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The annihilationof incoherentexcitonsin a quasi-one-dimensional(Q1D) crystal containingimpurities(which form traps
or reflecting barriers)is studied.Thedistribution function and thesurvivalprobability of anannihilatingpair of quasi-par-
ticlesdiffusing in a chainwith absorbingorreflecting endsareobtained.Theseresultsareusedto calculatethekinetic curves
of the delayed fluorescence(DF) causedby triplet—triplet annihilation in Q1D crystals containing impurities whose
concentrationis muchhigher thantheconcentrationof triplet excitons.It is shownthat at long timesthekineticsof DF is
describedby the exponentialdependenceexp(—const t

1”3) which differs qualitatively from that predictedfor pure Q1D
crystals,whereapower law of DF decay a:t — 3/2 is expected.

1. Introduction

Thekinetics of excitonannihilationunderone-dimensionaldiffusion is usuallydescribed,by analogyto
higherdimensionalitysystems,by the Smoluchowskytheory[1,21or similarapproximatemethods[3,4].An
exactsolution to the model problemof annihilationof identicalparticlesin a chainwasrecentlyobtained
[5,6] showingthat the particle concentrationat large times variesas cr t~1/2, as distinct from the t

dependencetypical for a three-dimensionalsystem.
The annihilationproblemwastreatedin the abovepapersfor aninfinite ideal chain.Realmaterialsin

which transferprocessesare mainly one-dimensional(for instance,quasi-one-dimensionalcrystals,poly-
mers)alwayshavedefectsthatcanconsiderablyaffect theexcitonmotion,especiallyif the defectsplay the
role of traps or high potential barriersthat obstruct the quasi-particlemotion. The quasi-particles,in
particulartriplet excitons[7—15],are cagedin segmentsboundedby defects,i.e. in linear clusters(which
are also called cages[8]), so that it appearsto be unacceptableto use an infinite chain as a model to
describetransferprocesses.

In the presentmodel, triplet excitonannihilationunderone-dimensionaldiffusion is considered,taking
into accounttheeffect of quasi-particlecagingby defectssuchas trapsor barriers,and assumingthat the
exciton concentrationCT is much less than the defect concentrationCd. So, when triplet excitonsare
excitedin acrystal, mostcagescontainonly oneexcitedmolecule,so that the exciton—excitoninteraction
has an insignificant effect on excitonphosphorescence.However, in crystalsin which the triplet—triplet
annihilation leads to delayed fluorescence(DF) (this is also characteristicof quasi-one-dimensional
crystals,for example,1,4-ditromonaphthalene[16]), theannihilation-producedeffectis alreadyappreciable
at CT/cd << 1 in the sensethat the DF, spectrally separatedfrom phosphorescence,can readily be
investigated.Thus, underhigh defect densitiesthe DF kinetics that providesinformation on the exciton
motionandinteractionparameterswill bedeterminedby the meanvalueof thesurvivalprobabilityfor an
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annihilating excitonpair (its interactionwith otherexcitons being disregarded),that is, we deal with a
two-particle problemthat is solvedexactlyin the presentpaper.

2. Randomwalks of an annihilatingpairof excitonsin a chainwith reflectingor absorbingboundaries

The typical elementof a molecularchainwith randomlydistributedimpurities(defects)that play the
roleof trapsor barriersis a segmentof n hostmoleculesat whoseboundariesthe excitonsare absorbedor
reflected.We now determinethe survival probability for an annihilatingpair of excitons,assumingthat
their motion is realizedby jumpsbetweenneighbouringlattice siteswith a unit time probability W (in
what follows we usea dimensionlesstime in units W~);whentwo excitationscometo the samesite they
immediatelyannihilate,i.e. the annihilationrateis infinite. The latter is the mostpopular, but is not, of
course,a generalmodel of the annihilationprocess.A more realistictreatmentrequiresa finite annihila-
tion rate. The possibleconsequencesof such a generalizationof the model consideredwill be discussed
later.

The positionof excitonsin a chain at time t is determinedby the distribution function p~(i, j, t) that
satisfiesthe masterequation

8p~(z,j, t) = —4p~(i,f, t)+p~(i+i, j, t)+p~(i—1, j, t)+p~(i, j+1, t)+p~(i, j—i, t)

i+f # n

—2/3Tpfl(i, I’ t); (1)

p~(i,j, t)=O, i+j=n.

p,,(O, f, t) = p~(i,n + 1, t) = 0, if the sites0 andn + 1 are occupiedby traps(the trappingis assumedto
be instantaneous),and p~(O,j, t) = p~(i,j, t), p~(i,n, I) = p,,(i, n + 1, t), if the sites 0 and n + I are
occupiedby reflectingbarriers;~ 1 is the lifetime of an exciton in unitsW1.The meaningof the discrete
variables I and f that determinethe position of a pair of incoherentexcitonsis clear from the following
diagram:

~(o ooooooooooo 0
o i 2 3 ... ... ft-f Ii fl~1

Assumingthe distributionfunctions p~(i,f, I) to be smoothat distancesof a lattice constanta (this
may be expectedat n >> 1 and t>> 1) we passfrom a discreteto a continuousdescription,introducing
continuousvariablesx = ai, y = af.

We thenhaveinsteadof eqs. (1),

y, t) = ~ t) + a2p~(x,y, t) —2/3Tpfl(x,y, t) (2)
8x

in the region

0�x+y�n; (2a)

all the quantitiesof length dimensionarehenceforthexpressedin units of a.
Theboundaryconditionat x + y =

y, t) ~ = 0, (3)

impliesthat apair of excitationsat the samesiteannihilatesinstantaneously.
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Fig. 1. Theextensionof theinitial condition p,,(x, y, t = 0) 1
givenin the region0 <x + y < n to theregion x <n, y <n,

x +y> n in anoddway(shadedtriangle).

Theboundarycondition

y, t) L~o= p~(x,y, t) ~ = 0, (4)

correspondsto acasewhentrapsare locatedat the chainends,andthe boundarycondition

y, t) — ap~(x,y, t) —0 (5)

x=O y=O

correspondsto excitonsbeingreflectedfrom the chainends(barriers).

As aninitial conditionwe choose

p~(x,y,t=0)=1, 0<x+y.czn, (6)

which correspondsto a homogeneousexcitation of a crystalat time t = 0.
To solvetheproblemin eqs.(2).-(6),it is convenientto extendthecondition(6) in anoddparity way to

theregionx<n,y<n, x+y>n

p~(x,y,e=0)=—i,x<n, y<n, x+y>n, (7)

thuscompletingthe rangeof the variablesx, y to a square(seefig. 1).
Theboundaryconditionsat x = n, y = n are chosenfor a chainwith trapsas

y, t) i~,,= p~(x,y, t) ~ = 0, (8)

andfor a chainwith barriersas

y, t) — ~ y, t) 0 ()
ax 3

It is theneasyto seethat the solution of eq.(2) with boundaryconditions(4), (8) or (5), (9) andinitial
condition(6), (7) is the sameas that of theinitial problem(eq. (2) with boundaryconditions(4) and(5)
andinitial condition(6)) in the region0 � x + y � n.

Deriving the Green’sfunctionsof eq. (2) underthe boundaryconditions(4), (8) [17]:

y, x’, y’, t)e2~Tt=4 f £exp(_ m2+12)t) sin~ sin ~sin~mx’sin~~, (10)17m11=1

and (5), (9):

22
b / / 2~g 1 ( ‘~r m t irmx ~mxG~(x,y,x,y,l)eT=_j~1+2~exp_ 2 Jcoscos

‘, m=1 ~ /

x{1+2~exp(_!~t)cos!~Zcos!~}, (11)
1=1 fl
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we write the solution to the diffusion equation (2) as

ptr(b)(x y, t) = ~ y, x’, y’, t)p~~(x’,y’, t = 0)

= f dx’f dy’G,~~(x, y, x’, y’,t) — f dx’f dy’G,~”~(x,~, ~‘, ~‘, t), (12)

or, substituting the expressions for the Green’s functions (10), (11), as

2 ~ ~ exp(_~(m2+i2)t_2$Tt)
2 2 ~(1_(_1)1)(1+(_1)m)

m=1 1=1 m — /
F . ‘nmx . nly . ‘nix . irmy

x ism—sm———+ sin—stn——-— , (13)
I. n n n

I TT2m~f
2 ~ exp~— 2 —2/3Tt

y, t)=(.~) m>~1 m2 (l_(_l)m)[cOS~+cOs~r~]

~ exp(_~(m2+i2)t_2$Tt)

+2 ~ 2 2 ((~_1)m_(_1)/)cos~cos~!~, (14)
~r m=1 1=1 / — tfl

wherethe indicestr and b correspondto choosinga boundaryconditionas (3), (4) and(3), (5), i.e. they
belongto the caseof a chainwith absorbing and reflecting boundaries.

Wenow usethe solutionsobtainedto determinetheprobability for a pair of excitonsto surviveby time
t in achainof length n:

= 4jdxf dyp~(x,y, t), (is)

with absorbing (d = tr)
1 2

2 ~ exp(_~.((2m)2+(2l_1)2)t 2 2
~(t)e2PTt=8(_) ~ 22 (~) (16)

IT m=1 1—I ((2m)2— (2/— 1)) —

32 2 ~ 5’n,2~ ~
exp —----i-- , —~>>1, (16a)

9 IT

andreflectingboundaries(d = b)

2 ~ ~ exp(_~~(2/_1)2t) ~ ~ exp(_~~((2m)2+(2/_1)2)t)
~2~(t)e2$Tt=4(_) ~ +2~ ~ n 2 (17)

IT 1=1 (21 1) 1=1 ,n=1 ((2m)2 — (2/— 1)2)

=4(~)exp(_~$)~ —~>>1. (17a)

The expressions (16a) and (17a) are obtained with the dominant term in (16) and (17) at m = 1, /= 1 being
preserved, which is justified at t/n2>> 1. At small times, calculatingQ~(t) with the aid of (16), (17) is



A.I. Onipko, I. V. Zozulenko/ Kineticsof incoherentexcitonannihilation 177

much complicated, because it involves summing over all m, 1. Therefore,to find C2~(t) at t/n2 << 1, we use
in (13), (14) the Poissonformula (seeref. [17], Ch. X)

00 / / 2 2 \ 00 / 1 /

1Tm~x±x) j ITmt~ n i ~x±x +2nJ) 1
m~lc0s exp~— ~2 ) = 2~/7 ~exp~~ 41 ) — (18)

This enablesus to passfrom a sumsuchas

~exp(—mt/n2)

to a sum such as

~exp(—j2n2/t),
J

obtaining

y, x’, y’,t) e2$Tt

= ~ ~ (e_~_x’±2~2/4t(~) e ~±2n2/4t)~ (e_~_Y~+2n1)2/4t(~) e_~~+2n~)2/4t).

(19)

Using the definition of Q~(t) (15), we have from (12), (19)

~(t)e2~~Tt~1_ 8+4y~ (20a)

~ —~7<<1. (20b)

We compare the limiting expressions for Q~(t)(at $T = 0) with similar relations for p~(t), the
probability for survival of a singleparticle that diffuses in a chainwith absorbingboundariesfor which
[18]

8 00 exp(_~(2i+1)2t)p~(t) e$Tt= ~ 2 (21)
IT ~ (21+1)

~_~/I, -~<<1, (22)

— _~exp(_—~i)~ _~>>i. (23)

At largetimesthe exponentialdecayconstants(of course,we meanthoseunrelatedto the monomolecular
lifetime of a particle $.j1) Q~(t) and p,~(t)are seen to be the same, whereasthe value for Q~(t)has
turned out to be 5 timesas great.

At small timesthe decayratesof S2~(t)and p~,’~(t)are different, the formal difference of (20b) from
(22) being that the diffusion coefficient is doubled (i.e. t is replaced by t/2). For the case of a particle pair
this is to be expected, because the annihilation rate, unlike the trapping rate, is associated with the
diffusion coefficient for relative motion of a pair not of a single particle). At largetimes, however,the
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abovedifferencebetweenQ~(t) and p,~’ )( t) vanishes;whereasin aninfinite chain,we havea relationsuch
asp~(t)=

Comparing(20) with (22) showsthat at small timesthe rateat which a pair vanishes,

R~(t) —dl?~(t)$T0’~~t

is equal to the sum of the rates at which each of the particlesare trapped,

R~(t) —dp~(t)I/IT=O/dt = 2/(nV~)

and their annihilation rate

R~(t) —d~?~(t)PT0’~’t = 2~/~/(nvc~7),

i.e. the trapping and annihilation channels for particle disappearance are independent. At large times,
however,the processesof particle disappearancecausedby trapping andannihilationcannotbe regarded
as uncorrelated.

It is of interest to note that the expressions for

flR~(t)=~~~=Ytr(t), (24)

and

nR~(t)=2/~ =yan(t) (25)

are exactly the sameas the trapping and annihilationratesof diffusing particlesthat are calculatedwith
the help of Smoluchowsky’smethod(see,for example,ref. [2]) for an infinite one-dimensionalsystemand
usedin equationsfor the meanparticleconcentrationsimilar to thosegiven below (seeeq.(35)).

3. Delayed fluorescencekinetics

Weusethe expressionsfor theprobability for a pairof particlesto survive in a chainwith reflectingand
absorbing boundaries, to calculate the time dependenceof the DF intensity in quasi-one-dimensional
crystalswith impurities that play the role of trapsor reflectingbarriers.Here we assumethat oneof the
channelsthroughwhich triplet excitons,excited in a crystal, decay is by mutual annihilationgenerating
singlet excitons. Wealso assumethat a randomlydisorderedchainthat consistsof moleculesof two types
(hostsandguests)randomlydistributedovera periodicone-dimensionallatticeis the basicstructuralunit
of quasi-one-dimensionalcrystals.Thetriplet excitonsdiffuseandannihilatein the chain segmentsof host
moleculesand canbe trapped(or reflected)by the guestmoleculeswhich bounda segment.

It is possibleto observethe DF whentherangeof two-triplet excitonexcitationenergiesis closeto the
energyof a singletstateS. While describingtheDF that occursafter triplet excitonsget excited,werestrict
ourselvesto the initial time interval in which most excitonscannotgo from the clusterwherethey were
born to others (the transferprocessis predominantlyone-dimensional,and the cagingeffect of triplet
excitons mentioned in the Introduction is practically complete).This restriction arises from the model
formulatedabove which does not take into account the slow but alwayspresentinterchainand (or)
over-defect jumps.
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We first considerthe annihilationprocessfor a cluster of length n containing initially two triplet
excitons. The probability of finding a singlet excitation l?~~(t)in such a cluster obeys the following
equation:

________ = — 3Q~(t)an — ~ (26)

wherethe first termon the right-handsideof (26) is the annihilationrate of a pair of triplet excitons; $~
is the monomolecularlifetime of a singletexcitation(the final stateafter triplet annihilation).

To determine 8Q/3t ~ we integrateeq. (2) overx, y in the region0 � x + y � n, obtaining

8~?~(t)= ~1 3p~(x’~~’,r) x~—O~4j ap(xy t) —2$Tf~(t). (27)

The first termon the right-handsideof (27) (equalto zero at d = b) hasthe meaningof anet excitation
flux towardstraps.The last termcorrespondsto the changein the numberof excitationsin a chaindueto
monomoleculardecay.The secondterm defines the flux of excitationstowards eachotherand,conse-
quently, the changein the survival probabilityof an exciton pair in a cage, which is causedby mutual
annihilationof excitons,so that

3Q~(r) — 4 ~ 0p~(x,y, t) (28)
an ~2)~ ~‘ 3x X=fl—)’~

The intensityof the DF of a quasi-one-dimensionalcrystalwith defectsis determinedby averagingthe
probability Q~

5(t) over a random distribution of defectsin achain

4z1~~(t)I3spds(t); pds(t)=~fdnn2 e~~”Q~,5(t) (29)

where p~(t)is the meandensityof singletexcitationsin a chainwith randomlydistributedguestand host
molecules. Using the expression for the distribution functions p~(x,y, 1) (13), (14) and the initial
condition Q~,5(0) = 0 we havefrom (26), (28), (19), for the caseof a chain with traps,

IT

2 2 •2

LA ~ 00 exp ——-~(i+3 )t—2/.lTt
n’ / = _~Zj’±~ ~ ~2 (30)
at ,~2 i=2,4,... j=1,3,... (~2_f2)2

2 2 00 00 00 e_~t — e_~2~2X12+j2)t_2$Tt 2
= 32c~(;) .~0dnn2 ~ ~ IT2(/2 +f2) + (2$T — $

5)n (~2 _f2)

2’ (31)

andfor the caseof a chainwith barriers

I 172f2t

3Q~(t) 16(2\2 exp~— ~2 —2$Tt

— ~2~IT) L-~

an j=1,3,... 3

I ir2 2 2
00 00 expt——~(i +j )t—2$.~.t

+2 ~ 2 2 2 (i2+f2) ; (32)
i=2,4,... j=1,3,... (e —f )
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p~(r)= 8c3b(.~_~)jdnn2e~”~

00 e~st— e_lT
2j2t_2$Tt

x ~ (IT212+(2$T—$S)n2)f2

— e_222±12)t2$Tt ~2 +
+2 ~ 21.2 •2\ 2 2 2 2 (33)

i=2,4,... j=1,3,... IT ~l +3 ) + (2/3T — I-~~)n(i —f )
The rateof a monomoleculardecayof singletexcitationsin molecularcrystalsandpolymersis several

ordersgreaterthan that of triplets, so that it is sufficient to considerthe casePs>>Pr while analyzingthe
dependencep~(t).From (31), (33) we have

21/~cdV7~Td~4Zl, /3~i<<1, (34a)

2 c~fiie , 14~$st~4ZZ2, (34b)

p~(t) = Ad~(~) e~0t(1— V/~T~6 e_(3/2)TY3), 1 <<Td ~ z3, (34c)

Ad8(.~_)l/i~TcV6~e_(3/2~3_2/3Tt Td>> max{1, z3}, (34d)

where

Z = C~/i7~, Ttr = 10IT2C~t, Tb = 2IT2c~t, ~ = 4, Ab = 1.

We stressthat the dependences(34) follow from theexactexpressions(31), (33) andthereforetakestrict
accountof the fluctuationsin defectdensity.

The dependences(34b), (34c) play the role of intermediateasymptoticapproximations:(34c) describes
the DF intensity rise and decaynear its maximum, and (34b) only the DF decay.When the singlet
excitationmonomoleculardecayis sufficiently fast, z ‘4~1, the regiondescribedby (34c) is absent;if the
oppositecondition z>> 1 is valid, the region(34b)is absent.

Thelong-timeasymptoticexpression(34d)describesthe late stageof the annihilationprocess,in which
the DF intensity follows (with an accuracyup to logarithmic correctionsin the exponent)the survival
probability (15), averaged over the random distribution of guestandhostmoleculesin a chain.The latter
is calculated in refs. [19,20]. It is also to be noted that the characteristicscaleof timesthat determinethe
DF decay rate in a chain with traps is 5 times as large as the relevant scalein the dependenceof
phosphorescenceintensity decayin the samecrystal, seeeq. (41) (a detailed discussion of this point is
given in theconcludingsection).

It is helpful to comparethedependencep~(t)with the theoreticalpredictionsderivedby solving the set
of phenomenologicalequations

dcT(t) = (PT7tr(t)Ctr)CT(t)Yan(t)~(t), (35a)

C~t — ~ ,, \ I / \ 2

dt — psCskt) -r TYa~t)CT I

that correspond to the processunderconsideration(trapping+ annihilation) and areused to interpret
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experimental results. In (35), CT(S)(1) is the mean concentration of triplet (singlet)excitons.The quantities

Yan(trapping)(t) in these equations have the meaning of exciton annihilation (trapping) rates;theyare usually
calculated by Smoluchowsky’s two-particle approach and have a form like in (24), (25) [2].Substitutingthe
expressions(24), (25) into the solution of (35) underthe conditionsCT(O) ~ Ctr, c5(0) = 0 yields *

2 16c~
cs(t)=1c~.(0)V —2 exp — __________

Ps PT IT($s2$T)

x {erf[_i~I(Ps_2PT)t+i~
4~ ] _erf(i~ ~ ~ )} (36)

At short times ;r ~ 1, (36) is the sameas (34a), (34b), with the samerestrictionson time intervals.
Let us comparethe dependence(34c) (intermediaterange)with the result

cs(t)_exp(_/3st){1_exp(___~~VTr~V2)},1<<i~~r<<Z3, (37)

which was derived from (36) for the samepart of a kinetic curve. It is seenthat defectdensityfluctuations
are important in this case,both in determiningthe position and the form of the maximumof DF time
dependenceandin establishinga relationbetweenthe characteristicsof an observedkinetic curve andthe
values of the defect concentration andthe triplet excitondiffusion coefficient.

The differencein the predictions basedon the phenomenologicaland the presentmicroscopicap-
proachesis also manifestin the appreciabledifferencebetweenthe dependence(34d) and the long-time
dependence that follows from (36):

cs(t)=2V~Tt~h’~2exp(_—4,~V1TTtV2_2PTt), r~r>>max(z2, z4}. (38)

Thus, at z << 1 (“fast” decayof the DF intensity) the phenomenologicalequations(35) together with
the definitions(24), (25)describefairly accuratelythe increaseanddecreaseof theDF intensityexceptthe
long-time tail of the kinetic curve,but to define the asymptotictail of luminescenceof singletexcitons,we
must take trap densityfluctuationsaccuratelyinto account.At z>> 1, the time dependenceof the survival
probability for a pair of annihilatingexcitons takesan asymptoticform at times ~ /3~~, so that fluctuation
effects are important to define the greaterpart of the DF kinetic curve, whereasthe phenomenological
descriptionusing (24), (25), (35) may, strictly speaking,be usedonly at the initial stageof the DF rise.

Fora crystal with barriers,the behaviourof p~(t)is easily seento be identicalto that of p~(t)(34) with
anaccuracyto the replacement;~—, Tb, so that in this case,too,we canexpectan asymptoticexponential
dependenceof DF, proportionalto exp(— const t1”3). In ideal infinite one-dimensionalsystems(without
defects), we havedCT/dtcs r3~”2 at times c~2(0)<< t << $~ (i.e. the triplet exciton concentrationis
alreadymuch reducedby annihilation,with the bimoleculardecaychannelstill remainingdominant).

As a result,

P(t)oexp(_2$Tt)r3”2, Pst>>1. (39)

This estimatefollows from the solution (35) at Ctr = 0, aswell as from anexact solution of the annihilation
problem in one dimension[5,6]. So, the triplet exciton caging effect, with impurities introducedas
potential barriers,should manifest itself in a qualitatively changedDF decay law: the power law (39)

* When comparingthe approximate (36) and the exact(31), (33) dependences,it should be rememberedthat accordingto the

adopteddefinition of theaverage(29), thequantityp~(t)is relatedto theconcentrationc
5(t) by c5(t) = c4(0) i4(t).
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observedin a crystalwithout defectschangesto an exponentialone suchas

CX exp(—constt1”3 — 2/3.~-t), (40)

observedin a crystal with defect barriers (or traps). As the estimatesshow [8,9], the value of the
concentrationCb maybe quite small, whereasthe cagingeffect may be quite pronounced.

We emphasizethat the predictedinfluenceof barriers on DF kinetics can be observedonly at times
smallerthan,or comparablewith, the time of excitonjump overa barrier.

4. Conclusion

Employingan exact solution for the survival probability of a pair of quasiparticlesthat diffuse and
annihilatein a chainwith absorbingor reflectingends,the time dependenceof delayedfluorescence(DF)
in Q1D crystalshas beencalculatedin the frameworkof the model of amolecularchainwith randomly
distribution defectssuch as trapsor reflectingbarriers. Defectdensityfluctuationshavebeentaken into
accountin our calculationprocedure.The theorydevelopedis accurateunder the condition CT (triplet
excitonconcentration)4Z Cd (defect(trapsor barriers)concentration);CT, Cd ~sz1, relevant to most real
Q1D systems— crystals,polymers,etc.

Another restriction on the applicability of our approachto describereal processesis the assumption
that the quasiparticlemotion is purely one-dimensional.Thus, the applicationof our results to the DF
kinetics is reasonablefor the time t <T

1, which is the characteristicparameterof the transversetriplet
excitonmotion,determinedby the rateof excitationjump betweenadjacentchainsof the Q1D crystal. In
spite of the constraintsmentionedabove, our previousdiscussionenablessome predictions as to the
experimentallyaccessiblequantities,which seemto beusefulin verifying our basicideasconcerning,in the
first place, the dynamicsof an isolated pair of annihilatingquasi-particlesin Qi D systemsand then the
roleof defectdensityfluctuationsin determininglong-timedecaylawsin processessuchasA + B —~ B and
A+A-0.

It is shown that taking the fluctuationsinto accountleadsto time dependenceof the decreasein the
concentrationof singlet excitons(generatedby triplet—triplet annihilation) that is of the form p~(t)cx
exp(—3/2(Ttr)”

3— 2PTt) at longtimes,seeeq.(34d). Almost the sameexpressionis known to be relevant
to triplet exciton concentration,pT(t), in Q1D crystalswith traps(seeref. [21] andrefs. therein):

PT(t) CX exp(— 3/2T”3 — /3Tt), 1~ 2IT2c~Wt. (41)

Thus,the long-timekinetics of the DF in the casewhentriplet excitonscanalternativelyannihilatesor be
trappedand the kinetics of the phosphorescencein thesameQ1D crystalare similar in character,but the
characteristictime scalesof p~(t) and PT(I) are different by a factor of 5, i.e. ;~/T = 5. This meansthat
monitoring thephosphorescenceandthe DF in the sameQ1D crystaldopedwith traps,oneshouldexpect
the exp(—i”3) decaylaw of the phosphorescence(documented,for example,in TMMB crystals [11]) to be
also observedin the DF kineticsbut on the reduced(five-fold) time scale.

The similarity betweenthe time dependencesof the DF, eq. (34d), and the phosphorescence,eq. (41),
originatesfrom the close resemblancebetweenthe annihilationand trapping processes,and this is not
surprisingin any way. Moreover,this fact may be usedto answerthequestion:are the conclusionsmade
for the infinite annihilationratemodel also applicableto the realisticcaseof finite annihilationrate, Wan,

and to what extent?One can expect that the small valuesof Wan will manifest themselvesin the DF
kinetics in the sameway as the small trapping rates Wtr in the phosphorescencekinetics. The various
aspectsof trapping kinetics in 1D systemsunderan arbitrary trappingratewerestudiedin refs. [21—23].
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One of the most important points in thosepapersis that the decaylaw (41) is valid not only for Wtr

but it is also obeyedwheneverthe conditionfor fast trapping

Wtr/WCtr>> 1 (42)

holds. The corresponding condition of “fast annihilation”, for which the conclusionsdrawn aboveare
correct,should read

(Oan/WCtr>> 1, (43)

at least we do not seeanyreasonwhy this shouldnot be so.
It is seen that the rangeof annihilation ratessatisfying(43) is very wide. There can be lots of real

systemswherefast annihilation is the caseandthusthepredictionsof our theorycanbe tested.
For the caseof slow annihilation (when an inequality oppositeto (43) holds) we expectessential

qualitative changesin the DF kinetics similar to thosepredictedin the phosphorescencekinetics under
slow trapping [21]. But the discussionof sucha situationis beyondthe frameworkof the presentpaper.

In a crystalwithout traps,butwith impuritiesactinglike reflectingbarriers,the DF intensity fall is also
describedby an exponentiallaw of the type mentionedabove, as distinct from the power dependence
cx t-

3~2expectedfor one-dimensionalmotion of excitonsin an idealcrystal (without impurities).At small
valuesof monomolecularsinglet excitation decayrate, CdVD/$S >> 1 (D is the triplet exciton diffusion
coefficient),the impurity densityfluctuationsdeterminethe positionandthe form of the maximumof the
DF kinetic curve. In this case the kinetics of the populationof the singlet statedue to triplet exciton
annihilationis determinedby the asymptotictime dependenceof the survivalprobabilityof an annihilat-
ing excitonpair averagedoverrandomimpurity distribution.

It shouldbe emphasizedthat the aboveresultscannotbe derivedwithin the mean-fieldapproximation
associatedwith a set of kinetic equationscommonlyusedto describetheDF. Specifically, the assumption
that the triplet exciton annihilationandtrappingare independentprocessesand the introductionof two
relevant rates is unacceptable in thegeneralcase.The rangeof applicabilityof the aboveapproximationis
determined.

The predicted properties of DF kinetics in quasi-one-dimensionalcrystalswith impuritiesof the above
type can be observed at times less than the characteristic time of interchain exciton jumps. Of course,
tunnelingof excitationsbetweenadjacentchainswill smearthe predictedeffectswhich are pronouncedin
the case of pure one-dimensionalmotion only. Still, we believe that experimentalverification of the
dependences(34) and(40)will becomepossiblejust as in the caseof the phosphorescencedecaylaw (41),
which has the same physical nature as (34d), and was first observedin ref. [11], 13 years after it was
predicted[18].
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