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DIFFUSING-PARTICLE TRAPPING KINETICS FOR A 0NE-DIMENSIONAL SOLUTION 

A. I. 0nipko UDC 535.37 

Solvent components that prevent reagent diffusion lead to a proportion of particles 
that do not react, which affects the decay in the reagent concentrations. The A + 
B ~ B reaction occurring in a one-dimensional system may be accelerated or retarded 
in accordance with the solvent concentration. Experiments are indicated in which 
it is predicted that one can observe effects from fluctuations in the concentra- 
tions of the B particles and solvent components. 

Reagent concentration fluctuations affect bimolecular-reaction kinetics at large times 
[1-7]. These fluctuation effects are particularly prominent in one-dimensional A + B ~ B reac- 
tions (which involve mobile particles A diffusing between immobile B trapping centers), where 
there are substantial deviations in the A concentration as a function of time cA(t) from the 
predictions made without allowance for the fluctuations, i.e., in the average-field approx- 
imation. In [I], a solution was obtained for particle random walks along a chain having ran- 
domly distributed traps, and the concentration law for large times was found as CA(t) ~ exp 
[--const(c2t) ~/3] (c2t >> I, with c the trap concentration), whereas the average-field approx- 
imation gives cA(t) - exp(--const ct~), where ~ is 1/2 or i in accordance with the assumptions 
made. More detailed research on bimolecular-reaction kinetics in one dimension has shown that 
fluctuation effects are dependent on the relation between the particle migration and absorp- 
tion rates [8]. For slow reactions (low absorption rates), there is an intermediate asymptote 
CA(t) - exp[--const(ct)~/2] * in the time dependence, which describes the concentration in the 
accessible range, while exp[--(c2t) */3] applies when the concentrations are too low to be meas- 
ured. In [9, i0], one-dimensional A + B + B reactions were considered without using the con- 
straint that the concentrations are small applied in [I, 8]. 

These kinetic features apply to binary randomly disordered chains consisting for example 
of nodes type A, (free from traps) and type A= (containing B traps), whose mutual disposition 
is random. It is assumed that the motion of the A par=icles before trapping is by random 
jumps be~weenthe A~ nodes. Here we examine the reaction kinetics on the basis of a finite 
lifetime for the A particles in a three-component chain, which contains not only the above two 
components but also inert nodes As, which act as the solvent. 

Averaging Formula. We consider a chain consisting of N nodes, with N:, N2, and N3 of 
types A,, A2, and A3 correspondingly, while the mutual disposition is random, so the probabil- 
ity of observing a node of A~(z,s) type at any point in the chain is ci(2,3) = N:(= 3)/N, ci + 
c2 + c3 = 1. The A, and A3 nodes constitute traps and barriers for the particles migrating 

�9 The agreement between the relationship obtained in [8] and one of the average-field predic- 
tions ispurely accidental. The dependence on the trap concentration is qualitatively dif- 
ferent, as is the characteristic time scale [8]. 
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via the Az nodes, and they divide the chain into clusters: segments composed of Az nodes with 
various boundaries AsA~...AxAs -- b, A=Az...A~A= -- c, A=(s)At...AtA3(a) -- 0, with the clusters 
belonging to the chain ends of the form At...A,A=(s) -- 0(b) and A=c3)Az...Az --O(b). The b, 
c, and o indicate the cluster types; the number of Az nodes in a cluster is called the length. 
A particle moves by random jumps between adjacent At nodes with a speed w, the motion being 
independent in the various clusters. It is also assumed that the particles do not interact 
(low concentration). Particles are lost from the chain because of =heir finite inherent life- 
times 8A -t and due to trapping at a rate w', which occurs when a particle is at a node adja- 
cent to a trap. It is assumed that the traps cannot be saturated and that the particles have 
finite lifetimes 8B -'* there. The reflection from the barriers is characterized by the same 
rate as for motion over the At nodes. Then the kinetic scheme for transport in a typical 
cluster is 

A 2 it A t . . . At At A.r 

and one d e t e r m i n e s  c - ( t )  by d e r i v i n g  t h e ' s u r v i v a l  p r o b a b i l i t y  P b ( c ' ~  up to  t ime t i n  
~ n 

these types of cluster for any length n and then averaging over all n~[l, N~]. In [Ii], we 
we considered such reduction of configuration averaging to averaging over cluster lengths for 
two-component systems. In [12], there is an extension to multicomponent systems. 

We use these results to represent the total number of clusters (including ones at the 
chain ends) of types b, c, and o having length n realized in all nonequivalent configurations 
such as AtA3A=A=...AzA=, as 

[ C3(C3 "+" N-I)/(C~ "b c8), / = b, ( l a )  
N,N! 

P(n) Ic2(c=--N-~)/(c= +c3), l = C ,  ( lb)  p/(n) = Nz ! IV21 N3 ! 
! 

t2c~ (c3 + N-')/(c= + cs), ] = o, ( l c )  

where 

P (n) = (N= ,-k N3) (Nz-  l)t ( N -  n - -  1 ) ! / (N-  1)/(N 1 --n) t  (2) 

de no t e s  t he  p r o b a b i l i t y  t h a t  a randomly s e l e c t e d  c l u s t e r  from a s e t  c o n t a i n i n g  a t h r e e - c o m -  
ponent  chain in all nonequivalent configurations has length n (no matter what the type or 
position in the chain). 

The mean survival probability here in this randomly disordered chain is evidently equal 
to the ratio of the sum of the contributions from the cluster values Pnb~C'~ in all N!/ 
Nt!N=!N3! nonequivalent configurations to the total number: 

N, 

c A (t) = (c~ + c8)-' ~ P (n) [c8 (c~ + ~-~)  p~ (t) + (3 )  

c2 (c2 - -  N - t )  p~ (t) q- 2c~ (c, --}- N - ] )  9~ (/)]. 

In (3) we have used the uniformity of the initial distribution over the At nodes, which per 
node is taken as N, -t, so CA(0 ) = i. With c= = 0, (3) coincides with the expression for the 
averaged survival probability in a chain having randomly distributed traps [Ii]. This aver- 
aging formula is exact for a three-component randomly disordered chain having any length N. 
In what follows, we consider only an infinite chain, for which with N + = and c2(3) = const 
we have from (3) that 

c A (t) = (I - -  c= - -  c~).- '  [c~p~ (t) + c=p,, (t) + 2 : , c .  ~ 
n=.Z 

(4) 

RESULTS AND DISCUSSION 
b 

To calculate cA(t), we use a surviv~l~probability expression for type b clusters 0~(t) = 
n exp(--SAt), while ~'he expression for pn c t ~  (t) at large times (see below) has been obtalned 
in [8] : 

pf~ (t) = A~~ exp [-- (K~' o' + PA) ti (5) 



= 5 ~ n 4- 3~-! , A,~ = A% n" (n + ao-~)/6,  
n n ~ + 5~-' (n + &o-V,) (6) 

K~ = 5 2n + 3r -1 AO __ i~nn2(2n _{_ 3co_l)]3, (7)  
n 8n ~ + 5 r  - 1 ( 4 n + 3 o  - I )  ' 

where ~ = w'/2w. The time in (5) and everywhere subsequently is expressed in (2w) -x units, 
while the rates 8A(B) are in 2w units (without .symbol change). 

The zeroth and first moments of the survival probability derived from (5) coincide with 
the exact ones. In [i0], it has been shown to be justified to use (5)-(7) for ca(t) and that 
the results are almost indistinguishable from the exact ones for times such that"CA(t) < 0.5 

CA(0). 

We substitute (5)-(7) into (4) to get 

e x p ( - - ~ A t )  IC ~ l n ' ( 1 - - c  2 - c s )  
CA(t) = I n 2 ( 1 - - c ~ - - c ~ )  l (c2 +c3)  2 + 

dx [c~A ~ (x) exp (--  K ~ (x, t)) + 2Gc3 Ao (x) exp (--  K ~ (x, t))]],, (8) S 
0 ) 

where 

A ~ (x) = 5x(x  + 3~z)~/6 (x 2 4- 5ax  + 15aV2),  

/ C  (x ,  t)  = 5t In 2 (1 - -  c~ - -  c3)  x + 3a  
x x ~ + 5ax + 15a2/2 

A ~ (x) = 5x (2x + 3a)2/3 (8x 2 + 20ax  + 15az), 

K ~ (x, t) = 5t In 2 (I - -  G - -  c3) 2x + 3a  
x 8x 2 + 2 0 a x + 1 5 & "  ' 

while the parameter a in AC(~ and KC(~ t) is in (i -- c2 -- c 3 ) / ~ .  

In contrast to (4), one can use (8) only in a restricted fashion because of the error 
due to replacing the sum by an integral, which is dependent on c2, ca, and t [i0]~ For c2, 
c3 << i, one is justified in passing from (4) to (8) if 

Integration in (8) gives 

0o 

A ~~ (x) exp [ - -  K=~o~ (x, t)] dx < O, 3. 
0 

where 

c a ( t )  = 
exp ( - - [ S A t ) [ C ~  ln2 (1 - - c 2 - -  es) ] 

in 2 (1 - -  c 2 - -  cs) (c2 + Cs) 2 + c2L1 (t) + 2c2csL~ (t) , 

i5 17 2o5 
y --6- i + q~ XF 113 + 24---~ 

exp -- "cl/s , T x > l ,  ~z<<l :  

1 2-~zK 2 ( 2 ~ P ) ,  1 < v 2 << a ~, a >> 1 ; 

T~ = 10t In 2 ( 1 - -  v, - -  cs), ~2 = - -  2In (1 - -  c 2 - -  c a) o~t, 

(9) 

(10a) 

(10b) 

and K2(z) is a modified Bessel function. For T2 >> a 2, the (10b) intermediate asymptote be- 
comes (10a) [8]. L~(t) describes the concentration decrease in a chain containing traps but 
no barriers [8, i0], while L2(t) differs from L1(t) in that t is replaced by t/4 in (10a) and 
t by t/2 in (10b), 



We see from (9) that the untrapped proportion is csa/(c2 + c3) a, so even a small concen- 
tration'of barrier molecules can lead to marked redistribution between the trapped and un- 
trapped proportions during the lifetime. For example, typical values for the square of the 
diffusion displacement for triplet excitons are Z=~ = 1/2 8A -~ = 10'~ [13], and in a mo- 
lecular chain having a trap concentration of i0 -~. Triplet exciton phosphorescence is almost 
suppressed, the quantum yieldqA being(2~2C~) -~ [8]. If the traps are accompanied by the same 
defect-barrier concentration, then qA 1/4, i.e,, the estimates of the quantumyield from (4) with 
c= = 10 -~ and c3 = 0 and 10 -~ differ by a factor 50-500. It has been found that inherent 
phosphorescence for quasi-one-dimensional molecular crystals is greatly affected by minor 
components acting as barriers [14, 15]. 

The barriers alter the concentration time dependence as well as resulting in a certain 
proportion of A particles avoiding trapping. The final stage may be retarded or accelerated 
in accordance with the value of c~. For example, for ca, c3 << 1 in A + B § B in an inert 
solvent, the reagent concentrations fall more slowly if c3 < c2, but more rapidly if c3 > c2 
(by comparison with Cs = 0). In fact, the defect barriers hinder motion to the traps, and 
contributions to the averaged survival probability come essentially only from clusters in 
which there is a trap at the boundary, and in which on average the particle lifetime for fast 
reactions is four times that in a cluster containing two traps at the boundary, or by a factor 
two for slow reactions. This retardation factor competes with the reduction in mean cluster 
length as c3 increases, which accelerates the reaction, and thus governs the resultant effect. 
The retardation (acceleration) in the cA(t) decline is more pronounced for fast reactions 
(e << i) than for slow ones. 

The phosphorescence intensity has been measured as a function of time in doped quasi-one- 
dimensional crystals with ~-pulse excitation (A triplet excitons, radiative free-exciton decay 
time 8A -~, lifetime for a trapped exciton 8B-,) , which enables one to check the theoretical 
predictions on trapping in a one-dimensional solution. We first consider a crystal contain- 
ing one defect type, namely traps, and consider only fast reactions. Trap-density fluctua- 
tions influence the kinetics, particularly via the characteristic CA(t) - L,(t) dependence, 
and can be observed if rl > i, TI >> (SAt) S), which define the upper and lower bounds to the 
time interval in which CA(t) - L1(t). The exciton phosphorescence will decay on that law, and 
the interval is quite large (t >> i) if c2~ D >> I. However, the latter inequality is the con- 
dition for heavy exciton phosphorescence quenching by the traps, and when it is obeyed, ~A = 
0, so there is only very restricted scope for observing it. The quantum yield from the traps 
qB is here close to one, so the intensity ~B(t) = ~BCB(t) may be the only quantity accessible 
to measurement. In [9], there was a discussion of a random walk over traps in discrete time, 
where it was concluded that the features in CA(t) due to trap density fluctuations occur for 
CA(t) less than 0.15 (this applies only for ca << 1 [I0]) and can be observed. We consider 
that the L~(t) dependence and an appreciable difference between cA(t) and zero are necessary 
but not sufficient conditions for fluctuation effects to make themselves felt. 

The mean trap population cB(t) is 

deB/d~ =- (~AC A + ~BCB + dcA/dt), (ii) 

s solution being 

[ ] c e (t)  = e x p  ( - -  13 j )  1 - -  c A (t)  exp  ([3Bt) - -  (~A - -  13B) i CA ( '0  e x p  (13B'~) d r  . 
6 

(12) 

For simplicity, we put 8A = 8B in (12), the more so because this condition corresponds for 
example to a quasi-one-dlmensional crystal of 1,2,4,5-tetracblorobenzene, where BA and BB are 
similar [13]. At low trap concentations, the effects fromdensity fluctuations on the trap- 
ping kinetics are the most pronounced [8, i0], and then (9) and (12) give 

c B (t) = exp (-- ~fl) [I -- L I (/)]=,=0. (13) 

Then t~e theQretical relationships CA(t) - exp(--3T:a/'/2) for fast reactions and CA(t) - exp 
(--2T= ~/=) for slow ones may make themselves felt in the positions and shapes of the trap emis- 
sion intensity peaks. This still applies for unequal radiative decay rates for free and 
trapped excitons, apart from the case of large ~B' where the maximum in ~B(t) occurs in the 
initial stage of the A + B + B reaction, which is not described by Lx(t). 

i0 



It/is evident that (ii) retains its form when we incorporate the effects from barriers 
on exciton trapping, so defect density fluctuations (for traps and barriers) produce effects 
qualitatively the same as before, but the form of SB(t) will now be dependent on c3. This 
quantity can be varied [13], and thus one can improve considerably the reliability in fitting 
the observed and theoretical curves, and also obtain more reliable parameters from comparing 
theory with experiment. The barrier concentrations should satisfy c3 ~ c= in order that the 
proportion of excitons avoiding capture should be comparatively low. 
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