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Charge-carrier-trapping kinetics in a chain with chaotically distributed traps and broken bonds:
Biased-random-walk model
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An exact expression for the Laplace transform of the configurationally averaged survival proba-
bility of a charged particle executing biased (asymmetric) random walks in a chain with traps and
broken bonds (barriers) is derived. By inverting this expression, it has been shown that in high fields
the charge-carrier density decays exponentially at the initial stage of the trapping process. For long
times the decay law is of the logarithmic-power type ~ [ln(t)+ct ')t, where ct is a constant. This
indicates the possibility of an anomalous slowing down of charge-carrier trapping in quasi-one-
dimensional systems, e.g., in conducting polymers containing barrier-type defects. The asymptotic
law obtained corrects the power-law asymptotics predicted recently by Burlatsky and Ovchinnikov.
In the fast- and slow-trapping cases the full time-scale dependence of the charge-carrier density has
been defined for low and high fields. Different intermediate asymptotics, the number and the form
of which depend specifically on the trapping rate, the field, and the concentration of traps and bar-
riers, are predicted.

I. INTRODUCTION

The problem of asymmetric random walks in a chain
with traps treated as a model of nonstationary charge
transfer in nonideal quasi one-dimensional (Q1D) struc-
tures in a biased field has been widely discussed in recent
years. ' The interest has been stimulated by a number
of exact results that proved to be useful in describing the
charge-transport properties of real objects. Photocurrent
kinetics in polydiacetylene crystals, in DNA crys-
tals, ' and some other experiments are in agreement with
the theory developed by Movaghar, Pohlmann, and
Wurtz. ' lt is also worth noting that some predictions
made for exactly solvable 1D models, e.g. , the existence
of an intermediate asymptotics in the case of slow trap-
ping, "can easily be extended to 2D and 3D systems. '

A physical quantity of interest in the trapping problem
is the survival probability of a random walker (here, of a
charge carrier). For a chain with chaotically distributed
traps, the survival probability, or more precisely the aver-
aged survival probability (ASP) (see below), has been
found using the following assumptions (i) The energy
change, when the charge carrier makes a single jump
along the bias, is small in comparison with the thermal
energy of the particle; (ii) the charge-carrier and trap
concentrations are small; (iii) the trapping rate is infinite.

The case of arbitrary trap concentrations and of arbi-
trary fields has been considered on the basis of a master-
equation formalism using the image method by Aldea,
Dulea, and Gartner. The concentration and field depen-
dence of the rate constant of the ASP exponential decay
in high fields were obtained.

A more general (and more realistic) model of finite
trapping rates has been employed by Burlatsky and
Ovchinnicov, " by Burlatsky and Ivanov, and by Onipko
and Zozulenko. It was shown that the main conclusions
derived assuming an infinite trapping rate' hold also for

the case of fast trapping. Thus an important extension
of the theory has been achieved. At the same time, the
ASP decay kinetics, just as its concentration dependence,
are qualitatively different when the condition of slow
trapping is satisfied.

Real physical systems contain not only traps, but also
defects acting as scattering centers or barriers for charge
carriers. In one dimension both types of defects "cage"
moving particles in chain segments, here called clusters.
A particle caged in a cluster with infinite barriers on its
ends avoids trapping. In reality, the existence of barrier-
type defects can increase considerably the survival proba-
bility. This effect is observed in the host-to-trap
excitation-energy transfer in various Q1D crystals. '

Symmetric random walks in a chain with traps and per-
fectly rejecting barriers' ' simulate appropriately the
above case.

As far as we know, the caging effect has not been
demonstrated directly in studies of charge-transfer pro-
cesses, although the barriers, undoubtedly, play an im-
portant role. The most remarkable effect expected is that
an anomalous slowing down of trapping should be ob-
served in large fields. ' This conclusion is confirmed
here qualitatively, but we obtain another form of the ASP
decay law that reads as In(t)/t . It differs from the
power-law asymptotics ~t, predicted recently, ' espe-
cially for a large bias when a (& 1.

A more detailed comparison with previous results is
made in the concluding part of the paper. In Sec. II the
Laplace transform of the ASP is found using the model of
asymmetric random walks in a chain with traps and bar-
riers (equivalently broken bonds) without any restrictions
on the trapping rate, bias, and defect concentration.
Starting from this point, we get, in Sec. III, analytic ex-
pressions for the ASP valid for all times in some impor-
tant particular cases. As intermediate steps we rederive
or generalize some of the earlier results. Mathematical
details are presented in two Appendixes.
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II. GENERAL EXPRESSION
FOR THE AVERAGE SURVIVAL PROBABILITY

The physical reasons for a specific kinetics of charge-
carrier trapping in a chain with barrier-type defects are
as follows. In the presence of barriers, some traps are in
such a position that the field accelerates a particle in
motion toward the nearest barrier and thus increases the
probability for the particle to escape trapping. In all
such clusters with a trap at, say, the left end and a barrier
at the right one, the charge carrier will avoid trapping
much longer than that in a cluster with two traps at its
ends or with a barrier and a trap placed in the direction
of the charge drift. Therefore, one can expect that the
character of the charge-density decay will be very much
different for short and long times.

Let us specify the model to be considered. It is as-
sumed that the charge is transferred only between host
sites which form four types of clusters: those with two
traps at the ends denoted below as (t, t); with two bar-
riers, as (b, b); with a trap at the left end and with a bar-
rier at the right end, as (t, b); and with left and right in-
terchanged, as (b, t). To describe the particle dynamics in
any of the above types of clusters, we introduce the jump-
ing rates of a particle between the nearest-neighbor host

dG„„(t)
=Q L„„G„„(r),r, r', ro E(1,2, . . . , n ), (1)

G„„(0)=6„„ (2)

where

sites, W —= Wexp(+q), along (+) a bias field E and in
the opposite direction ( —); rl=eEa/28, e is the magni-
tude of the electronic charge, a is the lattice constant,
and 8 is the particle thermal energy. The trapping rate
of a particle located on a site neighboring a trap at the
right is denoted as ~, and at the left as ~„.

Note that a finite value of the trapping rate means that
the trapping event does not occur with a unit probability,
when the particle reaches a site neighboring the trap:
The particle may be reAected several times before being
trapped. At the same time, it is supposed that the trap-
ping is an irreversible process.

In the notation adopted, the equations defining
G„,(t)—the probability of finding a particle on the rth

site, r =1,2, . . . , n at time t (in units of W ), given its
initial position in the same cluster is the ro-th site —take
the form for any of the chain cluster

CO(L, , =exp—(g)+
~nL„„=2c—osh( r)), L„„=exp—(

—g)+

L„„+&=epx(
—q), L„„&=ex(pg), L„„=O,r —r' ~2 .

The solution of Eqs. (1) and (2) describes asymmetric
random walks on a chain with arbitrary absorption rates
on the chain ends, the first and the nth sites. In the mod-
el under consideration, they are

co, = co W and co„=co W+ for ( t, t );
co&=coW and co„=O,for (t, b);
co, =0 and co„=co W, for ( b, t );
co, =0 and co„=0, for (b, b );

where co is the ratio of the jumping rate from a host to a
trap site to the jumping rate between host sites in the ab-
sence of a bias.

The model formulated implies a fast transverse relaxa-
tion of the generated charge carriers and their small den-
sity.

In accordance with Eq. (4), the particle cannot leave a
trap and meet a barrier as a broken bond between the
host sites. Thus, in a chain defected in this way, any
charge carrier generated belongs to a certain cluster,
where it starts moving. The independence of particle
motion in different clusters simplifies the configura-
tional-averaging procedure, reducing it to averaging over
the cluster-length distribution in a three-component ran-
domly disordered chain. ' ' The averaging of the sur-

(Il(t)) =c g n(1 —c)" 'Q„(t),
n =1

(6)

fl„"(r)= n ' g G„'„(t),v =(t, r), (t, b), (b, t),
rr =1

p

that (A(0))'=1. For example, (Q(t))"" is just the sur-
vival fraction in a chain with randomly distributed traps,
the concentration of which is c.' '

The structure of Eqs. (5) and (6) is quite transparent.

vival probability should be performed both over the ran-
dom distribution of defects and over the initial positions
of a particle (also assumed to be random) on the host
sites.

Denoting the trap concentration as c„the barrier con-
centration as c&, and the concentration of defects as
c =cb+c„sothat 1 —c is the host-site concentration, we
can write, for the ASP, ' '
b, n(t) = (n(t) ) —(n( ) )

2
' (&(r))""+ ' [(&(t))""'+(&(r) )""]

c 2 c 2

(5)

where the partial averages related to different types of
clusters are defined in such a way
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The weight factor c, (1 —c)" ' implies the probability
that a cluster, chosen in an ad Roc manner from all possi-
ble nonequivalent configurations of a three-component
chain (consisting of host, trap, and barrier sites distribut-
ed at random), has n host sites and two traps at its ends.
The weight factor c,c&(1—c)" ' related to clusters of the
types (t, b) and (b, t) and also c&(l —c)" ' has a similar
meaning. The term in Eq. (5) which contains the latter
factor represents the contributions to the ASP coming
from (b, b) clusters, resulting in a nonzero ASP limit for
infinite times,

( II ( oa ) ) =ci, /c (8)

To obtain the survival probability of a particle in a
given cluster, it is necessary to use in Eq. (7) the solution
of Eqs. (1) and (2) with cubi, co„taken in accordance with
Eq. (4). Exact expressions of the survival probabilities
can be found in the Laplace-transform space (see Appen-
dix A). Summing the Green's function

G„,(s) = J exp( st)G—„„(t)dt,
0

over r and ro, one immediately gets Eq. (A10), resulting
1n

Q„+i(g)—sinh[(n +1)g] s+(co —1)[ Q„ (ig) +sin h[(n —1)g]s]0'„'"(s)=s
ns [s(1—co+ —,'co )+co cosh(il)]sinh(ng)+co(2 co)sin—h(g)c os h(ng)

(9a)

where

Q„(g)=4 sinh(g)sinh —(g+ il ) sinh —(g —il )
2 2

exp(+g) = —+cosh(il )+S

2

2

—+cosh(il) —1
2

1/2

and

0„'(s) =s co e 'isi nh[(n +1)g]—2sinh(ng)+e "sinh[(n —1)g]+2e "sinh(il)sinh(g)
ns si n[h(n +1)g]—e "sinh(ng)+(co —1)e " tsi nh(ng) —e "sinh[(n —1)g]I

(9b)

(9c)

The inverse Laplace transform of Eqs. (9) together with Eqs. (5) and (6) define an exact expression of the ASP. It is a
good starting point for numerical calculations which can be useful in studying the charge-density temporal behavior for
particular values of the parameters g, co, and c. For some particular cases, we are able to get the time dependence
b, Q(t) in an explicit form.

III. LIMITING CASES OP THE ASP TIME DEPENDENCE

In accordance with Eq. (5), the definition of the ASP divides into three survival fractions, the partial averages
(Q(t) )I'", (A(t) )' '", and (II(t) )" I. Since for the first of them the time dependence is known (for il, c &(1, co= oo; '

for arbitrary values of il, c and co= ~; for il, c &(1, co))c, and co &(c" ), our task is to find the inverse Laplace trans-
form for the partial averages over (t, b) and (b, t) clusters. The details of the inversion procedure are given in Appendix
B.

Being completely identical in the case of a zero bias, (Q(t) )' '" and (A(t) )" ' make essentially difFerent contribu-
tions to the ASP when ii&0. The physical reasons for this are outlined in the preceding section. Mathematically, the
di(Ference results from the fact that fl'„' '(s) has, as a function of s, an exponentially small pole in a complex plane,
when ng)) 1, and L2'„"'"(s)has none. The existence of such a pole results in the following asymptotics for the (t, b) sur-
vival fraction:

where

ln(a) —(2a) '+O(a ), a )) 1

it(a) = —a —y+O(a), @=0.5772. . . , a (&1,
a =c /2il, I (a) is the gamma function, and the time-scale constant r is defined by

2' sinh(il )

1+co exp( —il)/2 sinh(rI)
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for arbitrary values of the bias and trapping rate (in units of W). Equations (10) and (11) represent the main result of
the paper.

In low fields, g «c, it is easy to show ' that
1/2 ' —1/3 —1/3

17 +11+
18 4

205
648 4

3 7 1

exp —q t ——
2 4

(12)

where %1=2& c
In high fields, q))c, we have, for these survival frac-

tions,

(13)

with the rate constant being dependent on the trapping
rate

2c sinh( r) ), co ))cE= '
2' sinh(g), co «c . (14)

2cco sinh(g)
C +CO

(15)

Comparing the results (10), (12), and (13), it is seen that
the long-time behavior of the ASP obeys the
logarithmic-power law (10). This dependence differs
sharply from the exponential one expected for a classic
trapping model (i.e., in a noninterrupted chain).

The quantities a and r in Eq. (10) are field dependent.
The latter dependence is especially remarkable, since it is
trapping controlled. In the case co= &x&,

' =4 exp(g)sinh (g) =4g, for g ((1 . (16)

Equation (13) shows that the contributions to the ASP
coming from the partial averages over (b, t) and (t, t) clus-
ters are equivalent in high fields. It is quite natural and
was to be expected. The upper equation of Eqs. (14) has
initially been obtained for an infinitely fast trapping, and
the lower one represents a generalization of the formula
K=2corj (Refs. 5 and 6) to the case of arbitrary biases.
Both results are included in the following definition of K:

But for sum. ciently small trapping rates, we have

' =2' sinh( r) ) =2g, for g « 1 .

This result is very much different from the corresponding
prediction of a classic trapping model: The field depen-
dence of the rate constant K is not sensitive to the trap-
ping rate [Eqs. (14) and (15)].

As mentioned in the Introduction, the character of the
ASP time behavior depends on co. This dependence is
pronounced in low fields. This is also true for the model
under consideration. Calculations of the (b, t) and (t, t)
survival fractions in accordance with Eq. (12) and with
exact formulas show that in the case of fast trapping,
co))c, one gets practically the same results for & A(t) )'
for times w&/4& 1 and for & A(t) )""for times r& & 1. For
the (t, b) fraction, Eq. (12) is valid up to times
r, «(nc lr)) only.

When the condition of slow trapping is satisfied, co «c,
a generalization of the solution of the trapping problem
to include the (b, t) and (t, b) fractions is trivial and gives
(for q &(c)

= r2Kz [(2rz)' ]exp( —q t ),
(18)

& A(t))""=& A(2t ) )' ", r2=2ccot «(~c/co)
where K2(t) is the modified Bessel function. At times
r2)&(nc /co), the time dependencies of the survival frac-
tions take the form of Eq. (12). For the fraction (t, b), the
dependence (12) transforms into the asymptotics (10).

Combining the above results, we can write

[EQ(t)]„„,=exp( rt't )b,Q„,—(t), r, «(~c/rt)';
aI (1+a)[ln(t /r) —ln(a)+(2a) '](t /r), w& »(vrc /g)

2cco sinh(q) c~cb ln(t /r)+a '+0.5772
(t /r) (20)

where 60„0(t)is the solution of the problem for zero
bias.

IV. DISCUSSION AND CONCLUSIONS

The results obtained can, in our opinion, be instrumen-
tal in studies of charge-carrier trapping processes in Q1D

organic crystals. Therefore, we summarize the main ex-
pectations concerning the charge-density decay kinetics
predicted in the model.

(i) In high fields, rt »c, the decay law of the ASP in the
interval of & Q(t) ) from 1 to (1 —c, /c) is very close to an
exponential one, with the rate constant defined in Eq.
(15). Further changes in the ASP [in the interval from
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(1 —c, /c) to cz/c ] are extremely slow [Eq. (20)]. Thus,
if a Q ID crystal contains barrier-type defects, the decay
of the charge-carrier density due to trapping can be ap-
preciably slowed up by applying a su%ciently high elec-
tric field. This expectation is quite realistic. For in-
stance, polydiacetylenes are very likely to be built of finite
polymer segments. ' In this respect it is important that
Eq. (10) define not only the asymptotic dependence prop-
er, but under certain conditions, also that it describe the
charge-carrier density decay in a time interval available
for observations.

It is appropriate to recall the well-known power decay
law t """associated with dispersive transport (the
constant is a parameter of disorder). It is often observed
in time-resolved experiments in conducting polymers. '
The power-law and the logarithmic-power dependencies
are not easily distinguished experimentally. To choose an
adequate interpretation, the specific field dependence,
prescribed by Eqs. (10) and (11),can be used.

(ii) The field dependence of the exponential-decay rate
constant K is not sensitive to the trapping rate. In con-
trast, the dependence r(il ) is modified by the parameter co

[see Eq. (11)] and therefore is informative in this respect.
It is important also that measurements of r(rt) can be
performed when the charge density is not too small (if cb
and c, are of the same order of magnitude) and thus are,
in principle, available. For example, for c& =c, the ASP
decay is exponential up to 0.5 only. Then the stage of
slow, logarithmic-power decay follows.

(iii) The asymptotics of b, Q(t) has been obtained earlier
in the form ~ ( t /r). ' The absence of a logarithmic fac-
tor, which is especially important when o. «1, is due to
the fact that the factor x in the averaging formula (B8)
has been omitted. There are other discrepancies be-
tween the Burlatsky-Ivanov results and ours. The field
dependencies of the time scale w have been given for lim-
iting cases only (r ' o- il, i) (&co [Eq. (109)] and r
i)))co [Eq. (111)]; compare with Eqs. (16) and (17)).
Moreover, this quantity turns out to be dependent on the
defect concentration for reasons not yet clarified.

(iv) In low fields, q &(c, the time dependence of the
ASP is qualitatively different at an early stage of the de-
cay for the cases of fast and slow trapping. For co))c, in
accordance with Eqs. (5), (10), and (12), one can expect
the following changes in charge-density decay kinetics
when the time increases:

b, O(t) ~ J, (t)~J,(t)~J, (t),

J, (t) ~ c, exp — r, +2c,cb—exp

if g «cu, and

bA(t) ~ J(t)~J,(t)~J,(t), (23)
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APPENDIX A: RANDOM WALKS IN A CHAIN
WITH ARBITRARY ABSORPTION ON ITS ENDS:

SOLUTION AND SURVIVAL PROBABILITY
IN THE LAPLACE-TRANSFORM SPACE

if i) ))co (but still rt ((c ).
All the above dependencies except Jz(t) show the trap-

ping slowing down with increasing time due to Auctua-
tions of the defect density. The difference between the
powers in the exponents of J(t) and of J, (t) is the direct
consequence of the fact that the capture of particles is
trapping-rate controlled in the first case and diffusion-
rate controlled in the second. In its turn, the dependence
Ji(t) shows that the microscopic picture of the capture
process at long times differs from that mentioned above.
This regime may be called a field-suppressing trapping.
The slowing down observed at this stage is the most
dramatic and, in a sense, anomalous.

Note that the intermediate asymptotics (21)—(23) is
more or less pronounced, depending on the parameters.
For certain relations between trap and barrier concentra-
tions, the dependence Jz(t) will not manifest itself at all
as an intermediate asymptotics.

To conclude, it is to be mentioned that if we follow the
arguments of previous works, ' our asymptotics is valid
for a three-component (host molecules, trap molecules,
and molecules of an inert solvent) randomly disordered
system of any dimensionality d, which is below the per-
colation threshold. In such a system the charge carriers
are supposed to diffuse and to drift in closed cavities
formed by host molecules in the solvent (c, ((cb, 1 —c).
In high fields the asymptotic approach to the steady-state
limit of the ASP is governed by the survival probability
in those cavities which have the form of a long thick
cylinder with its axis parallel to the field and where the
charge drift is directed from the base containing traps to
that containing no traps. Thus the problem of finding an
asymptotics is in essence of the kind solved here. At the
same time it is clear that for d & 1 the transition to the
asymptotic decay law will not be as sharp as it is for d =1
in high fields. The question of when the asymptotics is
"switched on" remains so far unanswered for d & 1.

Ji(t) ~exp( rt t), —

ln(t /ar)+(2a)J,(t ~
(t /r)

whereas for cu « c,

bQ(t) ~ J(t) J, (t)

~J~(t)~J3(t),
J(t) ~ c, exp[ —2(r~)' ]+c,ct, exp[ —(2r~)' ],

(21)

(22)

Using in Eqs. (1) and (2) the substitution

G„„(s)=exp(r —ro)g„„(s), (A 1)

we get
[s+2cosh(rt)]g, „(s)=6,„—P,g, „(s)+gz„(s),
[s+2 cosh(rt)]g„„(s)=6„„+g„,„(s)

+g„+,, (s), 2(r(n —1,
[s +2 cosh(i) )]g„„(s)=5„„—P„g„„(s)+g„,„(s).

(A2)
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These equations coincide formally, up to the replacement
s+2cosh(g)~s+2, with the ones describing dynamics
of symmetric random walks in an n-site chain with the
rate of absorption /3, + 1 on the first site and /3„+1 on the
nth site,

s+2 cosh(g) [s+cosh(rI)]
4

1/2

Taking into account the analyticity of the generating
function at z =z+ and z =z, we obtain—exp

'

+ X/

Introducing a generating function

d&„(s,z)= g g„„(s)z",
r=1

(A3)
g, „(s)=D„'(g)[sinh[(n ro—+ 1)g]

+/3„sinh[(n —ro )g] ]
(A6)

g„,(s) =D„'(g)[sinh(rog)+/3, sinh[(ro —1)g] } .

dN„(s,z)
g„„(s)=-

dz"

we find

z=0

where sinh(rg)= —,'(z+ —z" ) and

D„(g)=sinh[(n + 1)g]+(/3&+/3„)sinh(n g)

+/3, /3, sinh[(n —1)g] .

(I+/3, z)g, „(s)+z"(/3„+z)—z '
4„(s,z) =z (A5)

0 z z+ z z
Substituting Eqs. (A5) and (A6) into Eq. (A4), we get

the solution of Eq. (A2):

I sinh(rg)+/3&sinh[(r —1)g] I I sinh[(n —ro+ 1)g] +/3„isn h[(n ro )g] I—
sinh(g)D„(g)

[g„„(s)]„&„=[g„„(s)]„«
„

and hence the solution of Eqs. (1) and (2) in the Laplace-transform space.
The relation

CO) Ct3n

sg G„„(s)=1— Gi „(s)— G„„(s)

(A8)

(A9)

simplifies finding the expression for the Laplace transform of the survival probability

Q„(s)=n ' g G„„(s)
r, r0= j.

CO~+ CO„ ~,exp(g)+~„exp(—g)
sinh[(n +1)g]—2 sinh(n g)ns'D„(g)

coiexp(2il )+co„exp(—2r) )+ 8' sinh[(n —1)g]

co,exp[ —(n —1)il ] co„exp[(n——1)r/]+2 sinh(q)sinh(g)8
COi'„+2 tsinh(ng) —cosh(q)sinh[(n —1)g]—sinh(g)cosh[(n —I )r/]]8 (A10)

Putting in Eq. (A10) co, and co„in accordance with Eq.
(4), one gets the expressions for the survival probabilities
in clusters (t, t), (b, t), and (t, b) given in the text.

of this function in a complex s plane are defined by the
equation

D„(g)=0.

APPENDIX 8: TIME DEPENDENCIES 0,"(t)
IN HIGH FIELDS

It can be verified that the function Q„(s)is not singular
at s =0, except the trivial case co& =co„=0.Thus all poles

Using the identity

sinh[(n +1)g] ~
s"

sinh(g') z 0 k!
where

(B2)



13 534 ALEXANDER I. ONIPKO 43

d sinh[(n + 1)il]
nk, d[2 cosh(g)]" sinh(g)

Eq. (81) can be rewritten in an equivalent form
n k

~, [f„k(rl)+(p,+f3„)f„,k(il)
)t' =0

(83)

X [exp( —2nil)+O(exp( —3nrt))] . (86)

The rest of the n —1 poles of 0'„''(s) are not smaller in
magnitude, than n or con '. Moreover, it can be
shown that a factor before the exponent exp(s;„t) in a
standard representation of the original of the rational
function 0'„'"'(s)is close to unity. Thus we can write

+P,P„f„„(~))=0 . (84)

The latter is more convenient for an analysis of the limit
s ~0, i.e., of the long-time behavior of A„(t).

For clusters (t, b), co„=0,cubi/8'=coexp( —rI), it fol-
lows, from the above two equations,

S
co exp( n —

il) + k2 si nh( rj)si nh( ng)
2sinh (il)

+co[exp( —il)sinh(n q)
—n sinh(il)exp( —n il)]I +0(s )=0 . (85)

Under the condition ng)) 1, one of the solutions of Eq.
(85) is

2' sinh(g)
co exp( —i) )

2 sinh(il )

This expression, with the lower integral limit equal to
zero, can be used for a description of the full time depen-
dence of the survival fraction (t, b) in high fields,
a=c/2i) « l.

We turn now to the clusters (t, t) and (b, t). Changing
in Eq. (85) the sign of il and retaining the terms with the
powers s and s' only, we get

2' sinh(r) ) for ng))1min (89)

2' sinh(rI )=exp
1+con

(810)

for all values of co and n, we get (in the mean-field ap-
proximation)

This equation defines the smallest pole of 0'„"'"(s)if
con (&1. Just the same result is valid for 0'„'"(s).Fol-
lowing the way of calculations, one gets Eq. (13) with the
rate constant K =2' sinh(i) ).

To obtain expressions for &Q(t))' " and &A,(t))""in
the case of fast trapping, the contributions coming from
all poles of the functions 0'„'"(s)and 0'„'"(s)should be
taken into account. ' ' A generalization of the calcula-
tion procedure into the case of arbitrary biases is
straightforward and gives the result presented in Eqs. (13)
and (14).

It is interesting to note that, using the exponent with
the rate constant defined by Eq. (89), i.e.,

fl(b, t)(t) ~(tt)(r),
n n

0„""'(t)=exp ——exp( 2n il )—
7

with r defined in Eq. (11).
The use of Eq. (87) in Eq. (6) yields, for c (( 1,

(87) &&(r))I„'." =&&(r))""

2cco sinh(g)=exp
C +67

(811)

&Q(t))I'"' = J xexp —x ——exp —— dx
20! 'r

=al (1+a), for t))ar (Bg)
ln(ill) — (a)

(t /r)

This derivation is not strict, but it gives surprisingly good
coincidence with exact calculations in the limit cases,
co))c and co&(c. Thus it seems reasonable to use Eq.
(811)for a description of the charge-carrier density decay
in high fields for arbitrary trapping rates.
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