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Photocurrent kinetics in quasi-one-dimensional 
polymeric crystals with recombination centres 

A I Onipko and I V Zozulenko 
Institute for Theoretical Physics, 252130, Kiev-130, Ukr SSR, USSR 

Received 4 April 1989 

Abstract. Trapping of charge carriers in a bias field in polymeric crystals with recombination 
centres is studied in the framework of a one-dimensional model. The dependence of the 
photocurrent temporal decay on the parameters of the system-electric field E ,  con- 
centration of centres c and ratio of recombination (capture) rate w to diffusion rate W-is 
obtained. In a well known paper by Movaghar, Pohlmann and Wurtz (MPW theory) and 
subsequent papers, the model of immediate capture, w = 35, has been used. We have shown 
that under slow trapping, o/cW 1, the form of the kinetic curve and its evolution with 
changing E differ qualitatively from the predictions made with MPW theory, whose range of 
applicability is determined. Comparison of the new results with those reported previously is 
made. 

1. Introduction and statement of the problem 

In recent years attention has been focused on studies of excitation energy and charge 
transport phenomena in low-dimensional systems, particularly in quasi-one-dimen- 
sional (QID) crystals and polymers. There exist many organic and non-organic crystals 
for which a high one-dimensional anisotropy of the motion of neutral and charged 
quasi-particles is demonstrated experimentally [ 1-14]. The polydiacetylenes (PDA), 
forming QiD polymeric crystals, belong to this class. Comprehensive experimental and 
theoretical investigations of the PDA, reviewed in [15-191, have been stimulated, in part, 
by their novel electro-optic qualities [ 1-61, The latter can be used in molecular electronic 
and opto-electronic devices incorporating Langmuir-Blodgett films built-up upon PDA. 
In this connection the temporal behaviour of dark photocurrent and its dependence on 
electric field and temperature in PDA are of interest. 

Different approaches have been employed to interpret photocurrent kinetics (see 
for example [20-23]), but the problem still seems far from being solved. Therefore, 
further development of theoretical models of charge transport in Q i D  systems is imper- 
ative. 

In PDA such as PDA-~-OH with recombination centres (which are of unknown nature 
[4 ,6 ]  or may be created in a special way [5]) the main path of relaxation of charge carriers 
after they are generated by light is believed to be provided by irreversible capture of 
free carriers by recombination centres or traps [ 4 , 5 , 1 9 ] .  To explain the observed kinetics 
of this process, the Movaghar, Pohlmann and Wurtz (MPW) theory of charge trapping in 
one dimension (ID) [22] has been used. In the paper referred to above, a chain with 
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chaotically distributed traps has been considered to be the basic structural unit of a Q1D 
crystal. The motion of charge carriers has been regarded as a Markovian ID random 
walk (or diffusion) process resulting in the trapping of a particle with unit probability 
whenever it occurs at a site neighbouring the trap. The latter assumption in the language 
of the master-equation formalism is equivalent to an infinite capture rate. Let us sum- 
marise briefly the main results of MPW theory. 

It was shown in [22] that the influence of a bias electric field E on the time evolution 
of the charge carrier density p(t) is qualitatively different in the cases of weak 

and strong 

fields, where y is the bias parameter (y cc E ) ,  which defines the charge drift efficiency 
in the field E (see equations (13) and (15)). 

Under the condition (1) 

exp{-#[2n2(c - y ) 2 ~ t ] 1 / 3 }  

exp( - y2 Wt) 

[ 2 4 c  - 7 ) W - l  =e t =e tc 

t 3- t,, tc = ( c  - y)/y3W 
P(t> = [ (3) 

and if the second inequality holds, we have 

As is easily seen, the decay law p(t) is controlled by the strength of a bias field. An 
increase in E will result in a shift to shorter times of the cross-over point at which 
the dependence zexp( -t1I3), which corresponds to Balagurov-Vaks asymptotics [24] 
caused by trap density fluctuations, is expected to change to an exponential one. At 
strong fields the intermediate Balagurov-Vaks asymptotics disappear and the definition 
of the exponential decay rate constant, K = y2W, is replaced by K = (2yc - c2)W. 

The peculiarities of the dependence p(t) on the parameters c ,  W and y have been 
related to the observed dark photocurrent kinetics in PDA-~-OH [4,5]. 

It should be stressed that in accordance with the MPW theory predictions, the character 
of the charge-density decay law is defined by the relation of two parameters, y and c, 
only. This is a direct consequence of the assumption that the charged particle capture 
(recombination) rate is infinite (this rate is hereafter denoted by o), although this is 
hardly realistic. Moreover the MPW model is evidently irrelevant to the capture-rate- 
limiting process when the finite value of w should be taken into account. An illustration 
of such a situation is given in figure 1, where a part of the chain between two traps (deep 
minima in the potential energy profile) is shown. The energy wall that is to be overcome 
in the capture process can be rather high due, for example, to distortions introduced by 
defects which play the role of traps. In this case a particle performing random walks on 
a chain segment between traps will undergo multiple reflection from a barrier before 
being trapped. 
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c o c o c o c o  
Figure 1. Energy profile of a chain with traps in 
zero bias field: 0, host molecules; n, their number 
in a given segment; 0, trap molecules; W ,  particle 
jumping rate between host molecules; U ,  jumping 
rate from the host to the trapmolecule. The poten- 
tial energy of a particle at the trap site, E ,  is sup- 
posed to be much below the energy minimum 
associated with a particle on a host molecule, 
i.e. the average thermal energy kT is much less 
than E .  

( 0 )  Fast trapping w - w x"xxx\ 
'Weak ' ,-' Intermediate Strong ' 

field y field field 
mi/// w F ixwxnxx > 
(b l  Slow trapping 

Figure 2. Two different sequences in the heirarchy 
of the characteristic parameters (increase is from 
left to right). For (a )  fast and ( b )  slow trapping, 
the transition from weak to strong bias fields (and 
also from weak to intermediate ones in case ( b ) )  
leads to qualitative changes in the kinetic curve 
p ( t )  (see figure 3). 

n 

The small rate of capture can affect the observed decay kinetics of diffusing and 
trapped particles in a special way. In the absence of bias, this has been demonstrated by 
various examples in [25-281. In particular, in the cases of fast 

w / w c  + 1 ( 5 )  

w / w c  e 1 (6) 

and slow 

trapping, the dependences p(t),=o differ qualitatively from each other. In contrast to 
the first case, when p(t),=o deviates weakly from that expected for immediate capture, 
w = 33, there exist intermediate asymptoticsin thedependencep(t),=,,whichcorrespond 
to the slow trapping. The latter is 

p(t)  = ~ Z ( 2 ~ 4 3 1 ~  exp[-2(2cwt) ll2] cwt + 1 cut -=s (n2Wc/w)2. (7)  

Note that the characteristic timescale in (7)  does not coincide with that in equation (3) 
for q = 0. Besides, the main asymptotics, ~ e x p ( - t l / ~ ) ,  are realised at such large times, 
cot + (n2Wc/w)2, that the quantity p(t),,o is extremely small and the deviation of the 
particle motion from being strictly one-dimensional may lead to considerable changes in 
the particle-density decay kinetics. For these reasons the observation of the dependence 
proportional to exp( -t1l3) may become practically impossible. 

Thus following the results of [28], one can use the dependence p(t),=o, obtained for 
the case w = 33 (which is simple and easily comparable with experiment), for a wide 
range of the parameter w/W,  provided the inequality ( 5 )  is satisfied. On the other hand, 
the a priori postulation and the use of the model based on the assumption w = to 
describe the situation that actually corresponds to the case of slow trapping will produce 
misleading estimations of the diffusion rate and the trap concentration in the sample 
under investigation. 

The above points show that it is of importance to combine models used in [22] and 
[28] to develop a theory of charge trapping in a bias field in ID systems, including a finite 
capture rate. In the framework of such an approach one can get answers to questions 
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which are important for adequate interpretation of experimental results but still remain 
unclear. Let us specify these questions which stimulated us to perform this study. 

From a brief discussion of the previous results it is clear that the definition of weak 
fields should now read 

11 e c, w / w .  (8) 
It is quite evident that in this case the dependences given in [28] are operative, except 
for long-time asymptotics. Obviously, the basic MPW theory predictions concerning the 
charge-density decay kinetics still hold under the condition of fast trapping when 17 e 
w/W. But the inequality ( 5 )  can also be fulfilled for w/W 1, so that the following 
situation is possible: 

11 > c, o/w (9) 
whichcorrespnds to a new definition of strong fields. Of course, it has not been considered 
in the MPW approach. 

Thus, it is of importance to answer the question: What are the differences in charge 
trapping kinetics of fast and slow trapping in strong fields? It is also of interest to ask: 
What kind of kinetic curves describe the process when w/W < 17 < c? Answering these 
questions demands a special consideration which starts from the general expression for 
the density of charge carriers diffusing in a chain with traps (arbitrary values of o/W 
and c, 17 1). Below, we obtain kinetic curves for all possible hierarchical sequences of 
characteristic parameters (see figure 2). Note here that for some particular cases the 
asymptotic behaviour of p(t) has been studied in [29]. 

2. Survival probability of a diffusing charged particle in a chain with traps 

The backbone of a Q1D crystal with chaotically distributed recombination centres, called 
traps below, may be treated as a set of sequences of linear segments built up of molecules 
in regular sites (the word ‘molecule’ has a wide meaning in this context; for example, it 
also refers to an atom or to a certain group of atoms and molecules). The segments are 
bounded by defect molecules or distortions of the ID lattice, which play the role of 
unsaturated traps for quasi-particles moving along chain segments. A typical example 
of the defected chain considered is presented in figure 1. 

The length distribution of the segments is assumed to be Poisson. This is justified for 
small trap concentrations. A rigorous definition of the segment (linear cluster) length 
distribution is given in [30]. 

A physical quantity of interest in the two-component randomly disordered chain 
under consideration is a configurational average which reduces to averaging over seg- 
ment lengths. Measured in experiments, the intensity of a dark photocurrent is pro- 
portional to the averaged survival probability of charge carriers in a chain with traps. It 
reads 

p(t )  = c2  Im d n  nQ,(t) e-cn 
0 

where Q,(t) is the survival probability of a carrier at time tin a segment of the length n ,  
i.e. containing n host molecules. To calculate Q,(t), one needs to choose a model of 
quasi-particle motion. 
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Let us suppose that the charge carrier motion in a bias field is a stochastic Markovian 
process of random walks performed by random jumps between nearest-neighbour chain 
sites. Then, the conventional probability to find a particle at the site i (i = 1 ton)  at time 
t i s  defined by solving the following set of Pauli master equations: 

-- t, - -(W+ + W - ) p n ( i ,  t)  + W-p,( i  + 1, t)  + W+p,(i - 1, t)  i # 1, n 
a t  

where W' is the per second probability (rate) of charge transfer between the host 
molecules along (+) and against (-) the bias field, and w+ and o- are the charge capture 
rates with the above meaning of the subscripts + and -.  For thermally activated jumps, 
one can write 

eEa 
r = 2 k T  

where Wand w are, respectively, transfer and capture rates in zero field (figure l ) ,  e is 
the charge value and a is the lattice constant of the chain. 

The use of one-particle equations (11) and (12) to describe the charge carrier 
dynamics is justified for small carrier concentrations. Some effects of the inter-particle 
interaction in a defected chain have been considered in [31-331. 

In most cases for practical purposes, to find p,(i, t)  and to calculate the survival 
probability in a segment 

n 

it is sufficient to replace the discrete model ( l l ) ,  (12) by a continuous one, supposing 
n S 1 , ~  1, t * W-'. For smooth particle density distribution at distances of the order 
a, the solution of ( l l ) ,  (12) is equivalent to the solution of the diffusion equation 

with the boundary conditions 

which follow from equations (12a) and (12b). 
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The solution of equations (15) and (16) is readily found in the Laplace transform 
space 

The substitution of p , (x ,  s) obtained for the uniform initial density distribution 

p,(x, t = 0) = n-l (18) 
into the definition 

gives 

1 
s ns2 ( G 2  + s) sinh(iln) + 26A cosh(An) 

2 6  (2q2  + s) sinh(An) + 6 A  cosh(An) - 6 A  cosh(yn) - 2qA sinh(<n) 
f i , (S)  = - - - 

A = (112 + s)1'2. (20) 
In the limit 6 = equation (20) turns into 

1 2A cosh(An) - cosh(qn) 
s ns sinh(An) 

fin(s) = - - 2 

which coincides with that used in [21, 221 for calculations of the average survival 
probability p(t). 

Note that the function fi,(s) is not singular at the points = 0. The Laplace transform 
in this limit defines the lifetime averaged over the initial positions of a particle which 
diffuses in the bias field in a chain with absorbing boundaries. The corresponding 
expression is 

6n/2 - 6/2q2 - d2/4q2) sinh(qn) 
d2 sinh(qn) + 2 6 q  cosh(yn) 

T,  = W-' lim fin@) = W-' 
s-0 

(6/2q) (1 + 6n/2) cosh(yn) 
h2 sinh(qn) + 2 6 q  cosh(qn) 

+ 
The original of fi,(s) cannot be obtained analytically in the general case. Therefore, 

we find Q,(t) for a representative series of parameter relations. The details of the 
calculations are given in Appendix 1. The following equations present the final results 

k2 exp[-(y2 + n2k2/n2)Wt] 
(q2n2 + n2k2)2  

[l - ( - l )k  C O S ~ ( V ~ ) ]  Q,( t )  = 4n2 
k = l  

6 n  B 1 , q  << 6 

Q,(t) = 8 n 2 y 6 n 2  
a k2(- l )k  sinh(qn) exp[-(q2 + n2k2/n2)Wt] 

k = l  [ ( q 2  - d 2 ) n 2  + n 2 k 2 ] ( q 2 n 2  4- n2k2)2 

+ exp(6n - 2ycot)/6n 6 n  B 1 , q  B 6 

Q , ( t )  = exp[-(2o/n)t] 6 n  << 1, yn 4 1 
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= k2(- l )k  sinh(yn) exp[-(y2 + n2k2/n2)Wt] 
( q 2 n 2  + ~ r ~ k ~ ) ~  

Q,(t) = 8n27hn2  
k = l  

+ exp(-2qwt) h n  < 1, yn 1. (26) 
The above expressions are helpful for understanding the relationship between the 

temporal dependence of Q,(t) and the segment length, magnitude of bias field and 
capture efficiency. They are also needed for some other applications. But in performing 
further calculations of p(t) one encounters difficulties, since the substitution of equations 
(23), (24) and (26) into (10) leads to divergent integrals. Thus, the order of summation 
and integration cannot be changed. In such cases, it is instrumental to use the definition 
of the average particle-density Laplace transform 

p(s) = c2 lom d n  fi,(s) e-cn (27) 

and to consider separately fast (equation ( 5 ) )  and slow (equation (6)) trapping. 

Fast trapping. After making some identical transformations in (27) and going over 
from the Laplace image space to its originals, one gets 

where 

sinh[(7 - C)Yl R1(s) = 2h(27 + 6) -j- A :: 1; dy (h2 + s) sinh(Ay) + 2hA cosh(Ay) 

2 h  A[e+-c)fl(q + ~ / 2 )  - e-(q+nn(q - h/2)] 
E2(s )  = c2 i,̂  d n  (- - - 

s ns2 (6' + s) sinh(An) + 2hA cosh(An) 

e-'" (2q2 + s) sinh(An) + hA cosh(An) 
ns2 (h2 + s) sinh(An) + 2hA cosh(An) 

- 2h- 

Let us, first, exclude the case of strong fields, i.e. let 7 < 6. With the restrictions on 
the parameters given, it is seen that the situation coincides basically with that studied in 
[22]. Since equation (23), with minor corrections disregarded, is the original of (20) 
and, at the same time, represents (exactly) the inverse Laplace transform of (21), the 
calculations made in accordance with (28) (see Appendix 2) allow us to rederive the 
results of MPW theory: 

4 
n2 

p(t),<, = L l ( t )  = -exp(-q2Wt) 

and 

where 
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(33) 
(k + i) exp{[(q - c)/(2k + 1)]2Wt} 

L 2 ( t )  = 8c2(q - c ) ~  exp( -q2Wt) 2 
k = o  [q2(2k + - ( q  - c ) ~ ] ~  

At long times, the expressions (31) and (32) reduce to (3) and (4), respectively. 
It is worth mentioning that, as the present calculations show, the range of applications 

of the dependences obtained in [22] is not limited to the case w = m. They can also be 
used to describe the trapping process characterised by a finite capture rate, including 
those for which the condition 03 G 1 is realised. Thus, the decay laws (31) and (32) are 
relevant to the case of fast trapping and not very strong fields. 

Let us now examine the case q + 6. The calculations carried out in Appendix 3 in 
accordance with the scheme described in the preceding appendix result in the following 
expression: 

p(t) = 8q26c2 exp(-q2Wt) 
z 

exp( -2qcWt) (34) 
2?7CWt%-l 

where & = ( q  - c)/(2k + 1). It is seen that the decay kinetics described by equation 
(34) differs from that obtained above, equation (32), for times 2qcWt 6 1 only. The 
long-time asymptotics of the dependences (32) and (34) coincide. 

Note that, as is argued in [29], the asymptotic behaviour of the survival probability 
can be either of the type Kexp(-q2Wt) which corresponds to (31) or of the type 
mexp(-2qwt) (see equation (37) below). Both the asymptotics can be obtained in the 
smallest pole approximation. But this approximation fails for fast trapping in inter- 
mediate and strong fields, i.e. q > c. To get equations (32) and (34) one needs to take 
into account the contributions from all poles of the Laplace transform O2,(s). 

Slow trapping. Similar to the previous treatment we exclude first the case of strong 
fields, q > c. Then the calculations of p(t) can be performed directly using (10) together 
with (25) for Q,(t). As a result one gets for t G t 

p(t) = 2 c w t ~ ~ ( 2 ( c w t ) ~ / ~ )  t = w 2 c / w 3  if q < 03 
z = c /wq2 if q > 6 (35) ~ % ( 2 ~ ~ t ) ~ / ~  exp[-2(2~ot) ' /~]  

2clots 1 

where K 2 ( x )  is the modified Bessel function, and for t 9 t 

The expressions (35) and (36) show that in low fields, q < O3, the charge-density 
exp( -t ' I2), p exp( -t'/3) decay kinetics can follow three different dependences, -p 
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Fast trapping 
( a ]  q < c  (Weak field) 

exp(-;Tj’3 1 ex p(-q2 w t )  
/ 

c+w t D  
q > c  (Intermediate and strong field) 

expk2qcWfI 
I -D 

VncW f 

Slow trapping 
( b )  q<w/W (Weak f ie ld)  

h 2 K 2 ( 2 & 2 )  e x p ( - f ~ i ” )  exp(-q2Wt) 
~~~ l / / I l / l / / / l l  D 

c w2/w 3 c/$w t 
w / W < W C  (Intermediate field) 

2T2 K2( 2 6 2  e x p ( - $ ~ t  1 Figure 3. Changes in the temporal dependence 
cw/w2q t D  of the charge carrier density with increasing bias 

electric field for ( U )  fast and ( b )  slow trapping. 
Different shaded sections of the time axis (unsca- 
led) are associated with different characteristic 

,~~~~~ v 

q > c (Strong field) 
exp(-qw f 

I ,  ~ o m m 9 ~ ~ ~ o m ~ 9 ~ o m ~ ~ 9 ~ o m ~ 9 ~ ~ ~ ~ o m ~ ~ ~  
I / q w  t D  dependences p(t), z, = 21zc2Wr, z2 = 2cwt. 

and p cc exp(-t), which change into each other as the time increases (figure 3). When 
q > 6, the second intermediate asymptotic does not manifest itself. This means that 
passing to intermediate fields (see figure 2(b)) one would observe the decay law (35) 
changing directly to the exponential one defined in (36). A further increase in bias field 
will result in a shortening of the time interval in which p(t)  coincides with that describing 
the density decay of uncharged particles (just as in the case of fast trapping). Accord- 
ingly, in stronger fields the exponential decay kinetics will display itself earlier. 

With q > c, it is easy to show (see Appendix 3) that the main contribution to the 
definition of p(t)  comes from the second term in (26). Simple calculations lead to 

p(t)  = exp(-2qwt) + O(w/Wc) exp(-2qcWt). (37) 

In this case the decrease in the charge density is exponential, with the decay rate constant 
differing from that in equations (3) and (4). 

Thus, the change of the kinetic curve in response to the bias increasing should finally 
result in the decrease in the exponential decay rate, q2W+ 2qw. 

In all the cases considered above, the time interval needed for p(t) to decrease by 1- 
2 orders from its initial value may be evaluated by the average charge carrier lifetime in 
a chain with traps. The definitions of this time corresponding to the dependence p(t) 
obtained read 

h / C  s 1, q e ci, 

fi/c G 1, q 9 c. 

Summarising the results presented, we would like to emphasise two of them believed 
to be the most important. It was shown that the predictions of the MPW theory formulated 
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for the case of infinite capture rate remain practically unchanged under the condition of 
fast trapping ( 5 )  for weak and intermediate bias fields. At the same time, when the case 
of slow trapping (6) is realised, we predict a qualitatively new shape of the kinetic curve 
expected and its dependence on the bias electric field strength. 

3. Concluding remarks 

In experiments monitoring the photocurrent after light excitation of a Q i D  crystal it is 
the parameter q (bias field) that can be readily varied [4]. Therefore, it is helpful to trace 
changes of the kinetic curve p(t),  connected directly with the dark-current intensity, in 
response to an increase in bias. 

In weak fields (see figure 2)  the photocurrent decay due to trapping of the over- 
whelming majority of charge carriers is indistinguishable from that for uncharged- 
particle trapping kinetics (studied in detail in [28]) ,  except for the long-time asymptotics 
which are always exponential when q # 0. For fast trapping this asymptotic has the form 
p(t) cc exp( -q2Wt). An increase in the bias field leads to a decrease in the time interval 
in which p(t) is close to p(t),=,,. At the same time, for stronger fields the transition to 
exponential kinetics shifts to shorter times, and the exponential decay rate diminishes. 
An appreciable difference between p(t) and ~ ( t ) , = ~  in the whole range of times has to 
be expected in fields q > c ,  irrespective of the capture rate. 

In the case of fast trapping the kinetic curve describing the initial stage of pho- 
tocurrent decay is defined by equation (32) for intermediate fields, c < q d, and by 
equation (34) for strong fields, q 9 6. Both the dependences tend to the same exponen- 
tialconstant K = 2qcW ( K  = - q2Win weak fields). Taking into account the strong-field 
asymptotics of p(t) obtained in [34], one can expect that a further increase in q (up to 
values q b 1) will result in the increase in K ,  governed by the relation K = 2Wc tanh q. 

The form of the decay curve and its transformation with increasing q differ noticeably 
from that described above for slow trapping (see figure 3) .  In weak fields there exist two 
intermediate non-exponential asymptotics, cc exp( -t112) and cc exp( -$I3), which should 
reveal themselves before an exponential decay (just the same as that for fast trapping) 
takes place. The first of them, or more precisely, the dependence p(t) = 
2cotK2(2(2cwt)'i2), describes the photocurrent decay at least within two orders of its 
initial intensity. When passing to intermediate fields, the 'exclusion' of the second 
asymptotic occurs (see figure 3(b) ) .  Thus, distinct from the case of fast trapping, one 
can observe the matching of the long-time exponential asymptotics, cc exp( -q2Wt), not 
with dependence exp(-t1i3), but with that cc exp(-t1i2) when q < c. In strong fields 
the intermediate asymptotic disappears (figure 3(b)) and the exponential decay law 

exp( -2qwt) controls almost the whole range of dark photocurrent intensity changes, 
except for a small initial part of its temporal dependence when p(t) is close to unity. The 
decay rate constant acquires a new definition in this case, K = 2qw, which does not 
include the trap concentration, but depends on the trapping rate as a limiting parameter. 

It can be seen that the variation of q in a sufficiently wide range, analysed within the 
present context, allows one to specify the character of the trapping process: Is it diffusion- 
or trapping-rate-controlled, or is there any intermediate situation? It is needless to say 
that a correct choice between the models of slow and fast trapping is a cornerstone for 
the interpretation of experimental data on quasi-particle trapping kinetics. 

In this connection use can be made of the fact that the form of a kinetic curve 
describing the trapping process is sensitive to the duration of excitation laser pulses. As 
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has been shown in [28] after &pulse excitation (i.e. when the quasi-particle creating the 
pulse is much shorter than the time needed for a considerable change in the particle 
density due to trapping-average particle lifetime, T )  and after stationary excitation (or 
using laser pulses much longer than T )  the dependencesp(t),=o are quite different. The 
above change in the excitation duration leads to some kind of a delayed effect in the 
particle-density decay kinetics. When passing from a &pulsed to a stationary excitation 
the expected rearrangement of the kinetic curve is defined by specific values of the 
parameters w ,  Wand c and is predicted to be very much different depending on whether 
fast or slow trapping is operative [28]. Using this effect seems to be helpful as an 
additional tool in studies of charge carrier trapping kinetics. The results obtained in 1281 
are applicable to interpret the experimental dark photocurrent temporal dependence 
in weak fields. But to deal with experiments with varied excitation duration under 
intermediate and strong fields, some additional calculations should be made. 

Let us emphasise, in conclusion, that the crucial dependence of the observables 
linked with the diffusion, drift and capture of charge carriers on the trapping rate, which 
is demonstrated by the discussion presented, shows that a reliable interpretation of 
experiments [4-61 and analogous ones cannot be achieved without careful analysis on 
equal footing of both the possibilities available, namely, those referred to as fast and 
slow trapping in the paper. 

Appendix 1. The survival probability of a particle in a segment 

To obtain the survival probability of a particle, which diffuses and drifts in a bias electric 
field in a segment with absorbing boundaries, it is necessary to find the inverse Laplace 
transform given in (20). So, since a,(s) is a single-valued function without branch points, 
its original is defined by the sum of residues 

!2,(t) = Z R e s  es‘an(s) (Al.l)  

taken at the poles of a,@). The points = 0 is not singular, see (22); therefore we can 
write 

Q,(t) = 203 Res 
s f O  

Ad cosh(yn) + 2Ay sinh(yn) - (2y’ + s) sinh(An) - Acl, cosh(An) 
(s + d2) sinh(An) + 2Ad cosh(An) 

X 

(A1.2) 

where A = (s + y2)l/’ and the residues are taken at those values of s at which the 
denominator in (A1.2) is equal to zero, 

(A1.3) (s + d2) sinh(An) + 2Ad cosh(An) = 0 
or, equivalently, they can be found as solutions of the following equations: 

2 d n x ,  
(7’ - dz )n2  + x :  

tanx, = ix, =An 

and 
2Kiny, 

( y 2  - d2)n’ - y t  
tanhy, = y ,  = An. 

(A1.4) 

(A1.5) 
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Id1 
wn *1 
n < w  

Figure A l .  Solutions of equation (A1.4) (a)-(d) and equation (A1.5) ( e ) ,  (f) plotted for 
different values of the characteristic parameters c, q ,  w .  Full curves correspond to the left- 
hand sides of the equations, and chain curves to the right-hand sides. The solutions are 
defined by the intersection points. 

The solutions of these equations, just as the dependence sl,(t), for arbitrary values 
of the parameters can only be obtained numerically. Therefore, it is instrumental to 
consider representative limiting cases when the explicit form of Q,(t) can be found. 
Keeping this in mind, let us distinguish, similar to (5) and ( 6 ) ,  fast 

& n S l  (A1.6) 

and slow 

& n e 1  (A1.7) 

trapping. 
For the case of fast trapping, the hierarchical sequence of the characteristic par- 

ameters is shown in figure 2(a).  If r < &, so that &n % 1 (weak and intermediate fields), 
the solutions of (A1.4) can be represented in the form (see figure Al(a)) 

xLk) = nk k = 1,2,  . . . (A1.8) 

with unimportant corrections omitted. The equation (A1 S) has no solutions for the 
restrictions on the parameters given. Thus, the definition of the poles in ( A 1 . 2 )  is 

(A1.9) 

Using (A1.9) to calculate the residues in (A1.2), one gets the expression (23) coinciding 
with that obtained for the particle survival probability in a segment with immediately 

Sk = -r' - n2 k2 In'. 
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absorbing boundaries, U = W. For such boundaries equation (23) is exact. When d # 0 
the evaluation of the terms correcting (23) shows that their contributions do not exceed 
1% of the value of Q,(t) at any times if the above inequalities are fulfilled. 

If y > ci, and yn B 1 (for fast trapping such relations can be realised in strong fields 
only (see figure 2(a))), the solution of (A1.4) is the same but equation (A1.5) also has 
a solution such as 

Y ,  = ( r7  - d)n (A1.lO) 

which defines a pole additional to (A1.9) 

s = -276 + U 2 *  (Al.11) 

The solutions of (A1.4) and (A1.5) discussed are plotted in figures Al(b) and 
(f). The calculation of the survival probability in accordance with (A1.2) yields the 
expression (24). 

To conclude our discussion of fast trapping, we give the major terms in the definition 
of the average lifetime of a particle in the segment (see (22)) 

yn < 1 

y n s  1. 

(Al.  12) 

(A1.13) 

In the case of slow trapping, equation (A1.4) may have, apart from (A1.8), an 
additional root under the condition of weak or intermediate fields 

x ,  = (2dn - y2n2)l/*. (A1.14) 

The corresponding pole of a,(s) is 
s = - 2 ~ / n .  (A1.15) 

The solution of (A1.4) is plotted in figures Al(d) or (c) depending on whether y < d or 
y > U. 

Itisseen thatthe additionalrootof (A1.4) alwaysexistsinweakfields. Inintermediate 
fields, y > d, the necessary and sufficient condition for the pole to exist is 2U > 11%. 
But when this condition is violated (this is the case when y S d), equation (A1.5) has 
such a solution (figure Al(e)) that the definition of the additional pole coincides with 
(A1.15) if yn 4 1. 

Calculating Q,(t) and making use of (A1.2), (A1.9), (A1.15) and the inequalities 
given, one gets (25). 

In strong fields the additional pole definition differs from that given above. It follows 
from the solution of (A1.5) and coincides with (Al . l l )  for yn B 1. In that case the 
calculation of Q,(t) gives (26). 

For slow trapping the average lifetime of a particle in the segment is 

n/2 w yn 4 1 

yn + 1. 

(Al. 16) 

(A1.17) 
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Appendix 2. Calculation of p(t) for fast trapping in weak and intermediate fields 

To calculate p(t)  let us first average a n ( s ) ,  equation (21), over the random trap distri- 
bution 

(A2.1) 11 2A cosh(qn) - cosh(2An) 
sinh(An) p(s) = c2 d n  e-''' [T + 7 ( 

and make an identical transformation of the integrand, adding and subtracting the term 
2A exp(c - q)n/s2 sinh(An) 

p ( s )  = c2 
e-(C+O)n + e(C-7)" - 2e-C" cosh(An) 

d n  (T e-cn + 1 
S sinh (An) 

2A sinh[(q - c)n] 
s2 sinh(An) 

+ -  (A2.2) 

Inverting (A2.2) to the original space, we get 

p(t )  = R,( t )  + R,(t) = CIS esz[R1(s) + R 2 ( s ) ]  (A2.3) 

where 

2Ac2 ffi sinh[(q - c)n] 
= 7 1 d n  sinh(hn) 

0 
(A2.4) 

(A2.5) 

and the cut of a complex plane is taken to the right of all singular points of R I ,  R,. 
The integration of (A2.4) gives 

(A2.6) 

According to (A2.6), R1(s) is a many-valued function with the branch point s = - q 2 .  
To find RI(t)  we take an integration contour, as shown in figure A2. In the limit r-+ 0 
and R -+ m, the integrals over the contours c, and CR go to zero, so that one has for R,(t) 

R , ( t )  = Res e''RI(s) + - ds esTf?l(s) + - ds esrRl(s) (A2.7) 

where CRes denotes the summation over the residues of the function exp(sz)R,(s). 
Calculation of the residues and of the integrals in (A2.7) gives for q > c 

1 1 
s # O  2n1 I, *n1 I,, 

4 ffi exp(-n2c2Wt/x2) 
n2 

+ -exp(-q2Wt) 

(A2.8) 
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'il! Figure A2. The contour of integration in (25) and 
(A2.3). The integrand d,(s) has the branch 
points, s = -)I*. 

The function R2(t) is obtained by taking an inverse Laplace transform of equation 
(A2.5) and then integrating over n. The result is 

4 exp(-Jc2c2Wt/x2) 
d x x  (q22/c2n* + 1)2 

R2(t) = i e x p ( - q 2 W t )  
Jc 

exp[x(l - 17/41 + exp[-x(l + dC)l 
2{1 + exp[x(l - q/c)]} 2{1 + exp[-x(1 + q / c ) ] }  

(A2.9) 
Thus, p(t) = R,(t) + R2(t) = L,(t) + L2(t) ,  where the functions L1,2(t) are defined 

in (31) and (33). 

Appendix 3. Calculation of p(t)  for fast trapping in strong fields 

Let us represent the temporal dependence of charge carrier density in a form analogous 
to (A2.3): 

(A3.1) 

where R1,2(t) are the originals of Laplace transforms (29) and (30), respectively. For the 
given definitions of RI($), R2(s ) ,  equation (A3.1) is exact. 

P(t> = Rl(t) + R2(t) 

First we consider R,(t). Performing the integration in (29), one can write 

[(62 + s - 26A)/(O* + s + 26A)lk 
(2k + 1)*(q2 + s) - ( q  - c)2 c 8q26c2A 

R1(s) = syf3 + s + 26A) k = O  
* 

(A3.2) 

Again, Rl(s) is a many-valued function in the complex plane with the branch points = 
- q 2 .  Calculation of R,(t) is made by integrating over the contour (figure A2) in the limit 
cr+ 0, CR+ ~ 4 ,  As a result, we obtain 

1 
Rl(t)  = -4q26c2 exp(-q2Wt) lom dx V'x (q' e-XW' + x) k = O  x (2k + 1)2x + ( q  - c y  

(A3.3) 
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where the first two terms correspond to the integrals of the function exp(sWt)I?,(s) taken 
over the edges of the cut I and I1 and the last term is the sum of the residues taken at the 
poles 

(A3.4) Sle = - q 2  + [ (q  - c) / (21+ l)]' I =  1 , 2 , . .  . 
and 

s = -2dq + 0 3 2 .  (A3.5) 

Equations (A3.4) and (A3.5) follow from the condition that the denominator in (A3.2) 
is zero. 

To calculate Z?,(t) we can change the order of taking an inverse Laplace trans- 
formation and of integratingover n. Now taking into account that R2(s) is a single-valued 
function of s, we find 

esWf (2q2 + s) sinh(An) + dA cosh(An) 
- 203c2 [ d n  ?:: 7 (d2 + s) sinh(An) + 2dA cosh(An) . (A3.6) 

In the case of fast trapping the calculation of the residues of exp(sWr)Z?l(s) at the 
poles (A3.4) and (A3.5) gives for sk = - q 2  + [ (q  - ~ ) ~ / ( 2 k  + l ) ]  

(A3.7) 

where Ek = ( q  - c)/(2k + l), 

Res esw"I?l(s) = ( ~ / 0 3 ) ~  exp[(-2qw + w2/W)t] s = -2dq + 0 2 .  (A3.8) 

It can be shown that the first term in (A3.3) does not exceed the value 
=qdc2 exp( -q2Wr). Estimating R2(r) using (A3.6), we derive the upper bound of R2 as 

(A3.9) 

Thus, in the case under consideration the dependence p(r) is defined by the sum in 
(A3.7), which includes the term with the smallest value of the exponential decay rate, 
K = 2qcW, and with the greatest pre-exponential factor 211. Just this result is presented 
in the main body of the paper. 

Let us also outline here a simple way to obtain the dependence (37). Note that the 
first term in the expression (26) for the survival probability Q,(t) is the original of the 
function 

A sinh(qn) 
s3 (An) 

Qc,)(S) = 87 - s # 0. (A3.10) 
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Substituting (A3.10) into (27) and performing an inverse Laplace transformation, we 
get 

p( ' ) ( t )  tc (w/Wc)  exp( -2qcWt) h < ? l < C .  (A3.11) 

As is easily seen, the main contribution to (37) comes from averaging (in accordance 
with equation (10)) the second term of (26). 
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