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The annihilation of incoherent excitons in a quasi-one-dimensional (Q1D) crystal containing impurities (which form traps
or reflecting barriers) is studied. The distribution function and the survival probability of an annihilating pair of quasi-par-
ticles diffusing in a chain with absorbing or reflecting ends are obtained. These results are used to calculate the kinetic curves
of the delayed fluorescence (DF) caused by triplet-triplet annihilation in Q1D crystals containing impurities whose
concentration is much higher than the concentration of triplet excitons. It is shown that at long times the kinetics of DF is
described by the exponential dependence exp(—const ¢!/3) which differs qualitatively from that predicted for pure Q1D
crystals, where a power law of DF decay o %2 is expected.

1. Introduction

The kinetics of exciton annihilation under one-dimensional diffusion is usually described, by analogy to
higher dimensionality systems, by the Smoluchowsky theory [1,2] or similar approximate methods [3,4]. An
exact solution to the model problem of annihilation of identical particles in a chain was recently obtained
[5,6] showing that the particle concentration at large times varies as o« ¢~ '/2, as distinct from the ¢~
dependence typical for a three-dimensional system.

The annihilation problem was treated in the above papers for an infinite ideal chain. Real materials in
which transfer processes are mainly one-dimensional (for instance, quasi-one-dimensional crystals, poly-
mers) always have defects that can considerably affect the exciton motion, especially if the defects play the
role of traps or high potential barriers that obstruct the quasi-particle motion. The quasi-particles, in
particular triplet excitons [7-15], are caged in segments bounded by defects, i.e. in linear clusters (which
are also called cages [8]), so that it appears to be unacceptable to use an infinite chain as a model to
describe transfer processes.

In the present model, triplet exciton annihilation under one-dimensional diffusion is considered, taking
into account the effect of quasi-particle caging by defects such as traps or barriers, and assuming that the
exciton concentration cy is much less than the defect concentration c¢y. So, when triplet excitons are
excited in a crystal, most cages contain only one excited molecule, so that the exciton—exciton interaction
has an insignificant effect on exciton phosphorescence. However, in crystals in which the triplet—triplet
annihilation leads to delayed fluorescence (DF) (this is also characteristic of quasi-one-dimensional
crystals, for example, 1,4-ditromonaphthalene [16]), the annihilation-produced effect is already appreciable
at c¢r/cy <1 in the sense that the DF, spectrally separated from phosphorescence, can readily be
investigated. Thus, under high defect densities the DF kinetics that provides information on the exciton
motion and interaction parameters will be determined by the mean value of the survival probability for an
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annihilating exciton pair (its interaction with other excitons being disregarded), that is, we deal with a
two-particle problem that is solved exactly in the present paper.

2. Random walks of an annihilating pair of excitons in a chain with reflecting or absorbing boundaries

The typical element of a molecular chain with randomly distributed impurities (defects) that play the
role of traps or barriers is a segment of n host molecules at whose boundaries the excitons are absorbed or
reflected. We now determine the survival probability for an annihilating pair of excitons, assuming that
their motion is realized by jumps between neighbouring lattice sites with a unit time probability W (in
what follows we use a dimensionless time in units W~ !); when two excitations come to the same site they
immediately annihilate, i.e. the annihilation rate is infinite. The latter is the most popular, but is not, of
course, a general model of the annihilation process. A more realistic treatment requires a finite annihila-
tion rate. The possible consequences of such a generalization of the model considered will be discussed
later.

The position of excitons in a chain at time ¢ is determined by the distribution function p,(i, j, t) that
satisfies the master equation

3, (i, J, 1) _
at
i+j#n

—4pn(l’ .]’ t)+pn(l+1’ .]’ t)+pn(l_1’ j’ t)+pn(l’ .]+1’ t)+pn(l’ j—l’ t)

‘2BTP,,(1', j’ t)y (1)
e, (i, j,t)=0, i+j=n.

2.0, j, t)=p,(i, n+1, t) =0, if the sites 0 and n + 1 are occupied by traps (the trapping is assumed to
be instantaneous), and p,(0, j, t) =p,(1, j, t), p,(i, n, t)=p,(i, n+1, ¢t), if the sites 0 and n+ 1 are
occupied by reflecting barriers; B1! is the lifetime of an exciton in units W . The meaning of the discrete
variables i and j that determine the position of a pair of incoherent excitons is clear from the following
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Assuming the distribution functions p,(i, j, t) to be smooth at distances of a lattice constant a (this
may be expected at n>> 1 and ¢ > 1) we pass from a discrete to a continuous description, introducing
continuous variables x = ai, y = qj.
We then have instead of egs. (1),

3, (x, ¥, 1) _ %ulx, y, 1) | 30u(x, ¥, 1)

Y, axz 8y2 _2BTpn(xa Y, t) (2)
in the region
O<x+y<n; (2a)

all the quantities of length dimension are henceforth expressed in units of a.
The boundary condition at x + y = n,

pn(x’ y’ t)|x+y=n=0’ (3)

implies that a pair of excitations at the same site annihilates instantaneously.
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n Fig, 1. The extension of the initial condition p,(x, y, f = 0) =1
-1 given in the region 0 < x + y <n to the region x <n, y <n,
x + y > n in an odd way (shaded triangle).

The boundary condition

(%, ¥, ) lxm0=Pa(x, ¥, 1) [,=0=0, (4)
corresponds to a case when traps are located at the chain ends, and the boundary condition
a ’ s t a n k4 ’ t
pm(x, p, )| _ 3oy )| _ )
ox =0 dy =0

corresponds to excitons being reflected from the chain ends (barriers).
As an initial condition we choose

p.(x, y,t=0)=1, O0<x+y<n, (6)

which corresponds to a homogeneous excitation of a crystal at time ¢ = 0.
To solve the problem in egs. (2)~(6), it is convenient to extend the condition (6) in an odd parity way to
the region x <n, y<n, x+y>n

p,(x, y,t=0)=—-1,x<n, y<n, x+y>n, (7)

thus completing the range of the variables x, y to a square (see fig. 1).
The boundary conditions at x =n, y = n are chosen for a chain with traps as

P,,(x, y’ t) |x=n=pn(x’ y’ t) |y=n=0’ (8)
and for a chain with barriers as
a ) » t a n * i t
pu(x, y, )| _de(x . 0)] ©)
0x en dy =

It is then easy to see that the solution of eq. (2) with boundary conditions (4), (8) or (5), (9) and initial
condition (6), (7) is the same as that of the initial problem (eq. (2) with boundary conditions (4) and (5)
and initial condition (6)) in the region 0 < x +y <n.

Deriving the Green’s functions of eq. (2) under the boundary conditions (4), (8) [17]:

o0

4 & 7?2 amx . 7l amx’ by’
tr ’ ’ 287t _ ¥ _ 2 2 . . Yy . mx . 7Ty
Gr(x, y, x', ¥y, t)e e mZ=1 Iglexp( — (m*+1 )t) sin——=sin—=sin——sin——, (10)

and (5), (9):

1 — m’m?t amx __wmx’
Gb(x, y, x', ¥, 1) e2hrt = _2{1 +2 Y exp(— 2 cos— —cos—
m=1

3
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=1 n n n
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we write the solution to the diffusion equation (2) as

n

o™ (x, y, t)= fdx f dy'Gr®(x, y, x’, y', )p"®(x’, y’, t=0)

, n n
- [ax [T ay G pox = [lax [ Gy, (1)
0 0 0 n—x’

or, substituting the expressions for the Green’s functions (10), (11), as

772
exp(— —(m*+ 1)1 - 2,BTt)
Z n

2\2 & m ! m
(x, y, t =(—) Z1-(-1)a+(-1
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X[sin—ﬂmx sin—WIy +sin—Wlx sin =2 ], (13)
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2\ & exp(— 7l _2'BTI) Tmy Tmx
b I e —_(—-—1\"
eb(x, y, t) (77) mZ=l — (1-(-1) )[cos T cos— ]
2
g ® exp(——z—(m2+12)t—2,BTt)
n Tmx
+ — -1 1 cos cos—, 14
m NPy — ((-D"=(-1)") ()

where the indices tr and b correspond to choosing a boundary condition as (3), (4) and (3), (5), i.e. they
belong to the case of a chain with absorbing and reflecting boundaries.

We now use the solutions obtained to determine the probability for a pair of excitons to survive by time
¢t in a chain of length »:

2 n n—x
4t)== [ dx dypl(x, y, t), 15
HORES KET AR CNA) (15)

with absorbing (d = tr)

exp(— %—22-((2m)2 + 21— 1)2)z)

Q24(1r) e2fr = 8( ) i; g: (@m) - @i-1))’ 212qu )2 (16)
=%2(%)4exp(—5:22t), ;tz—>>1, (16a)

and reflecting boundaries (d = b)

- exp(— :—2(21— 1)%) X exp(— Z—i((2m)2 + (21— 1)2)z)

2 4

(1) &= 4( 7/ )i @-1)° 21§1 myll (EmyY=CI-1) w
=4(%)4 exp(—:—z;), #»1. (17a)

The expressions (16a) and (17a) are obtained with the dominant term in (16) and (17) at m =1, /=1 being
preserved, which is justified at z/n? > 1. At small times, calculating 2,(¢) with the aid of (16), (17) is
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much complicated, because it involves summing over all m, /. Therefore, to find £,(z) at ¢/n? < 1, we use
in (13), (14) the Poisson formula (see ref. [17], Ch. X)

i am(x+x") ( mim?t n — ( (x+x"+2n)*\ 1
cos————exp|l ———— | = exp| —{——— | — =. 18
z, T T T 2 (18)
This enables us to pass from a sum such as
Y exp(—mt/n?)
m
to a sum such as
Yexp(—j’n’/1),
J
obtaining
GO (x, y, x', y',t) &b
1 i —(x—x"+2nj)% /4t —(x+x’+2nj)? /41 - —(y—y' +2nj)* /4t —(y+y +2n))t /4t
“Gm X[ (F)e G (F)e )
Jj=—o0 Jj=—
(19)
Using the definition of 23(t) (15), we have from (12), (19)
Q:,r(t) ezﬂTl =1- 8 + 4_“2_ ﬁ , (203)
‘/; n
95(:)&"*’=1—££, iz<<1. (20b)
Vm non

We compare the limiting expressions for 24(¢) (at B8;=0) with similar relations for p{’(z), the
probability for survival of a single particle that diffuses in a chain with absorbing boundaries for which
(18]

LT
w €Xp —;2—(21+1) t

8
pO(1) = T ; @)
T i=0 2i+1)
1—% % #«1, (22)
i L (—"—zt) L1 (23)
772 P n2 4 n2 :

At large times the exponential decay constants (of course, we mean those unrelated to the monomolecular
lifetime of a particle 87') 28(¢) and p{(¢) are seen to be the same, whereas the value for 2¥(z) has
turned out to be 5 times as great.

At small times the decay rates of £25(¢) and p{V(¢) are different, the formal difference of (20b) from
(22) being that the diffusion coefficient is doubled (i.e. ¢ is replaced by ¢/2). For the case of a particle pair
this is to be expected, because the annihilation rate, unlike the trapping rate, is associated with the
diffusion coefficient for relative motion of a pair not of a single particle). At large times, however, the
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above difference between 2°(¢) and p{(¢) vanishes; whereas in an infinite chain, we have a relation such
as p(1) = 2%,(1/2).
Comparing (20) with (22) shows that at small times the rate at which a pair vanishes,

R,(t)=—d2; (1) lg,—0/dt

is equal to the sum of the rates at which each of the particles are trapped,
R (1) = —dp"(¢) |p,=0/dt =2/(nv/mt)

and their annihilation rate

R ()= —dR(1) |g,_o/dt = 22 /(nv/at),

i.e. the trapping and annihilation channels for particle disappearance are independent. At large times,
however, the processes of particle disappearance caused by trapping and annihilation cannot be regarded
as uncorrelated.

It is of interest to note that the expressions for

nR‘,{(t)=i=m(t), (24)

vt

and

(1) =2 2 =3(0) 25)

are exactly the same as the trapping and annihilation rates of diffusing particles that are calculated with
the help of Smoluchowsky’s method (see, for example, ref. [2]) for an infinite one-dimensional system and
used in equations for the mean particle concentration similar to those given below (see eq. (35)).

3. Delayed fluorescence kinetics

We use the expressions for the probability for a pair of particles to survive in a chain with reflecting and
absorbing boundaries, to calculate the time dependence of the DF intensity in quasi-one-dimensional
crystals with impurities that play the role of traps or reflecting barriers. Here we assume that one of the
channels through which triplet excitons, excited in a crystal, decay is by mutual annihilation generating
singlet excitons. We also assume that a randomly disordered chain that consists of molecules of two types
(hosts and guests) randomly distributed over a periodic one-dimensional lattice is the basic structural unit
of quasi-one-dimensional crystals. The triplet excitons diffuse and annihilate in the chain segments of host
molecules and can be trapped (or reflected) by the guest molecules which bound a segment.

It is possible to observe the DF when the range of two-triplet exciton excitation energies is close to the
energy of a singlet state S. While describing the DF that occurs after triplet excitons get excited, we restrict
ourselves to the initial time interval in which most excitons cannot go from the cluster where they were
born to others (the transfer process is predominantly one-dimensional, and the caging effect of triplet
excitons mentioned in the Introduction is practically complete). This restriction arises from the model
formulated above which does not take into account the slow but always present interchain and (or)
over-defect jumps.
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We first consider the annihilation process for a cluster of length » containing initially two triplet
excitons. The probability of finding a singlet excitation .Qﬂ,s(t) in such a cluster obeys the following
equation:

3y s(1) _ 3025 (1)

3t a1 - BS‘QS,S(t); (26)

an

where the first term on the right-hand side of (26) is the annihilation rate of a pair of triplet excitons; 85’
is the monomolecular lifetime of a singlet excitation (the final state after triplet annihilation).
To determine 982 /9t |,, we integrate eq. (2) over x, y in the region 0 < x + y < n, obtaining

005 (1) _ _i/"d AC))
n?Jo Y

4 . 3p8(x, y, t) a
d R T T PR @)

ox

x=0 x=n-—y

The first term on the right-hand side of (27) (equal to zero at d = b) has the meaning of a net excitation
flux towards traps. The last term corresponds to the change in the number of excitations in a chain due to
monomolecular decay. The second term defines the flux of excitations towards each other and, conse-
quently, the change in the survival probability of an exciton pair in a cage, which is caused by mutual
annihilation of excitons, so that

324(¢)
—5 (28)

4 . Bp5(x, y, 1)
- —Ffo A P

an x=n—y

The intensity of the DF of a quasi-one-dimensional crystal with defects is determined by averaging the
probability 25 ¢(t) over a random distribution of defects in a chain

3 [+
&4(1) = Boob(1); p8() = 2 [ dnn? el (1) (29)
0
where p3(¢) is the mean density of singlet excitations in a chain with randomly distributed guest and host

molecules. Using the expression for the distribution functions pl(x, y, t) (13), (14) and the initial
condition .Qﬂ,s(O) = () we have from (26), (28), (19), for the case of a chain with traps,

2
exp(— — (i +j*)t— 2B+t
n .

o (¢ 642\ &
a( ) = _"_2(—-) > > 2 i, (30)
' an nEAT) 2.4, j=1,3,... (i -4%)
2\2 o 0 o e—,Bst_e—(wz/nz)(i2+j2)t—2[3TI i2
() =nd(2) [Tamter ¥y S0 , (31)
“\a fO i=2,4,... j=1,3,... a2 (i* + %) + (2B1 — Bs)n? (i* —jz)2
and for the case of a chain with barriers
2.2
A N
ag:’(t) _ 16(2)2 E exp( n2 2BTI)
or an n2 . Jj=13,... jZ
o o exp(——2(12+jz)t—2BTt)
+2 ) )y - (2 +5%)}; (32)
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The rate of a monomolecular decay of singlet excitations in molecular crystals and polymers is several
orders greater than that of triplets, so that it is sufficient to consider the case 85 > S, while analyzing the
dependence pi(t). From (31), (33) we have

(33)

/2
2 ; cdﬁ5 LIS 19 BSt < 1a (343.)
—2B~yt
28 T j«pa<:? (34b)
d T Bs Vi
ps(t) = 16 /214 —
AdZS—(:;) e_le(l _ }_‘; Tds/6 e—(3/2)‘r‘}/3), 1< T < 23’ (34C)
4 2 27 Ci’ 1/3_
A 8(—) S g6 L em /D281 oo max {1, 23, 34d
S\37 ) V3 ™ B a {1, 27} (34d)
where

z=cy/1/Bs, 7, =107%ckt, m,=2m%cit, A,=4, A,=1.

We stress that the dependences (34) follow from the exact expressions (31), (33) and therefore take strict
account of the fluctuations in defect density.

The dependences (34b), (34c) play the role of intermediate asymptotic approximations: (34c) describes
the DF intensity rise and decay near its maximum, and (34b) only the DF decay. When the singlet
excitation monomolecular decay is sufficiently fast, z << 1, the region described by (34c) is absent; if the
opposite condition z > 1 is valid, the region (34b) is absent.

The long-time asymptotic expression (34d) describes the late stage of the annihilation process, in which
the DF intensity follows (with an accuracy up to logarithmic corrections in the exponent) the survival
probability (15), averaged over the random distribution of guest and host molecules in a chain. The latter
1s calculated in refs. [19,20]. It is also to be noted that the characteristic scale of times that determine the
DF decay rate in a chain with traps is 5 times as large as the relevant scale in the dependence of
phosphorescence intensity decay in the same crystal, see eq. (41) (a detailed discussion of this point is
given in the concluding section).

It is helpful to compare the dependence p3(¢) with the theoretical predictions derived by solving the set
of phenomenological equations

i%t("tl= —(Br—Yu(t)ey)er (1) = Yanl1) 2 (1), (35a)
9£Sd'—¥)= — Bses(1) + 3an(t) c1(2), (35b)

that correspond to the process under consideration (trapping + annihilation) and are used to interpret
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experimental results. In (35), ¢y, (?) is the mean concentration of triplet (singlet) excitons. The quantities
Yan(rapping)(?) in these equations have the meaning of exciton annihilation (trapping) rates; they are usually
calculated by Smoluchowsky’s two-particle approach and have a form like in (24), (25) [2]. Substituting the
expressions (24), (25) into the solution of (35) under the conditions ¢1(0) < ¢, ¢g(0) =0 yields *

16¢2
cs(t) = ic?r(o)\/ge’@[_ ('Bst " 7(Bs _czﬁT) )]

X {erf[—i,/ Bs—2B1)t +i (36)

4c, ( 4c, )}
ym(Bs—2Br) \ y7(Bs— 2p1)

At short times 7, << 1, (36) is the same as (34a), (34b), with the same restrictions on time intervals.
Let us compare the dependence (34c) (intermediate range) with the result

4
o)~ ()1 - )}, 1 -

which was derived from (36) for the same part of a kinetic curve. It is seen that defect density fluctuations
are important in this case, both in determining the position and the form of the maximum of DF time
dependence and in establishing a relation between the characteristics of an observed kinetic curve and the
values of the defect concentration and the triplet exciton diffusion coefficient.

The difference in the predictions based on the phenomenological and the present microscopic ap-
proaches is also manifest in the appreciable difference between the dependence (34d) and the long-time
dependence that follows from (36):

es(0) = 2 g exp = S E /= 2pne). mm max (22, 1), (38)

Thus, at z << 1 (“fast” decay of the DF intensity) the phenomenological equations (35) together with
the definitions (24), (25) describe fairly accurately the increase and decrease of the DF intensity except the
long-time tail of the kinetic curve, but to define the asymptotic tail of luminescence of singlet excitons, we
must take trap density fluctuations accurately into account. At z > 1, the time dependence of the survival
probability for a pair of annihilating excitons takes an asymptotic form at times < B5’, so that fluctuation
effects are important to define the greater part of the DF kinetic curve, whereas the phenomenological
description using (24), (25), (35) may, strictly speaking, be used only at the initial stage of the DF rise.

For a crystal with barriers, the behaviour of p3(¢) is easily seen to be identical to that of pli(z) (34) with
an accuracy to the replacement 7, — 7, so that in this case, too, we can expect an asymptotic exponential
dependence of DF, proportional to exp(—const #'/?). In ideal infinite one-dimensional systems (without
defects), we have dcp/dz o t™32 at times c72(0) <t < B7! (ie. the triplet exciton concentration is
already much reduced by annihilation, with the bimolecular decay channel still remaining dominant).

As a result,

&(r) xexp(—2B812)t732, Bst>1. (39)

This estimate follows from the solution (35) at ¢,, = 0, as well as from an exact solution of the annihilation
problem in one dimension [5,6]. So, the triplet exciton caging effect, with impurities introduced as
potential barriers, should manifest itself in a qualitatively changed DF decay law: the power law (39)

* When comparing the approximate (36) and the exact (31), (33) dependences, it should be remembered that according to the
adopted definition of the average (29), the quantity p$(?) is related to the concentration cg() by cs(f) = ¢2(0) p3(¢).
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observed in a crystal without defects changes to an exponential one such as
®9(1) « exp(—const !> —28+¢), (40)

observed in a crystal with defect barriers (or traps). As the estimates show [8,9], the value of the
concentration ¢, may be quite small, whereas the caging effect may be quite pronounced.

We emphasize that the predicted influence of barriers on DF kinetics can be observed only at times
smaller than, or comparable with, the time of exciton jump over a barrier.

4. Conclusion

Employing an exact solution for the survival probability of a pair of quasiparticles that diffuse and
annihilate in a chain with absorbing or reflecting ends, the time dependence of delayed fluorescence (DF)
in Q1D crystals has been calculated in the framework of the model of a molecular chain with randomly
distribution defects such as traps or reflecting barriers. Defect density fluctuations have been taken into
account in our calculation procedure. The theory developed is accurate under the condition ¢ (triplet
exciton concentration) < ¢4 (defect (traps or barriers) concentration); ¢, ¢4 < 1, relevant to most real
Q1D systems — crystals, polymers, etc.

Another restriction on the applicability of our approach to describe real processes is the assumption
that the quasiparticle motion is purely one-dimensional. Thus, the application of our results to the DF
kinetics is reasonable for the time ¢ < 7, , which is the characteristic parameter of the transverse triplet
exciton motion, determined by the rate of excitation jump between adjacent chains of the Q1D crystal. In
spite of the constraints mentioned above, our previous discussion enables some predictions as to the
experimentally accessible quantities, which seem to be useful in verifying our basic ideas concerning, in the
first place, the dynamics of an isolated pair of annihilating quasi-particles in Q1D systems and then the
role of defect density fluctuations in determining long-time decay laws in processes such as A + B — B and
A+A-0

It is shown that taking the fluctuations into account leads to time dependence of the decrease in the
concentration of singlet excitons (generated by triplet—triplet annihilation) that is of the form p¥(s) «
exp(—3/2(7,)"/* — 2B.t) at long times, see eq. (34d). Almost the same expression is known to be relevant
to triplet exciton concentration, p1(¢), in Q1D crystals with traps (see ref. [21] and refs. therein):

pr(t) xexp(—3/27'%— Brt), r=2a%iWr. (41)

Thus, the long-time kinetics of the DF in the case when triplet excitons can alternatively annihilates or be
trapped and the kinetics of the phosphorescence in the same Q1D crystal are similar in character, but the
characteristic time scales of p§(¢) and pr(¢) are different by a factor of 5, i.e. 7,,/7=35. This means that
monitoring the phosphorescence and the DF in the same Q1D crystal doped with traps, one should expect
the exp(—1!7?) decay law of the phosphorescence (documented, for example, in TMMB crystals [11]) to be
also observed in the DF kinetics but on the reduced (five-fold) time scale.

The similarity between the time dependences of the DF, eq. (34d), and the phosphorescence, eq. (41),
originates from the close resemblance between the annihilation and trapping processes, and this is not
surprising in any way. Moreover, this fact may be used to answer the question: are the conclusions made
for the infinite annihilation rate model also applicable to the realistic case of finite annihilation rate, w,,,
and to what extent? One can expect that the small values of w,, will manifest themselves in the DF
kinetics in the same way as the small trapping rates w, in the phosphorescence kinetics. The various
aspects of trapping kinetics in 1D systems under an arbitrary trapping rate were studied in refs. [21--23].
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One of the most important points in those papers is that the decay law (41) is valid not only for w, = oo,
but it is also obeyed whenever the condition for fast trapping

wtr/Wctr > 1 (42)

holds. The corresponding condition of “fast annihilation”, for which the conclusions drawn above are
correct, should read

wan/ Wctr > 1’ (43)

at least we do not see any reason why this should not be so.

It is seen that the range of annihilation rates satisfying (43) is very wide. There can be lots of real
systems where fast annihilation is the case and thus the predictions of our theory can be tested.

For the case of slow annihilation (when an inequality opposite to (43) holds) we expect essential
qualitative changes in the DF kinetics similar to those predicted in the phosphorescence kinetics under
slow trapping [21]. But the discussion of such a situation is beyond the framework of the present paper.

In a crystal without traps, but with impurities acting like reflecting barriers, the DF intensity fall is also
described by an exponential law of the type mentioned above, as distinct from the power dependence
o t~*? expected for one-dimensional motion of excitons in an ideal crystal (without impurities). At small
values of monomolecular singlet excitation decay rate, cqyD/Bs > 1 (D is the triplet exciton diffusion
coefficient), the impurity density fluctuations determine the position and the form of the maximum of the
DF kinetic curve. In this case the kinetics of the population of the singlet state due to triplet exciton
annihilation is determined by the asymptotic time dependence of the survival probability of an annihilat-
ing exciton pair averaged over random impurity distribution.

It should be emphasized that the above results cannot be derived within the mean-field approximation
associated with a set of kinetic equations commonly used to describe the DF. Specifically, the assumption
that the triplet exciton annihilation and trapping are independent processes and the introduction of two
relevant rates is unacceptable in the general case. The range of applicability of the above approximation is
determined.

The predicted properties of DF kinetics in quasi-one-dimensional crystals with impurities of the above
type can be observed at times less than the characteristic time of interchain exciton jumps. Of course,
tunneling of excitations between adjacent chains will smear the predicted effects which are pronounced in
the case of pure one-dimensional motion only. Still, we believe that experimental verification of the
dependences (34) and (40) will become possible just as in the case of the phosphorescence decay law (41),
which has the same physical nature as (34d), and was first observed in ref. [11], 13 years after it was
predicted [18].
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