 2 z~ 
i”=mar(j.j’)+l 
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Thus, finding solutions to the S-matrix equations is reduced to a simple recurrent procedure. 
In particular, for low-mode waves, one readily gets 

The general form of the solution for an arbitrary mode number is evident but unnecessary 
here. 

Since the vector-column F" has j o  non-zero elements, F;o # 0 for j 6 jo. expressions 
for the reflection and transmission amplitudes 

become especially simple for the fundamental-mode f.jo = 1) and low-mode propagation. 
Thus, (IS) suggests, in fact, an explicit fonn of the exact solution for the discrete model 

of the L-shaped waveguide. As shown previously [lo], the same relations, but with Zj, 
Cjr and in (IS) replaced by Zy = qjexp(-ixqj)/sin(nqj), GFr = 2jj'/[x(jn -q!)J, 
and FC. = -2iqjjSjj0, where qj = kj (N + l)/x, can be used, as a solution of the scattering 
problem for the continuum version of the model, N +. 00, aN = constant. In the 
latter case (N = 00 in (16)). (18)-(21) represent the desired solution in the N-mode 
approximation. 

The equations obtained above provide an efficient method of calculating the transport 
properties and bound-state energies of the right-angle bend and similar sbuctures. 

If" 

3. General properties of scattering probabilities 

A characteristic feature inherent in all computational approaches to electron dynamics in 
quantum waveguides is that the general properties of the system are verified a posteriori, 
using numerical results obtained. Here, some general properties of the reflection and 
transmission probabilities 

which characterize the electron motion in a square-comer right-angle bend, are derived 
analytically. 

The first property, which follows directly from the canonical equations (12). is the flux 
conservation law 

where No is the number of modes available for propagation in the channel (i.e. the number 
of real positive roots of (9) for the given electron energy). It is worth emphasizing that 
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the equality (25) is strictly held even in the case of the N-mode description of the system, 
providing that N t NO. 

Second, in any dynamic system, fonvard and backward transitions between system states 
are not distinguished, and therefore 

The above equality also follows directly from equations (16) for the S matrix. 
Third, in the limit kio + 0, the set of equations (12) becomes homogeneous, so we 

have &,kh = 0, rk,kh = -6,jo. Thus, all scattering probabilities in this limit are zero except 
the reflection probability Rjojo = 1. 

Finally, it can be shown that the equation tk1,k, = 0, which determines the energy of 
the resonant reflection in the region of the fundamentalmode propagation, is real. Indeed, 
since 

N 
IIS*II = (zi T GII)IIS*Itll + C=W-l)'lIS*IIljGlj 

j=2 

where IIS*l[,y is the minor of the matrix Si obtained by eliminating the j th row and j'th 
column, it  is easy to see from (17) that the equation XA = X, is also real. Therefore, 
one can expect that the resonant reflection ( T ~ I  = 0) in the fundamental-mode propagation 
exists. Moreover, the above statement is relevant to any two-terminal structure with square- 
comer discontinuities and the input and output leads of the same width. This means that 
the stop-bend behaviour of the device, which obviously has quantum interference origins, 
is not specific for the right-angle bend but is a general property of two-terminal square- 
comer structures. Systems with a larger number of terminals, e.g. wire intersections, do 
not possess this property except the case of a T-shaped waveguide [4]. The latter can act 
as a two-terminal structure due to its symmetry. 

4. Bound states 

A remarkable peculiarity of waveguides with square-comer discontinuities is the existence 
of bound states. The effect, predicted for the first time by Schult and co-workers [I], has 
a pure quantum nature, since from the classical point of view electrons in waveguides are 
free and, therefore, cannot be trapped. 

In [I] ,  the problem was solved in the framework of the effective mass approximation; 
here we find the bound-state energies for both the continuum and discrete models. The 
energies of the bound states correspond to the solutions of the following equation: the 
determinant of the set (12) equals zero, i.e. 

i:i; = 0 (27) 

found outside the continuum spectrum of the system. Thus, one has to solve (27) with 
k j  replaced by ikj. The ground-state energy is then defined by ( L  e 0 positive effective 
mass) 

Eb =2[L1(2-COSxl -cothkb) (28) 

where kb satisfies (27) under the replacement indicated. There also exists an excited bound 
state, the energy of which is symmetric to that of the ground state with respect to the 
continuous spectrum of the discrete system. For the continuous model of the right-angle 
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bend waveguide, where the electron-energy spectnun is unrestricted, there is only one bound 
state below the bottom of the continuous spectrum. 

Calculations of the bound-state energy spacing from the propagation threshold energy 
E,i, = 2lLl(l - COSXI) are presented in table 1 (together with the result for the continuum 
limit) in units of Eth  and 2 1 4  As can be seen, the difference in the ground-state energy 
between the discrete and continuum models is already quite small for comparatively narmw 
waveguides, N = 10-20. Note also that, in the one-mode approximation, ( E i  - E g ) / E i  
= 0.054 ( E ;  = h2ki/2m*,  kth = n/w,  w = a(N + 1 )  is the wire width, the superscript 
c labels the continuum model. U). In the two-, three- and four-mode approximations, this 
quantity equals to 0.063,0.065,0.067, respectively. This exemplifies the convergence of the 
computational procedure used. For the ‘wavevector’ of the bound state, K b / k ~  = m, 
we obtain 0.9646, which is a more accurate value than 0.96 [ l ] .  

Table 1. Bound-state energies in the rim-angle bend 

N [(E* - EdlEchl x IO ICE* - EdI12Lll x 10 

2 0.186 0.102 
3 0.344 
4 0.439 
5 0500 
IO 0.622 
15 0.658 
7.0 0.674 
CL (N =m) 0.6% 
a 111 0.784 

0.106 
0.087 
0.069 
0.025 
0.013 
0.0075 
0 
0 

5. Computational results and discussion 

We now turn to characterizing the scattering properties of a right-angle bend in the 
continuum model. The use of (18H21)  considerably simplifies computations of the 
scattering probabilities RJJo and qh with a large number of modes involved. 

To get some idea about the microscopic picture of electron motion, one needs the 
mode transmission (reflection) coefficients (or scattering probabilities) which determine 
the efficiency of the mode transformation in the scattering region of electrons. The total 
transmission coefficient, To = xi ci0 for the fundamental-mode propagation, jo = 1, was 
calculated by Weisshaar and co-workers [7]. Those calculations are shown by the dotted 
curve in figure 2(a) (all characteristics are given here as functions of 41, the longitudinal 
wavevector in the first subband, which is scaled with the propagation threshold wavevector 
klh, qg = kia-’ /kh) .  Full curves in figures 2(a)-(c) represent conhibutions to the total 
joth mode transmission probability, coming from all other modes which can propagate in 
the waveguide at the given energy. We see that the Iirst-mode wave in the input lead 
effectively converts into the second- (third-) mode wave in the output lead in the energy 
region of the second (third) subband. The right-angle waveguide also possesses a high-mcde 
transformation capacity of the second-mode wave into the third-mode wave and vice vena 
in the second and third subbands, see identical (TU = T32) curves in figures 2(b) and (c). 

Since the injection of individual modes is hardly accessible in a transport experiment, 
the measurable quantities are the total average transmission coefficient T“ = N-’ 0 ENo ,o=l T. n 
(which determines the conductivity of degenerated electrons in a two-terminal smc- 
ture [K2,131) and the distribution of outgoing electrons among all NO modes available 



1.0 Figure 2. Electron iransmission probabilities as 
functions of = k l  Jkaa in a square-comer righl- 
angle bend. qj0  is Le probability of the transmission 

r .s r: 0 , s ~  0.6 
of wave the incident in the output wave in lead. Ihe mode qo = jo into E,", Le qj0 jth is mode the 

total transmission probability. TaY = N;' r2=l Th is f 0.1 j Ti3 the average transmission coefficient, and the quantities 

of outgoing electrons among No (= 1. 2 ,3  here) modes 
available for propagation. The j th  mode propagation 
lhreshold is 1.73, 2 8 3  and 3.87 for the first-, sewnd- 
and Wid-subband energy intemds, respectively. 
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.. L T;' = (NOT")-' qb describe the distribution 
0.2 

( E )  0.Q &a 2.8 3.0 3.2 3.4 3.6 3.8 
q< 

for propagation, 7;" = N;' TjjJT". The latter quantity characterizes the system as 
a filter of electrons. 

Figure 2(d) shows that two regions of a high conductance of the right-angle bend are 
separated by a well pronounced valley of a low (zero at the point 91 = 1.6) conductance-a 
promising property for device applications. In any case, as distinct from the cirrular right- 
angle bend [6], the square-comer right-angle bend should be regarded in a quantum device 
technology as a device itself rather than a passive interconnection of different parts of a 
nanocircuit. 

As seen from figure 2(e), the fundamental-mode population is considerably suppressed 
in the transmitted flux when the electron energy increases. At the same time, the second 
and third modes are nearly equally populated except the region close to the fourth-mode 
opening. Thus, the electron filtering can be efficient within the second-subband energy 
interval. 

Let us consider briefly the dependence of the through-right-angle-bend transmission 
on the shape of the discontinuity region 'in'. As was mentioned above, the two-terminal 
structures are expected to possess the resonant reflection of the first-mode wave, which, 
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in the case of the discussed structure, is realized at 4 ,  = 1.6, i.e. the energy of the 
resonant reflection of electrons E, ~ t !  3.6 x E;. The effect is a sequence of the 
interference of electron waves in the discontinuity region and, therefore, depends on its 
shape. Modifications of this shape can lead to considerable changes of the resonant reflection 
energy as well as of the form of the waveguide transmission spect". Some examples 
of this dependence are presented in figure 3, where the fundamental-mode transmission 
spectrum of modified right-angle bends (figures 3(6Hd) are compared with its original fom 
(figure 3(n)). An extension of the area 'in' by an additional stub may result (depending on 
the stub length) in a shift, broadening and enlarging the number of resonances. Analogous 
changes of the transmission spectrum can be caused by supplementing the structure with 
two additional stubs, which extend both input and output leads. 

4 1  ~:.1 ., 
- 
e 
L 

~ 

(d) 
1 

91 91 

Fwre 3. The transmission probabiliry in a square-comer right-angle bend ( U )  and its 
modifications (b)-(d). The length of the additional stub shown in the insem of (b), (c) and (d )  
is 0 .2~ .  0 . 5 ~  and W .  respectively. 

It is also of importance for our understanding of apossible role of waveguides connecting 
different parts of a circuit, to compare the present results with those for a circular right- 
angle bend 161. If we change the bend shape in the way shown by dotted curve in figure 1, 
we obtain the structure with zero inner radius of the bend curvature and with the outer 
radius equal to the waveguide width. There are several noticeable distinctions in properties 
of such a circular right-angle bend. The most suiking of them is the monotonic increase 
of the transmission within the first subband which leads to a nearly perfect fundamental- 
mode transmission through the circular right angle except for energies very close to the 
propagation threshold in the channel [6]. Thus, the precise geometry of the bend is crucial 
for determining its transport properties. 
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As has been just demonstrated, the transport (or device) characteristics of a right-angle 
waveguide are prospective and appealing to be realized. But we see a serious warning about 
difficulties in this method in the drastic dependence on the bend shaping which has been 
pointed out above. It is likely that propeities of other square-comer discontinuities are not 
less sensitive to the comer smoothing. 

6. Conclusion 

An explicit form of equations, which gives a complete description of the ballistic electron 
transport in a square-comer right-angle waveguide, has been derived. On this basis, general 
transport properties of the system have been proved. To our knowledge, this has never 
been done analytically. The S-matrix equations ( p a n t e d  in the canonical form which is 
general for squarecomer discontinuities) have been reduced to the triangular form with the 
coefficients defined by simple recurrent relations. In fact, this gives the explicit (exact) 
solution of the scattering problem for the discrete model of the waveguide with (arbitrary) 
N-site width and the solution for the standard continuum model of the waveguide in the 
N -mode approximation. The solution obtained simplifies considerably computations for 
the square-comer right-angle bend and relevant structures. Quantities of physical interest, 
the ground-state energy and the reflection and transmission probabilities up to the fourth- 
mode opening, have been calculated in the framework of the original method. A non-trivial 
dependence of the degenerate electron-gas conductance on the Fermi energy and the electron 
filtering in right-angle waveguides are predicted. 
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