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The asymmetric random walk method is used to find the time dependence of the 
density of free charge carriers in a chain containing traps and neutral barriers, 
assuming a strong electric field. Fluctuations in the density of defects are 
taken into account exactly. The kinetics of the density decay has two stages: 
fast exponential decay at small times and slow decay (~[in(t) + const]t -~, 
where ~ << 1 is a combination of the parameters of the system) at long times. It 
is also shown that in the presence of barrier defects the asymptotic forms of the 
decrease in the number of charge carriers due to capture by traps and due to 
germinal recombination are the same. 

In a crystal with traps, an electric field applied along the direction of maximum con- 
ductivity enhances capture of free charge carriers by the traps. In the case of one-dimen- 
sional diffusion and small electric fields most of the charge carriers are annihilated due 
to capture by traps according to the equation ~exp(-t II3-D2t) [i, 2] or ~exp(-t112- n2t) 
[3] (n = eEa/2kbT << Ctr, e is the charge of the electron, a is the lattice constant, E is 
the electric field strength, T is the temperature, Ctr is the concentration of traps). In 
strong fields (~ >> Ctr) the number of charge carriers decreases as -exp(-~t) [I-3]. In 
theoretically predicted change in photocurrent kinetics with increase in the electric field 
has been observed in the crystal PDA-I-ON [4]. 

The enhancement of captures by traps in a strong electric field may not occur if scat- 
tering centers are present in the crystal along with traps. For example, broken bonds of 
polymer chains or impurities with high-lying electronic (hole) levels can play the role of 
scattering centers. The presence of barrier defects that restrict the motion of charge car- 
riers and neutral particles differently can lead to the opposite effect: a marked slowing 
down of the decay in the density of charge carriers A~(t) in a strong field. This was 
pointed out for the first time in [5, 6], where a power-law (rather than exponential) den- 
sity decay ~t -m, e = c/2n, c = Ctr + Cb, was predicted (c b is the concentration of barrier 
defects). The slowing effect is corroborated qualitatively in the present paper, but a dif- 
ferent form is obtained for the function A~(t). Our results are different as follows: i) 
the complete time dependence A~(t) is found; 2) a discrete model is used, where the field 
dependence of the kinetics can be obtained without assuming D << i, which is characteristic 
of the diffusion model; 3) the field dependence of the time constant of the asymptotic form 
of A~(t) is obtained for an arbitrary capture rate; 4) the asymptotic form of the decay in 
the number of charge carriers is established for geminal recombination in a chain with ran- 
domly distributed broken bonds. 

We first consider the capture of diffusing charges by traps, assuming that the defects 
(traps and barriers) are randomly distributed on the chains along which the charge carriers 
move and are inpenetrable with respect to the charge carriers. The problem then reduces to 
first determining the probability of survival of a charge carrier ~nV(t) in a given segment 
(cluster) of the chain consisting of n principal lattice points with defects on the ends, 
and then to calculating the average over cluster length 

n=l 
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This equation gives an exact expression for the configuration average for the model con- 

sidered here [7]. 

The probability of survival 

f ~  (t) = n -1  ~.~ G "~ ~,~o (t) 
j , ]o=l  

is found assuming that the charge carriers in a cluster obey a dynamical equation of the 

Pauli type 

i "v ] v 
dG~,to(t)/dt --= - -  [2 Ch 01) .-- (~o~' - -  q) 6i . ,  + (m~ - -  q -  ) 6i.~] Gj.io (t) --~ 

÷ (1 - -  6i. ,) q- 'G~- , . io  (t) -+- (1 - -  6i.,, ) qG)_, .i. (t), 

q~o, q - ' ~ ,  v = (tr ,  t r ) ,  
G v i.to(O) = 6i.io, oJ~' = qo), ~)i = O, v = ( t r ,  b), 

O, q - k o ,  v = (b, i r ) ,  

w h o s e  s o l u t i o n  h a s  t h e  f o r m  

(2) 

(3) 

where 

G?. ' exp  hl ( / , , - - / ) l  v~ ,~  
i,i0 (t) = 2h i  .I ~,i.i,,"' (s). exp. (st) cl.~, 

(4) 

[Sh (jg) + r,}' Sh ( ( / - -  1) ~)l [Sh (07 - -  jo - -  1) ~1 -:- r,~Sh ((n - i,,) ~)1 
) \ '  v 

Sh (~) [Sh  ((n - -  1) ~) -~- ([~;' -!- I3,';) Sh (n~) - - 1,, [~,, Sh ((n - l)  ~)] 
g : ' .  ( s ) =  

" "  / <~/o, 

J " Jo, 
q = exp  (rl), exp  (-+:_ ~) = s.'2 - ,  Ch (q) 4-  ]'~(s. 2 -:- Ch (q))z _ 1, 

J ~ J o ,  

= O J l ( n )  - -  exp ~l , 

(5)  

is the frequency of particle jumps from principal lattice points to lattice points occu- 
pied by traps divided by the frequency W of particle jumps between principal lattice points 
of the chain in the absence of the field (i.e., the rate of diffusion). In (3) and (4) time 
is measured in units of W -z 

Using (I)-(5) to calculate the average probability [8] in the case of a strong field 
and c << i, we find 

A ~  (t) = c~Ctr ~ (t) + c,r e x p ( - - K t ) ,  ~ > > c ,  ( 6 )  
C ~ C 

where the time constant of the function 

(t) = ~ r  (1 + ~) [In (t,'~) + ~-1  _~ 0.57721 (t/T) - ~  ( 7 ) 

a n d  t h e  r a t e  c o n s t a n t  K a r e  g i v e n  b y  

~ _ , _  2~Sh(~) K=2Sh(~){c' ~>>c 
- l ÷ m / 2 e x p ( ~ ) S h ( ~ )  ' m, ~ < < c .  ( 8 )  

The function (6) suggests a sharp change may be observable in the kinetics of th charge- 
carrier density decay from an exponential to a power law or logarithmic power law. We see 
that the function &~(t) may have the intermediate asymptotic form ~t -~. The above results 
can be used to predict the concentration of charge carriers and the time corresponding to a 
particular form of the decay. 

We next consider recombination of free charge carriers in a chain with randomly distrib- 
uted barrier defects. In this case the average probability of survival of a pair of oppo- 
sitely-charged particles originating at a distance no << Cb -z is given by the sum 

o x r l - -  ] * '~,e--h 
(fi. ' - n  ( t ' ) )  = c;  \ ~  n (1  - - c o )  S~n.no(t'), 

n = l  

(9) 
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e-h (t') is the probability of survival of the pair up to the time t', averaged with where ~n,n0 
respect to its initial position in a cluster of n principal lattice points with inpenetrable 
barriers on the ends. 

The two-particle distribution function Pij(t') in a cluster is given by the system of 
equations 

dp~.i ( t ' ) /dt '  = - -  [ i C h  (11) + (~o' - -  q - ' )  6 i . . . .  i -~- q (oh6i. ,  -P o . 6 i . 0 ]  Pi,i (t') + 

+ q - '  [(1 - -  6i. ,)  a l ,P i_ , . i  ( t ' )  7 (1 - -  6i. ,  ) o~pi , i_ ,  (I ')]  + 

+ q (1 - -  6 i . . . .  i) (OhPi+l, i (l') + gePi,/+l (l ')),  ( 10 

where ~' is the analog of the parameter w: It is the ratio of the rate of recombination of 
electrons and holes at the minimum distance a to the rate of relative diffusion of the pair 

(We + Wh), We h) has the meaning for electrons of particles W e + Wh; Oh(e) = Wh(e)/ ( same 
(holes) as W, and time is expressed in units of (W e + Wh )-l. The coordinates of the hole 
(i) and the electron (j) are chosen such that i = j = 1 corresponds to particles on the 
ends of the cluster (particles cannot pass by one another). According to (I0), the field 
promotes charge separation. The sign of U must be switched in (10) when the field has the 
opposite direction. 

The "slow" term in (6) is due to the contribution of clusters (b, tr) in (1) with 
lengths n £ c -l with reflecting and absorbing ends such that the charge carriers drift 
toward the reflecting end. It is not difficult to show from (4) and (5) that in clusters 
of this type the charge density is a maximum on the end of the cluster opposite to the trap 
and it decreases exponentially with increasing distance from the end. In the case of an- 
nihilation of charges by recombination the asymptotic form of (9) is determined by clusters 
in which opposite charges are confined near the reflecting boundaries by the field. The 
corresponding solution of (i0) in a strong field (n~ >> i) at large times is, to within ex- 
ponentially small corrections 

Oi.i(t" ) ~ e x p ( _ 2 1 1 ( i . : - j ) ) e x p l - - e x p ( - - 2 q n ) l ' , T '  }, ( 1 1 )  

and so 
e--h , 
...... ( t )  ~ e x p [ - - e x p ( - - 2 W O t ' , ' z ' ] ,  ( 1 2 )  

where T' is given by (8) for ~, except that ~ is replaced by w'. Evaluating (9 with the 
help of (12) gives, for c b << 1 

((_y._h (/ , ))  : I" d.v.v exp -- .v - -  

• T 

0 

I 

0.5772  c~ = c ~ 2 q .  ( 1 3 )  

In the absence of the field, binary recombination of charges in a chain with defects 
leads to a decay in the density of charge carriers at large times of the form ~exp(-t 1~a) 
[9]. In weak fields (n << cb) one expects a change in the asymptotic form: exp(-t IIs) 
exp(-uit), as in the case of capture of charges by traps. Comparison of these results with 
(13) shows that a strong electric field leads to an anomalous slowing of binary recombina- 
tion of charges at large times, accompanied by a qualitative change in the form of the de- 
cay of the charge density. 

Finally we note that for disordered systems where charge transport occurs in an iso- 
lated cavity in an inert solvent (i.e., in the subpercolation region) the asymptotic forms 
(7) and (13) remain valid for arbitrary dimensionality of the system. 
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EFFECT OF THE LENGTH OF A POLYMER CHAIN ON THE 

RATE OF DONOR-ACCEPTOR ELECTRON TRANSFER 

M. G. Ostapenko and E. G. Petrov UDC 537;577 

We consider the dependence of the rate of activated and tunnel transfer of an 
electron between a donor and an acceptor separated by a chain of finite length 
on the energy and relaxation characteristics of the donor, the chain and the 
acceptor. It is found that the chain length is important for numbers of units 
not exceeding 5-7. 

It is known that a polymer chain with structural groups having a considerable electron 
affinity is able to transfer an electron from a donor to an acceptor [i, 2]. This forms the 
basis for ideas about electron tunneling along special electronic pathways in individual 
proteins and in bimolecular protein complexes [3, 4], and also leads to the formulation of 
the concept of a soliton mechanism for the motion of an electron in soft polymers and bio- 
polymers [5]. The finite nature of the chain determines the specific nature of the donor- 
acceptor electron transfer. Thus it has been shown [6] that on account of the discrete 
nature of the energy levels of the chain the probability of the tunneling of an excess elec- 
tron can differ considerably from the value characteristic of a chain with a large number 
of units N. 

In the present study we analyze further the dependence of the rate of activated and 
tunneling transfer between a donor and an acceptor separated by chains of finite length 
on the relaxation characteristics and the nature of the structural groups taking part in the 
electron transfer. As before [6, 13] we shall consider a donor--chain-acceptor (DCA) system 
in which the donor D is attached to th~ first unit, n = i, and the acceptor to a later unit, 
n = N; we shall denote by E0, El, and E 2 the energy levels of the electron at any unit of 
the chain, at the donor and at the acceptor respectively, and by L, LI, and L 2 the values 
of the resonance interactions characterizing the transfer of an electron between the units 
of the chain, between the donor and the unit of the chain with n = i, and between the accep- 
tor and the unit of the chain with n = N (Fig. I). As in [2], the irreversibility of the 
process is allowed for by two types of relaxation processes. The first of these is indi- 
cated in Fig. 1 by the parameter KI v (or K2~), which signifies that the transfer of the 
electron between the donor and the chain unit with n = 1 (or between the acceptor and the 
chain unit with n = N) is accompanied by normal vibrations of frequency wlv (or m2v)- The 
second type of relaxation specifies the rapid irreversible removal of the electron from the 
acceptor state and can be allowed for by introducing the parameter F/2 (E2 is replaced by 
Ez-iF/2). 
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