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An analytic approach to the ballistic electron transport in crossed 2D wires is presented. It is shown 
that within and near the first transverse mode the two-mode approximation gives a correct description 
of the system. Simple formulas for the bound-state energies and the single-mode scattering probabilities 
are derived. 

Eine analytische Naherung an den ballistischen Elektronentransport in gekreuzten 2D-Drahten wird 
dargestellt. Innerhalb und nahe der ersten transversalen Mode beschreibt die Zweimodennaherung das 
System korrekt. Einfache Formeln fur die Energie des Grundzustandes und die Zweimoden- 
Streuwahrscheinlichkeit werden abgeleitet. 

1. Introduction 

Current fine lithographic techniques make it possible to shape electrons at the two- 
dimensional surfaces into channels the width of which is of the same order as the de Broglie 
wavelength [ 1 to 31. Hence quantum-mechanical effects are strongly manifested in such 
systems. For example, while from a classical point of view the system of two perpendicular 
perfect channels of infinite length is characterized by an open potential; the reverse is the 
case for the quantum channels. Indeed, Peeters [4] and Schult et al. [5] showed that bound 
states reside at the intersection of the two channels. Beggren and Zhen-Li Ji [6] showed 
that the bound states give rise to sharp peaks in the conduction. These authors calculated 
the ballistic transport characteristics (bound-state energies and scattering probabilities) 
only numerically. It is clear, however, that more realistic theoretical models are numerically 
more difficult and tht  various factors which contribute to the process are not always 
transparent. The purpose of the present work is to present an analytic approach to the 
ballistic transport in a system of crossed wires in order to bring out the essential 
approximations and to provide analytic formulas for bound-state energies and scattering 
amplitudes. 

2. Results 

To describe the ballistic transport in the X-shaped system of crossed wires we use the 
Hamiltonian H = - (h2/2m*) V2 inside the well (m* is the effective electron mass) with the 
boundary condition that the electron wave function goes to zero on the sides of the channels 
(see insert of Fig. 1). The characteristics of the ballistic transport are determined by 
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Fig. 1. The reflection (R), forward-transmission (T ) ,  and side-transmission (S) probabilities as functions 
of q ( =  w/n) t e ) .  q = l(2, ...) corresponds to the opening of the first- (second-, ...) mode 
propagation. Solid lines two-mode approximation, dashed lines one-mode approximation (see the text). 
The positions of the two bound states are marked by arrows 

scattering-type solutions of the time-independent Schrodinger equation, 

 HI^ = E y ,  

where the wave function y has the form 

na(x + d)  + (6, sinh k,y + yn cosh k,y) sin 
2d 

in each of the five rectangular regions labeled in Fig. 1 with left, right, up, down, and in. 
The first term in (1) represents an incoming electron wave with the longitudinal wave vector 
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k and transverse wave number no. The electron energy in the channels is 

+ k2 
2m* 

The quantities k, in ( 1 )  to (5) are defined by the relations 

n2 - ni 712 4k2d2 
k, = ~ - ,c2)'12 for n2 >= nz + - ( 4d2 73 

and 

The coefficients in (1) to (5 )  should be chosen so as to match y and its derivatives at the 
boundaries between the five regions. As a result of the matching procedure we get 

k,d(l + coth 2k,d + (- 1)" cosech 2k,d) A,, + 

+ G,,,k,d(coth 2k,d - 1 + (- 1)" cosech 2k,d),  

k,d(l + coth 2k,d - (- 1)" cosech 2k,d) B,, 

The set of equations (6) and (7) gives the full description of the scattering process in the 
system under consideration. 

In the following we consider the case no = $ 2  and assume that E 5 4E, = 4n2h2/2m*d2. 
Then the only mode which can propagate through the channels is the n = 1 mode, all 
others are evanescent modes. 

From (6)  and (7) one obtains 

u, = D, 9 (8) 

Tl - R ,  = 1 - 2ikd(B - kd ctg kd + ikd)-l, (9) 

Ti + R1 T 2UI = - 1  + 2 i k d ( T A +  + kdtgkd (10) K11 + ikd)-'. 
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Here we introduce the quantities 
m 

A* = C KZn+l,lan.+ 3 
n =  1 * 
I 

B = C K2n,Ibn, 
n = l  

where the coefficients an, and bn are the solutions of the equations 

(13) 

(14) 
- m 

kzn+ld(l + cothk2n+ld)an,+ T C ~ 2 n + 1 , 2 n ' + , a n , , +  = +KZn+l,l. 
R ' =  1 

It is worthwhile to remark that the quantities A ,  and B describe the contribution to the 
scattering process only from evanescent modes. 

Exact solutions of (13) and (14) can be obtained only numerically. Nevertheless, as is 
shown below, the equations for the bound-state energies and the scattering probabilities 
can be expressed in a quite simple analytic form within the accuracy of a few percent. 

2.1 Bound-state energies 

It is well known that the poles of scattering amplitudes in the upper half of the complex 
k-plane determine the energies of bound states. In our case the energy of the electron bound 
state is determined by the pole of the function TI  - R ,  + 2U,, 

nz(1 + ePnr)-l = 2(1 + zZ)-l - A+(,,,E, (1 5)  
2d 

where k = i(zz/2d) ( z  > 0). The functions TI - R ,  and T, - R ,  - 2 U ,  have no poles. 

bound-state energy is given by 
In the one-mode approximation (this means: A ,  = 0 in (15)) we obtain that the 

E,  = (1 - z2) El = 0.68El (16) 

(in [5] E = 0.66EJ. Analysis shows that (16) determines the energy of the lowest even-parity 
bound state. To obtain the energy of the lowest odd-parity bound state we have to consider 
the case no = 2. Using the two-mode approximation to solve (6) and (7) (i.e. the set of 
equations is truncated on the second mode), we find 

E6 = (4 - 2;) E,  = 3.78El 

zz(4 + z') (1 - e-zz)-l = 8 .  

(17) 

(3.72E, in [5] )  where zo is the root of the equation 

(18) 

It is worthwhile to remark that the bound-state energies obtained in the simplest 
approximations agree well with the exact values calculated numerically by Schult et al. [5] :  
the discrepancy does not exceed a few percent. The same statement is valid for some other 
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related systems. For example, the functions (1) to (5) with T, = 0 and ,8, = -a, tanh k,d 
describe the ballistic transport in a T-shape system. In this case there is only one bound 
state and its energy (in the one-mode approximation) is given by 

(19) E ,  = (1 - z ~ E ,  = 0.82E, 

nz(1 + z2)(1 + e-sZ)-1/’(1 - ,-2nz)-1/2 = 21’2 

(&, = 0.81Et [5]) where zT is the root of the equation 

(20) 

The scattering process in an L-shaped system (a right-angle wire bend) is described by the 
functions (1) to (5) with T,, = U ,  = 0 and f?, = -a, tanh k,d, yn = -6, tanh k,d. Then, it 
is easy to show (in the same approximation) that 

E, = (1 - 2:) E, = 0.95E,, 

nz(1 + z2)(1 - e-*”’)-l = 1 .  

(211 

where zL is the root of the equation 

(22) 

Comparing (17) and (18) with (21) and (22) we see that the bound-state energy in the 
L-shaped system, with half the width, coincides with the odd-parity bound-state energy in 
the X-type system. 

It is interesting to remark that the bound states in the L-type system is more loose than 
in the T- and X-shaped ones. Indeed, from (16), (17), (19), and (21) we see 

rx = 1.13d (even parity state), 

rx = 1.36d (odd parity state), 

rT = 1.50d, rL = 2.85d. 

This fact may be important when nano-patterns consisting of several “X”, “T”, and “L” 
systems are investigated. 

2.2 Scattering probabilities 

We calculate the forward- and side-transmission probabilities, T = ITIIz and S = 3 IU1I2, 
using the two-mode approximation, i.e. the only evanescent mode which contributes to the 
scattering process is the n = 2 mode. In this case from (13) and (14) we obtain that 

a , , * = O ;  n = l , 2  )..., 
b, = K,,/k,d(l + tanh k,d) b, = 0 for n = 2,3, ... . (23) 

S = 2F1 COS, kd(1 + 2F1 cos 2kd + F:)-’, 

With account of (8) to (12) and (23) the transmission probabilities take the form 

(24) 

(1 - F,)’ sin’ kd + (1 - F ,  cos’kd + F:) cos2 kd 
T =  

(1 - 2Fl cos 2kd + F f )  (1 - F ,  cos kd + F;) ’ 
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where 
F ,  = 4 r ~ ~ k - ~ d - ’  COS’ kd(n2 - 4k’d2)-’, 

F ,  = 
4n2 1 + exp [ - (3.n’ - 4k’d2)’/’] sin kd 

rt2 - k2d2 (371’ - 4k2d2)’/’ kd 

Note that putting in (24) to (26) F, = 0 we obtain the one-mode approximation. 
The functions (24) to (26) are plotted in Fig. 1 (solid lines). Despite the roughness of the 

approximation used, the curves are in excellent agreement with the exact calculations [5 ] .  
All important details of the behaviour of the scattering probabilities as functions of the 
longitudinal wave vector in the range up to the second-mode threshold ( E  = 4EJ and 
slightly above are reproduced correctly. Examination of higher approximations shows small 
quantitative changes not distinguished in the figure scale. At the same time, the one-mode 
approximation (dashed lines) is valid at small wave vectors only. 

3. Conclusions 

In conclusion, as demonstrated above, the two-mode approximation gives a reasonable 
description of the system, revealing the main factors which determine the principle 
characteristics of the fundamental-mode propagation. An analogous approach seems 
especially promising for applications to more complex types of wire discontinuity treatments 
which demand a great amount of computational time. 
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