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Electron tunneling in a molecular wire with defects of the type -+ A4AABAAA - - -, where electron-
ic states of molecules, host (A4) and guest, at different sites are coupled via resonant interaction, is inves-
tigated. The model described by a simple Hamiltonian in the tight-binding representation bears at the
same time a close resemblance to a double-barrier resonant heterostructure. Resonant tunneling is con-
sidered in the presence of an external electric field with the Hubbard electron-electron interaction at the
guest site included. A closed set of equations, which accounts for the feedback between the current den-
sity in the wire and the resonance-state energy, is derived and used for calculations of the transmission
coefficient of tunneling through defect. The latter determines the wire conductance of a completely de-
generate Fermi gas. In the linear version of the theory presented, the Sautet-Joachim result is rederived.
With nonlinear effects taken into account, we come to a self-consistent equation coinciding formally with
that of the Davydov-Ermakov phenomenological model of bistable tunneling in double-barrier struc-
tures. In both studies the external field was absent, and thus, with its inclusion, an important generaliza-
tion of the previous results is made. In the linear case (small current densities), an analytic expression of
the wire-conductance field dependence is obtained and investigated. In the nonlinear case, the bistable
regime of tunneling is shown to be operative, resulting in a specific behavior of the current response to
the applied field. This behavior, i.e., the place of the hysteresis loop in the I-V curve, its form, and the
loop number, correlates strongly with microscopic details of the resonant structure. An analysis of pos-
sible manifestations of bistability under varying magnitude of the applied bias constitutes the main result
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of the paper.

I. INTRODUCTION

Fast progress in the fabrication of submicrometer elec-
tronic devices has given a powerful impulse for studies of
fundamental properties of electron transport in ul-
trasmall structures, where the quantum nature of charge
carriers is of principal importance. Among the phenome-
na that gained renewed interest from both experimental-
ists and theoreticians is resonant tunneling, the wide
spectrum of applications of which is nearly impossible to
cover.

A fascinating property of this phenomenon is its intrin-
sic bistability predicted first"'? and then confirmed experi-
mentally.>* The origin of the bistable behavior of the
electron flux transmitted through a resonant structure
lies in the interaction of electrons stored in a quantum
well with outgoing electrons. As a result of this interac-
tion, feedback between the current through the resonance
structure and the resonance-state energy arises, resulting
in the bistable current-voltage characteristics observed in
experiments.

Different approaches have been proposed to describe
the resonant tunneling intrinsic bistability.>>® The
Davydov-Ermakov theory? is based on the assumption
that electrons entering the well are acted on by the aver-
age charge accumulated between the barriers. The struc-
ture of the charge buildup is ignored and, as a conse-
quence of this simplification, the energy of an electron in
the well turns out to be linearly dependent on the square
amplitude of the wave function of the incident electrons.

46

This effect provides the following bistable characteristics:
transmitted flux intensity versus incident flux intensity.
Note that the external electric field, which enlarges con-
siderably the difficulties of an analytical treatment, was
not taken into account (and therefore, many questions
remain unanswered).

Bistable current-voltage characteristics were obtained
by Sheard and Toombs® and then, in a somewhat more
accurate manner, by Rahman and Davies® using the
“sequential” model of resonant tunneling. A serious
disadvantage of the otherwise reasonable model cited is
that one of two stable values of the charge in the well is
always zero, which in reality cannot be true.

Simulations of quantum transport in resonant struc-
tures®® are of course a proper way to solve the problem
but they give little insight into the nature of intrinsic bi-
stability. So, we believe that further development of the
microscopic theory of nonlinear resonant tunneling is a
current problem.

In this paper we consider a model of the electron tun-
neling in a resonant structure of minimal size conceived
on the molecular-level scale. Specifically, it deals with a
quantum molecular wire, composed of identical host mol-
ecules (or other subunits), with a single guest molecule re-
garded usually as a traplike or barrierlike defect. The
guest molecule, under certain conditions, acts as a
double-barrier resonant structure for an electron flux
propagating along the wire. Such a model was recently
proposed and investigated as a prospective switching ele-
ment of molecular size by Sautet and Joachim,’ who con-
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sidered the linear regime of tunneling of neutral particles
(no electromagnetic-field effects were included). We ex-
tend their model to study the influence of the Coulomb
electron-electron repulsion at the guest site and of the
external electric field.

Intrinsic bistability of the resonance tunneling process
is another problem that falls into focus here. There have
been some attempts to treat it theoretically but, as men-
tioned, within the phenomenological or computational
approach only. Therefore, the mechanism of the forma-
tion of the bistable state at the microscopic level remains,
so far, hidden. Our model of bistable resonance tunnel-
ing allows us, with minimal simplifications, to investigate
the phenomenon at a microscopic level and to estimate
the significance of various parameters that determine the
current-voltage characteristics when the system is found
in a bistable or in a near-bistable state. This is evidently
important for design of digital molecular electronics de-
vices.

The remainder of the paper is organized as follows: In
Sec. II we introduce our model and the method of calcu-
lation, in Sec. III we present and discuss our results, and
Sec. IV contains our summary and conclusions.

II. STATEMENT OF THE MODEL AND METHOD
OF CALCULATION

The physical reasons why a specific defect of a molecu-
lar chain, otherwise ideal, may behave like a resonant
structure, are as follows. Let an electron move along a
chain due to the exchange electron-electron interaction
(with its energy denoted below by L) between the host
molecules. The electron transfer energy between host
and guest molecules is L and the energy of an electron on
the host (guest) site is zero (6,). If [L| <|L|, an electron
is acted on by the regions between host and guest mole-
cules as potential barriers and by the host molecular site,
with 6,<0, as by a potential well. Therefore, it is not
surprising that such molecular structure can play a role
similar to the well-known double-barrier resonant hetero-
structures.

The analogy between the two models mentioned be-
comes visible in Fig. 1, where a molecular wire with the
“one-molecular” resonant structure and a semiconductor
quantum wire with a single quantum dot sandwiched be-
tween two tunneling barriers are shown. In Fig. 1(b), the
left and the right parts of the wire are regarded usually as
the emitter and the collector leads, respectively. Using
this terminology in treating the tunneling process seems
to be appropriate also for Fig. 1(a). In what follows we
refer to the latter only, bearing in mind that the results
obtained are, to some extent, relevant to Fig. 1(b).

With the extension of the simple model of the quantum
wire formulated above to include Coulomb electron-
electron interaction at the guest site in the Hubbard rep-
resentation, the electronic Hamiltonian of the system
considered reads as

H=3I[L,,,—6(n—18,,®la} a,.,

n,m

+5oa$,aao,a+6Ha$raota$laoi ’ (1
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FIG. 1. Schematic representation of molecular (a) and semi-
conductor (b) quantum wires with tunneling resonant struc-
tures. For the molecular wire the meaning of L and L is ex-
plained in the text. For the semiconductor, quantum wire L has
the same meaning as in the tight-binding representation of the
electronic Hamiltonian in the wire. L is an effective energy of
electron transfer between the wire and one of the bound states
of the quantum dot. The usual two-barrier energy profile shown
below is related to the barrier-dot-barrier resonant structure
only.

where
Ln,m =[L +(L——L)(8n,0+8m,0)](8n,m +1+8n,m ——1) ’

1, n=0
6(m=1lo, n<o’

O(n) is the Heaviside step function, a,I o» @, , are the Fer-
mi operators of creation and annihilation of an electron
at the site n (|n|=0,1,...), with the projection of spin
o=1,|. The shift of the energy of an electron in the
right (n>0) semichain, ®, is introduced to study the
external electric-field effect on the electron motion in the
molecular wire. The last (Hubbard) term of Eq. (1) de-
scribes the Coulomb repulsion of electrons at the zeroth
(guest) site. The energy of this interaction is denoted by
Gy.

Note that the assumption concerning the emitter-to-
collector electric potential difference without changes of
the resonant structure is somewhat artificial. We concen-
trate on this aspect of the electric-field effect (i.e., on the
influence of the asymmetry of leads in the field) disre-
garding the shift of the defect-state energy. The latter
can easily be accounted for by adding to &, a term pro-
portional to ®.

Among other shortcomings of the model introduced,
perhaps the most serious is that the electric-potential
difference is assumed to be fixed. In reality, the potential
drop across the defect site is dependent on the current in-
tensity through the defect (due to an extra charge accu-
mulated in the guest site) and, therefore, should be treat-
ed self-consistently. Instead, we use the Hubbard term,
which accounts for the potential-to-current dependence
very roughly. A wide discussion of the problem (which
can be traced to the problem of the treatment of the
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emitter and of the collector leads) with the relevant litera-
ture references is given in Ref. 6.

The most general description of the system is given by
the matrix elements of the nonequilibrium density matrix
operator p(t),

iy
lﬁgt_P;,n'(’)= - 2 [LmnprTn,n’(t)_Lmn'prTi,m(t)]
m
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pou)=Trp(t)a, ,a, ,
pgl,t;”;m,m‘(t)=Trp(t)alaan’,oartx,a'am’,a' yee e

With the Hamiltonian (1) the quantities pj ,.(¢) are sub-
jected to the equations

+[O(n —1)—O(n'—1)]1®p] () Egp) )+ Epl o ol1(8,0—8,00) - (2)

For the two-particle density matrix in Eq. (2) one can write equations which contain the three-particle density matrix
and so on. To get a closed set of equations we make use of the mean-field approximation

pi,ln’;0,0( t)zp;n'( t)Pé;O( 1) .
With Eq. (3) and in the absence of a magnetic field,
p;,n’(t):prlt,n'(t)zpn,n’(t) ’

Eq. (2) can be rewritten as follows:

iﬁ‘_(j?pn,n’(t)z - z [Lmnpm,n’(t)—Lmn’pn,m(t)]

m

(3)

+[0(n —1)=6(n'—1)]®p,, () — [+ Epo,o( )80, )P wlt) . (@)

The solution of Eq. (4) is readily found in the form!'©
P (D=5 (), (1), (5)

where the wave function ¥, (¢) satisfies
S (=3, Ly (D)
m

+[6,—O(n —1)®+ &y |9(2)1218,, 08, (1)
(6)

Here we are interested in a stationary solution of Eq.
(6),

iE,
——t

P A

¥, (t)=exp

n

I exp(ikn)+R exp(—ikn) , n=—1
T expl(ik’'n), n=1,

n

which describes the transmitted (7) and reflected (R)
electronic waves under the condition of a stationary in-
cident flux of electrons with the given amplitude I and
the (dimensionless) wave vector k or, equivalently, with
the fixed energy of electrons incoming from — . For
the model of the molecular wire at hand this energy is

E,=2L cosk .

Then, the wave vector k'’ of the outgoing electrons in the
right semichain is defined by the equation

E.=E,+® (7a)

[

and amplitudes R, 7, and A4, are subjected to the equa-
tions

E L 'Ag=a(A,+A_))+(Vy+Vyl4,1*) 4, ,
E, L 'A_j=adyt+A4_,, 8
(ExL™'"+®/L)A,=aAd,+ 4, ,

where a=L /L and Vo, =6y /L.

Thus, under the assumption that approximation (3) is
valid, we obtain the equations describing the equilibrium
tunneling of electrons through defects from the emitter
lead, which is under zero potential, to the collector lead,
which is under potential ®. The nonlinear term in these
equations accounts, in a self-consistent manner, for the
feedback between the defect-state energy and the
incident-flux intensity.

The solution of Egs. (8) gives

il

e ’ 9)
. ink’
A+t sin
2 sink
i sink’
_ . LA , 10
AOZa_lT > (11)
where
2a?Vy+|TIVy) +a'® /L
A= 0 I | H _(a"z—l)COtk . (12)
4a*sink

In accordance with Egs. (9) and (10), to find the
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transmission coeflicients
Br=(T|*/|I|*)(sink’ /sink ) , 13
Br=IRI*/I1*,

we have to solve the equation

X (kK)=HXp(k, D)), (14)
where
FXp)=Xr{[a(k,®)—X;1?+b(k,®)}, (15)
X, (k) 2
0 | vl T (16)
Xr(k,®) 2a*sink |71
202V +a* 2
k,®)= —L —(a”*—1)cotk | ,
a( )= sgn ( ) At sink (a co
(17)
17272
4 cosk +—
1 P L
bk,®)=— |1+ |[1———-— . 18
(k) 4 L 4sin’k (18

A similar equation was obtained by Davydov and Er-
makov? in their study of nonlinear tunneling based on a
phenomenological treatment of charge accumulation in
the well of a double-barrier resonant structure in the ab-
sence of the external field.

There is only one solution of Eq. (14), when

a<alk,)=1"3b(k,) (19)

and, if a > a (k. ), there are three solutions in the range of
the incident flux amplitude defined by

FX{)=XPin< X, (k) <XP*=FH X7 ), (20)
where
XF=2a+Va?-3b (21)

and, again, one solution when X; is out of the intensity
range indicated. From the three possible solutions,
which are given by the intersections of the two functions
Y(X;)=FHX;) and Y(Xp)=const, only two (where
0F /30X >0) are stable, giving bistable behavior of the
transmitted flux. We proceed with a detailed discussion
of this effect in the next section.

ITI. RESULTS AND DISCUSSION

A. Linear tunneling

Before analyzing the nonlinear dependencies of the
transmission coefficient, let us consider tunneling in the
absence of electron-electron interaction at the guest site.
When V=0, B and By are completely defined by Egs.
(9) and (10), which for ®=0 reduce to
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1
Br= ) ’
_ Vo
(1—a 2)cotk+——-2_—
2a“sink
2 (22)
Br =B (l—a'z)cotk-l-—Vo
ROPT 2a’sink

and coincide with the result obtained by Suatet and
Joachim® (the inter-relation between their and our nota-
tionsis X =V, Y=W=a, Z =1,qg =2 cosk).

In the effective-mass approximation, k —0, and for
a=1 Egs. (22) are the handbook formulas for the
transmission and reflection coefficients for the case when
a particle is tunneling through a &-function barrier
U S(X)’

1

BT= #U 2
1+ |5
fi'q
(23)
m*U
Br =Br
In Egs. (23) U=G6pa is the barrier intensity

(height X width), the effective mass of the tunneling parti-
cleis

N &
2La?’

and g =k /a is its wave vector with k being any possible
rational number; a is the lattice constant of the molecular
wire.

The most important difference between Egs. (22) and
(23) is that in the former case the condition of resonant
tunneling, Bz =0, can be fulfilled. The resonant value of
the wave vector is defined by the equation

k Yo (24)
cosk, —a?)

We mention here that a guest molecule is associated
with a trap (well) for an electron when &, <0, and with a
scattering center (barrier) when 6,>0, and that Eq. (24)
may have solutions for both signs of &|,.

Since the k (energy) dependence of B was already dis-
cussed in detail,® we restrict ourselves to a few additional
remarks.

The position of the resonant peak depends on ¥, and «
but its half-width depends on a only, see Fig. 2. The
peak is very sharp, when |a| << 1, which is intuitively ex-
pected. For example, for k <<1 we have near the reso-
nance

1

k - -
Brlk) 1+a 4k —k, )

(25)

(V, is close to 2 in this case). When |a|> 1, the reso-
nance, if it exists, is very wide. Thus, to get small values
of a in a chemical realization of the molecular wire con-
sidered is the main necessary condition for providing a
molecular size structure that can act effectively as a
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FIG. 2. Transmission coefficient S+(®=0) as a function of
the wave vector k for different values of a and V,: curves I, II,
III, IV correspond to Vy,=1,1.51.9,1.95, and «a=0.1
(k,=1.04,0.711,0.285,0.174, respectively). The subscripts 1,2
refer to the values «=0.25 and 0.5. The dashed curves illus-
trate that there is quite a difference in dependence on the guest-
host coupling parameter a between the resonances near and dis-
tant to the band edge.

switching element. Note that the resonance peak is much
more sensitive to the value of a near the band edges: the
resonance disappears faster with an increase of a for
larger values of V|,; compare curves that correspond to
Vo=1and V;=1.9 on Fig. 2. This difference in the reso-
nance peak behavior with variation of a (which can be
important for designing a switching molecular device) is
directly connected with the conditions of the existing in-
band state. At larger values of ¥, these conditions break
down at smaller values of |a|.” Further discussion of this
point as well as a comprehensive analysis of B(k,a, V)
dependencies can be found in Ref. 9.

The appropriately averaged electronic transmission
coefficient through the defect is directly related to the
one-dimensional conductance controlled by isolated de-
fects.!!7!* Therefore, the dependence of this coefficient
on the electric potential is of principal interest and will
now be considered.

Note at first that, in accordance with our model, the
electric field affects the system by shifting the defect site
energy and making the right and the left leads asym-
metric. Since the former effect expressed in the S(V,)
dependence has, as mentioned above, already been stud-
ied, we focus our attention on the latter effect, i.e., on the
symmetry loss, assuming hereafter that & is constant.

The electric field destroys the symmetry of the system
and, when ®70, the resonance does not exist, i.e., R 70
at any energy of the incident electrons, see Eq. (10). This
is a well-known field effect on the resonant tunneling
through a double-barrier structure!* but, contrary to that
case, the dependence of the maximum and of the half-
width of the transmission coefficient on the electrostatic
potential is rather weak here, see Figs. 3 and 4. In a
sense, this result is not surprising because the electric
field does not affect the resonant structure itself (the pa-
rameters ¥, and a remain unchanged). On the other
hand, it was not evident a priori that the violation of the
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FIG. 3. Transmission coefficient 81 for the electrostatic po-
tential =0, &/|L|=0.5; L <0. The Br(k) curves are the
same as on Fig. 2 except for the numbers with the superscript 1,
which refer to ®//L|=0.5. Curves I, I' and I,, I} are undis-
tinguished in the scale given.

symmetry caused by the electric-potential difference be-
tween the left and the right semichains (i.e., between the
emitter and the collector leads) would have as small
effect, as turned out to be the case. Moreover, due to a
6-like dependence of B on k for ®=0, Eq. (25), one
could expect that even a small effective shift of k, in the

1 1I 4
v
0.8 111 4
9 I ]
06}
S e
04}
0.2t
0 1 1 1 (a')
0 1 2 3 4

(b)

2/IL]

FIG. 4. The dependencies of transmission coefficient Sr(®)
in and near the resonances k,=0.285 (a) and k,=1.04 (b).
Curves I, II, 111, IV correspond to k =0.28, 0.285, 0.29, 0.31 (a)
and k=1.03,1.04,1.05,1.07 (b).
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electric field would result in a considerable change of the
transmission coefficient, at least near the resonance. But
our calculations show that this is not the case.

As is seen on Fig. 4, B has, as a function of ®, a max-
imum but, contrary to the k dependence (Fig. 3), the
function B;(®) is smooth for almost all values of ® ex-
cept those close to the limiting ones,

@, =2L (1tcosk) . (26)

The latter correspond to the maximum field-induced
shifts, down (+) and up (—), of the right-semichain band
relative to the left one, at which Eq. (7a) can still be
fulfilled.

The precise form of the B1(®) curves is determined by
an interplay of the two main factors. The first one is the
density of final states in the vicinity of k', which provides
that B(®) goes to zero whenever @ goes to ®_ or to
®_. This factor is evidently dominant when k corre-
sponds to the energy near the band edges [as in the case
of the curves in Fig. 4(a), which drop rapidly with an in-
crease of the potential of the negative sign]. The second
factor of importance depends on whether the electric field
enhances or suppresses tuning between the tunneling
electron and the defect-induced resonant state. Its role
can be especially pronounced when the wave vector k is
far from the resonant value. Taking as an example
curves IV [Fig. 4(a)] and III [Fig. 4(b)], for which k > k,,
one can see a noticeable increase in B with an increase
of &, when @ is still far from ® _. This can be explained
in terms of tuning improvement due to the effective de-
crease of the tunneling-electron energy under the condi-
tion that the resonant level remains unchanged. Con-
trary to this, curve I [Fig. 4(b)] demonstrates the opposite
dependence on ®, because, when k <k,, the electric po-
tential of the positive sign suppresses tuning for the same
reason.

Note that the tendency in the dependence of B(®P)
outlined contradicts intuitive expectations. Indeed, for
the double-barrier resonant structure shown in Fig. 1(b)
the positive potential difference between the left and the
right leads will result in a lowering of the resonant energy
and, therefore, suppress tuning in the case k > k,. How-
ever, this effect should be compared with that just dis-
cussed above. The net result cannot be predicted in ad-
vance but what can obviously be stated is that accounting
for the electric field through the shift of the resonant en-
ergy only, as is often done, is not sufficient for the
relevant estimate of its role in the resonant tunneling.

The above discussion relates to the energy-dependent
transmission coefficient, which, under certain conditions,
determines the wire conductance'> 16

o~Br(Eg,®), 27

where E is the energy of the Fermi level. One of the
necessary conditions for relation (27) to be valid is
® << Ep, but the fulfillment of the inequality indicated
does not guarantee that the conductance of the system is
field independent. If, for instance, Ep turns out to be
near the band edges, then the conductance may vary
drastically even in the response of small changes of the
electric potential applied. This is especially the case
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when the resonant level is near the band bottom, i.e.,
when Ep zEk’ «1 and the effective mass is positive. Un-

der such conditions the one-molecular resonant structure
can work effectively as a diode, see Fig. 4(a). At the
same time it is evident that this model cannot work as a
switching element, the “on” or “out” state being con-
trolled by an external electric field applied along the
chain.

B. Nonlinear tunneling

In the discussion of nonlinear effects, just as in all our
model calculations, the positive effective mass (L <0) is
implied. In this case the system may be bistable for
k >k, >k, only, with k. defined by Eq. (10). Bistability
is more pronounced, in the sense that the difference
X#*— X" is larger, for larger values of k; compare
curves I, I', I of Fig. 5.

The role of the guest-host coupling parameter is
different depending on the resonance position in the
band, as seen from the calculations presented on the same

(2)

(®)

FIG. 5. The dependencies F(X7) giving at intersections with
lines X;(X;)=const (horizontal line) solutions of Eq. (14). (a)
Near the resonance k, =0.285, V;=1.9, a=0.1. Curve I corre-
sponds to k =0.31 (a2=5.55). The changes of these curves with
k, a, and ® are represented by long-dashed short-dashed,
dashed, and dashed-dotted lines: I, I”’, k =0.3, 0.32 (a>=2.03,
10.6); 1;, I,, @=0.25, 0.5; I', I, ®/|L|=—0.08, 0.2. (b) Near
the resonance k,=1.04, V,=1, a=0.1. Curve I, k =1.07
@*=17.9). ', 1", k =1.05, 1.08 (a2=0.73, 14.33); I;, I;, 2=0.25,
0.5 I, 12, &/|L|=—1.296.
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figure. For the near-band-bottom resonance, Fig. 5(a),
the range of bistability becomes larger for larger values of
a. In contrast, bistability disappears for the same
changes in «, when it deals with a resonance, which is
distant from the band bottom, as in Fig. 5(b). The
difference is connected with the type of dependence a on
a, namely whether it is rising or falling with a. The
latter depends on a precise role of the coupling parame-
ter, an increase of which may lead to a disappearance [as
in case (a)] or to a broadening of the resonance.

Since in a practical realization of the model discussed
its parameters are fixed, a possibility to control the bista-
bility with some outer parameter is of prime interest.
Variations of the incident-flux intensity for this purpose,
as was proposed previously,” are not the best choice,
since the relevant experimental setup is questionable.
Here we examine another possibility, namely, using the
electric potential to change the bistable state of the reso-
nant structure. In other words, we are interested mainly
in the bistable current-voltage characteristics. As follows
from Egs. (17) and (18) a and b are field dependent (in the
theory of Davydov and Ermakov b =1 and a =const for
the structure given). Changes in these quantities with the
field, the most important of which is the linear depen-
dence a on ®, provoke transformations of the curve
H X, Y), see Fig. 5, and may lead to essential changes in
the bistable-state properties. In general, an increase of
the right-semichain potential facilitates manifestation of
the bistability, as is seen in Figs. 5 and 6. A decrease of
the potential results in the opposite effect. Physically, it
is quite natural to account for the role of ® as “tuning
parameter.”

The graphic solutions presented are helpful for a quali-
tative understanding of the electric-field influence on the
bistable state and of the relationship between different pa-
rameters of the system. A quantitative description of this
influence is given by numerical solution of Eq. (14) shown
as functions X(X;), X;(®) in Figs. 6 and 7.

While dependence X, (X;) is always S-shaped, when
the condition a > a(k, ), Fig. 6, the function X(®) has a
rich variety of forms, which correlate strongly with the
position of the resonance in the band, compare solid
curves of Figs. 7(a) and 7(b), and with the parameter X;.
(When speaking about the electric current through the
defect, the latter associates with the density of free
charge carriers in the chain.) The transmission
coefficient (dashed and dashed-dotted lines in the same
figure), and thus, the conductance [relation (27) is as-
sumed to be true] may demonstrate bistable behavior in
several ways depending on the two factors mentioned.
These are now put into focus.

The range of the bistability is generally asymmetric
with respect to the sign of the applied potential except for
the special case when the resonance occurs in the middle
of the band. Due to this asymmetry the bistability can
manifest for one direction of the current and it can be ab-
sent for the opposite one, as is illustrated by curves I and
1 in Fig. 7(a). For this example the bistable state is avail-
able in a certain region of the potential magnitude. Con-
sequently, changes in potential inside the interval be-
tween @, indicated on the figure and the limiting positive
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value of ® will be accompanied by changes in B very
similar to those in the linear regime of tunneling. But go-
ing to the left of the critical point, two different values of
By can be observed, which correspond to a strong (high-
transparent state) and to a weak (low-transparent state)
amplitude of the current. Obviously, if being in the bi-
stable region of the applied voltage, further rising of the
potential causes, independently of the state of the system,
a smooth change in the current up to the point it disap-
pears completely. By contrast, lowering the potential
from the same starting point causes an abrupt weakening
in the current at ®=®_, where the system was previous-
ly found to be in the high-transparent state. This possi-
bility is illustrated by arrows.

The picture of the transmission-coefficient—voltage
dependence is quite different from that described above, if
the function X(—®) is S-shaped. Then, as is demon-
strated by curve 2 [Fig. 7(a)], varying the potential in
both sides reveals bistability but its manifestation will be
different depending on the history of the system, in par-
ticular, on the sign of the potential, which is applied first.

Xr

(b)

FIG. 6. Solutions of Eq. (14) as functions of the incident-flux
intensity. (a) ¥,=1.9, «=0.1, k =0.32 (I), 0.31 (I), 0.3 (IID),

®/|LI=0 ( ), 02 (———), —08 (——-—. ). (b)
Vo=1,a=0.1,k=1.08 (), 1.07 (ID, 1.05 (IID, ®/|L|=
0(——),25(—— =), =1 (———. ).
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FIG. 7. Solutions of Eq. (14) (solid lines) and transmission coefficient (dashed and dashed-dotted lines) as functions of the applied
potential. (a) ¥,=1.9,a=0.1, k =0.31, X;=2, (I,1), 2.65 (I,2). (b) V,=1,a=0.1, k=1.07, X;=2.5 (L,1), 3.5 (I,2).

For instance, let the system be in the low-transparent
state at ®=0. In this case, changing the potential from
zero to ®>®7, then back to =0, then further to
@ <®_, and again back to zero, results in a hysteresis
loop, which is to the left of the zero-point potential. Cor-
respondingly, the current-voltage characteristic has also
a loop in the negative potential region. But making the
same cycle in ® in the opposite direction, i.e., going first
to the left along the ® axis then to the right, and then
back to zero, one obtains the hysteresis loop around the
point ®=0 or, equivalently, two current-voltage loops on
both sides from the zero voltage. Evidently, when the
high-transparent state is the initial state, analogous cyclic
changes of potential in the opposite directions result in
current-voltage dependencies, that differ from each other
as described above, within the accuracy of the size of the
exchange between the one- and two-loop cases. The I-V
(current-voltage) curves which correspond to this partic-
ular voltage dependence of the transmission coefficient
are shown on Fig. 8.
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FIG. 8. The current response to changes 0—>®_—® -0
(the on-line arrows correspond to the first passage in ®, the
out-of-line arrows to the second one). If the same cycled
changes in @ are performed in the opposite direction, the right
hysteresis loop is not “observed.” In calculations the parameters
Vo=1.9,a=0.1,k=0.31 are used.
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The new interesting feature of the next example, curves
I and 1 in Fig. 7(b), is that the bistability does not exist in
the region &, <® <®S, and can be switched on by a
sufficiently large field of both &> ®_, and ® <®_. For
negative values of the applied potential the transmission-
coefficient—voltage dependence is analogous to that
presented by curve 1 [Fig. 7(a)]. For ® >0 an increase of

® results in an abrupt increase of B, at ®=®},. The re-

verse change in ® leads to an abrupt decrease at ®=®,.
Thus, in this case the picture of hysteresis in the current-
voltage characteristic (outlined by arrows) is similar to
the dependence of the transmitted flux on the incident-
flux intensity obtained by Davydov and Ermakov.

In the last example presented, the high-transparent
state, the upper branch of curves II, 2 [Fig. 7(b)] is avail-
able for the system at any magnitude of the applied po-
tential. If in this state, the transmission coefficient de-
pends on ® much like the linear case; compare curves IV
and 2 in Figs. 4 and 7(b). At the same time, due to the
shift up of the resonant-state energy, the value of B is
several times larger, when the nonlinear regime of tunnel-
ing is operative, than it is in the linear regime of tunnel-
ing (i.e., when the charge-carrier density is small) or when
the system is found in the low-transparent state. In the
latter case, changing ® from zero to ®>®_ and then
back to zero, as shown by arrows in curve 2 [Fig. 7(b)],
gives rise to hysteresis in the current-voltage characteris-
tics. Note that the model predicts an irreversible transfer
at the point ®_ from the low- to the high-transparent
state, from which the system cannot return. The non-
trivial behavior of the current response just discussed can
be expected for ®>0. In the region of negative poten-
tials the dependence B(®) [and o(P)] is smooth up to
the limiting values of @, for which B becomes zero.

The calculations presented by no means exhaust all
possible ways the current behavior responds to variations
of the applied potential, when the system is in a bistable
or in a near-bistable state. Despite the simplicity of the
system, the current-voltage characteristics and their
dependence on the parameters turn out to be rather com-
plex and could hardly be predicted on phenomenological
grounds. This proves the importance of the microscopic
approach to the problem of bistability in resonance tun-
neling.

IV. CONCLUSION

Resonance tunneling in a molecular wire with a single
guest molecule has been studied starting from a micro-
scopic Hamiltonian, which includes Coulomb electron-
electron interaction at the guest site and is the one-
particle Hamiltonian elsewhere. To account for the
external electric-field effects the potential difference be-
tween the emitter and the collector leads was introduced
but the defect state assumed to remain unchanged in the
field. The model formulated is a simplified version of the
double-barrier resonant structure composed of a quantum
dot connected with a quantum wire by tunneling barriers.
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In the mean-field approximation a closed set of self-
consistent nonlinear equations has been obtained to
define the wave function of tunneling electrons for a stan-
dard scattering picture of the stationary tunneling pro-
cess. The solution of these equations has been used for
studying the transmission-coefficient properties. Among
them the dependence of the tramsitted flux on the applied
electric potential received the most attention, since for a
degenerate Fermi gas it determines the conductance of
the wire under the assumption that the potential is much
smaller than the Fermi energy.

Both the linear and nonlinear regimes of tunneling
have been considered. In the former case (and in the ab-
sence of the electric field) the result of Sautet and
Joachim® obtained with the transfer-matrix technique
was rederived, using the density-matrix formalism. The
expression for the transmission coefficient for neutral
species has been generalized with an account of the exter-
nal field and examined in some detail. An analytic for-
mula prescribing nonlinear behavior of the wire conduc-
tance in response to the variation of the applied potential
is the main result of this part of the paper.

When the energy of the tunneling electrons approaches
the resonance, the electronic density in the resonant
structure increases substantially, becoming much larger
than in the emitter and the collector leads. Therefore,
considering tunneling near the resonance, the electron-
electron interaction has been taken into account at the
guest site. As a consequence of this interaction, the feed-
back between the incident-flux intensity determined by
the charge-carrier density in the wire and the resonance-
state energy arises, resulting in a bistable behavior of the
transmission coefficient. The necessary and sufficient
conditions for the bistable regime of tunneling to exist
have been established and this state was investigated us-
ing graphic and numerical solutions of the nonlinear
equations for the wave function. Some typical examples
of the transmission-coefficient—voltage dependencies have
been demonstrated to show how the switching on or out
of the bistable regime of tunneling by the field affects the
current response. Probably the most unexpected result
predicted for the model is that the current-voltage
characteristics can have one hysteresis loop, if the
changes in the potential are of the type 0—-®-—> —®—0,
whereas there are two loops if the same changes are made
in the opposite direction, i.e, 0—— —®—>d 0.

The relationship between the model parameters and
the form of I-V curves investigated in the present paper
clarifies the microscopic picture of the intrinsic bistability
formation, yet its experimental verification as just the
possibility of practical utilization of the predicted effects
in electronic devices is still in question. Work in this
direction is now in progress.
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