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Analytical and numerical methods are used to study the kinetics of a bimolecular reaction such as A + B = 0 when 
interparticle correlations are taken into account in the Kirkwood superposition approximation for a three-particle reagent 
distribution function. A detailed analys is made of the dependence of the reagent concentration decay rate on the value of the 

initial concentration c(0) and of the parameter k that characterises the reaction efficiency in reagent collision. It is shown that 

in the reaction depth range 0.5 5 n < 5 (n = log[ c(O)/c( t)]) the concentration decay is described by a dependence of the form 

c(t) - tc” and the values of a are obtained as a function of the parameters c(0) and k. At long time (n > 5) the dependence 
of the concentration decay goes to the “three-fourth” law, c(t) - t-3’4. 

1. Introduction 

The past decade has witnessed an increased number of papers devoted to studying the kinetics of 
bimolecular reaction between particles that diffuse in condensed media. A revived interest in this classical 
problem discussed already by Smoluchovsky [l], and Waite [2] who determined its theoretical basis has 
been generated by a paper of Zeldovich and Ovchinnikov [3] that drew the physicists’ attention to 
elucidating the role of reagent density fluctuations under the reaction. The above paper has shown that in 
the processes following the scheme A + B = 0 and involving diffusing particles (A does not react with A 
and B with B), the decay law c(t) - t-‘, with the same initial reagent density cA = cg = c, that appeared to 
be applicable for bimolecular reactions in three-dimensional system may be replaced by the law 
c(t) - tC3j4, if we take into account the existence of reagent number density fluctuations in a system. The 
physical interpretation of the effect predicted in ref. [3] is as follows. Before the reaction starts the reagent 
distribution in space is supposed to be the same as the equilibrium one for a system of non-interacting 
particles. In this case thermal density fluctuations give rise to local macroscopic regions in which the 
density of non-interacting particles of the same type is higher than statistical average. After the reaction 
begins and lasts for a definite time 1, basically only the particles that belong to fluctuation accumulations 
will survive (non react). The average volume V of the regions of unreacted particles - 1; (I, = Dt, D is 
the diffusion coefficient supposed to be the same for A and B particles). On the other hand, the 
equilibrium density fluctuations 6c - Y-l’*, so that for the time z 1 the further decrease in the reagent 
density number will be defined by the diffusive dispersion rates of fluctuation accumulations of identical 
particles, that is, c(t) - 1~~‘~ - t-3/4. 

The authors of many subsequent papers [4-lo] that took into account the influence of fluctuations on 
the kinetics of bimolecular reactions in d-dimensional systems, and also of the reactions involving a greater 
number of particles in the act, for example, A + B + C = 0 employed the ideas of ref. [3] or equivalent 
scaling hypotheses. More specifically, the almost obvious generalization of the law te314 to the case of a 
smaller-dimensionality system gives c(t) - t -d/4 d = 1 2 3 for one-, two-, and three-dimensional systems , , , 
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The above results effect significantly the conventional views on reaction kinetics law. Moreover, they 
were obtained largely by using quite physical, yet not strict enough assumptions. The limitations of the 
papers under consideration also include the artificial sorting out of particles belonging to fluctuation 
accumulations, among most others distributed on an equally probable basis over the entire volume of a 
system. As a result, it is very difficult to estimate the contributions of reagents, singled out in the above 
manner, to the experimentally determined decay rates of their average concentration. In ref. [3], some 
guiding estimates are given and it is stressed that the I -3’4 dependence defines an intermediate reaction 
stage, that is, it implies an intermediate asymptotics in the behaviour of a system of particles that react 
according to the scheme A + B = 0: At the same time the authors of refs. [5,9,10] and some other papers 
state that the tea law, (Y # 1, governs the behaviour of such systems at t + co. This concept is questioned 
by Antonov-Romanovsky [ll] and Noyes and Gardiner [12] who concluded that diffuse reagent mixing 
under the reaction eventually eliminates the fluctuation effect, so that asymptotically the concentration 
drop caused by bimolecular reactions is described by the conventional law of formal chemical kinetics, 
c(t) - t-i, t + co. The question of the role of reagent density fluctuations in defining the observed 
characteristics of the processes that follow the scheme of bimolecular reactions is still questionable and 
must be elaborated. 

A consistent approach to describe systems of reacting particles is known [13-171 to be based on 
employing a chain of coupled Bogoliubov-Born-Green-Kirkwood-Yvon equations for N-particle distri- 
bution functions that produce full information both on the microscopic picture of the process and on the 
character of its experimental manifestation. The availability of a small parameter-reagent concentration 
enables us to use effectively standard methods to find one- and two-particle distribution functions, thus 
fully realizing the possibilities to compare theory with experiment. 

Using the superposition approximation for a three-particle function in a chain that reduces an infinite 
set of linear equations to a closed set of non-linear equations for 1,Zparticle distribution functions 
Kotomin and Kuzovkov investigated the evolution of particle system reacting according to the scheme 
A + B = 0 [18-211. We mention here only some results directly concerned with the present study. 
Estimating the asymptotics c(r), t -+ 03 disregarding the fluctuations in the initial reagent distribution the 
authors of ref. [18] obtained a result formally coinciding with the predictions by Ovchinnikov and 
Zeldovich, with the only (fundamental) difference that the asymptotics in ref. [18] is absolute, but not 
intermediate. We stress that the effect discussed in ref. [3] is actually due to the macroscopic spatial 
inhomogeneity of a system in the initial state resulting from equilibrium fluctuations (we mean the 
instantaneous realization of a system in initial time), whereas the choice of initial conditions in ref. [18] 
excludes any inhomogeneity. The seemingly surprising coincidence of the index (Y = 4 in ref. [3] and ref. 
[18] has a deep physical basis. The mutual influence (correlation) of particles leads to their spatial 
redistribution in the course of the reaction that manifests itself, as shown in ref. [21], in the formation of 
accumulations of identical particles, that is, we have dynamic (non-equilibrium) density fluctuations. 
Obviously, there is thus a common physical nature of the reagent decay law for the process A + B = 0, 
predicted in refs. [3,18], and in both cases it is the result of identical-particle accumulations, although the 
mechanisms forming equilibrium and dynamical fluctuations are different. 

The question naturally arises of whether it is possible to confirm experimentally the value of the index 
(Y = $ (or of the others under appropriate realizations of a system of reacting particles). The answer seems 
to require a physical specification of the term “asymptotic dependence”, in other words, the definition of a 
time period after the process beginning when the concentration decay must theoretically be described by 
the dependence ten (LX # 1). The limitations of scaling theories [3-lo], as well as of the possibilities of the 
method in ref. [18] to analyze the solutions of equations for 1,2-particle distribution functions do not 
enable us to obtain the necessary estimation. Besides, there are practically no data on the dependence of 
correlation effects leading to dynamic fluctuations upon the parameters of a system of reacting particles: 
the initial reagent concentration and the rate of reaction upon contact. The elucidation of the interrelation 
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observed is of fundamental importance for estimating the role of correlation (fluctuation) effects in 
reaction kinetics and, consequently, for predicting the possibilities of their experimental observation. The 
present study is devoted to solving these problems. 

2. The model of a system of reacting particles and the basic equations of theory 

In describing the reaction between diffusing particles (quasiparticles) it is convenient to employ the 
lattice model [13,15,16], regarding the reagent motion as a markovian process of random walks in which 
each particle of type A and type B moves by hopping between nei~bo~ng lattice sites with unit time 
probab~ty WA and WB, respectively. A lattice of dimension~ity d is assumed for simplicity to be cubic 
with a lattice constant a. When only particles of different types draw together to a minimum distance 0 
there occurs a reaction (recombination, annihilation) with a unit time probability w. The choice of the 
reaction mechanism corresponds to the most popular model of a contact reaction that proceeds instantly 
when w -P 00, or involves a partial repulsion of particles in collisions when w is finite [1,2,16,22,23]. 

Because the elementary act of the process under consideration is of two-particle character, we can, by 
analogy with formal chemical kinetics laws, represent the change in the average reagent concentration on 
c.,,(n)(1) - the ratio between the total number of particles of type A (B) at time t and the total number of 
lattice sites Nd as 

where the apparent (expe~ent~ly observed) reaction rate, ARR, is defined by the pair distribution 
function for particles of different types at minimum distance between them 1161 

y(t) = 2 dw gfB(t). (2) 

gfB(t) is the probability with which the pair AB can be observed at lattice sites separated by a vector n. 
So, when the motion of particles in a system is non-correlated, gffB(t) = 1 for any n and t. 

In the case of a homogeneous reagent mixture, gtB(t) is defined by solving a non-linear system of 
equations including (l), (2) and 

d gnAACBB)( t ) 

dt 
=2WA(B’~‘[$q(t) -gnAA(BB)(t)] 

A 

-2Y(t)CA(B)(t)gnkA(BB) 'i$ftA, tt> - 1 I 1 (4) 

where $jnMCBB) (t) is the pair distribution function for identical particles A (B), that has a meaning similar 
to g,AB(t); the su~ation over A is bounded by the values of a lattice vector that connects nei~bo~g 
lattices; the primes on the su~ations indicate that the condition gtB(tf = Gus = 0 is satisfied, 
which corresponds to taking into account a.kinematic particle repulsion, in other words, the solution of (3), 
(4) at o = y(t) = 0 describes a system of particles elastically reflected from one another while approaching 
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to a minimum distance a. The set (l)-(4) is obtained within the conventional scheme of cutting off an 
infinite chain of coupled equations for N-particle distribution functions by representing a three-particle 
function in the Kirkwood superposition approximation [15-N]. The use of this approximation to take into 
account three-particle, and thus inter-particle correlations of higher orders, is justified under the condition 
of small particle concentration c*(t), ca(t) -K 1, which is valid for many energy- and charge-transport 
processes that follow the scheme A + B = 0. 

In what follows we restrict ourselves to investigating the above system of equations in the particular 
case c*(t) = cg(t) = c(t), WA = WB = IV, so that the indices A, B and those for pair distribution function 
may be omitted. To carry out intermediate calculations, we go over to a dimensionless time 7 = 2Wt and a 
dimensionless ARR X( 7) = y( t)/lV, but all the final results will be given in dimensional form. Besides, in 
non-linear term of the equations we neglect the insignificant change in the distribution functions with 
distance a. Using the above simplifications, (3), (4) take the form 

dg (7) A= --&*)6,,.+C’[g 
dr ,n+A, (4 -dd] - +)wdgnwk(~) - 119 

A 

If the distribution functions are smooth, the expansions g,,,+4, (t) and g,,,+4, (t) in A can be used to 
reduce (5), (6) to a set of non-linear diffusion equations employed in refs. [18-211 (see section 4). The 
boundary conditions necessary to solve such a system follow in a natural manner from (5), (6) [22], but are 
not chosen from a priori consideration, as in diffusive theory of bimolecular reactions. We also note that 
under certain conditions the present lattice model describes adequately the triplet-triplet annihilation of 
incoherent excitons. 

The set (5) (6) can be reduced to an equation that involves only a distribution function of particles of 
different types. For this purpose we introduce a new unknown X,( 7) = s,(t) - g,(t), the equation for 
which is non-linear 

(7) -X.(r)] - c(++)X?z(r), 

but formally admits an exact solution. 
Considering (l), we use in (7) the replacement 

where x,(r) satisfies the equation 

‘%,a+ c'[x,.+A,(7) -xn(T)]. 
A 

Denoting 

IT(T) =h(T)C*(T)/C*(o) 

we go over to the Laplace image space in (9), 

(8) 

(9) 

(10) 

(11) 
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Here and in the remainder of the paper the tildes denote the correspondence A(S) = j? dt e-“‘A(t). The 
solution (11) taking into account kinematic particle repulsion has the form 

02) 

where the summation is over all the lattice site coordinates, and 

Gn(s)=-$xexp(ik.“)/ s+2d-25 
i 

cos( k,Cz,) ) 

k i=l I 

k= (I&..., kd), ki=nl/Na, I=O, +l,..., +N, 

is the Green function that satisfies the equation 

(13) 

(s + 24G,,-4 - CG,n-AA, = 4,~. (14) 
A 

It is easily seen that (12) with X,,(O) = 0 gives 0 for Z,(s). The spatially uniform distribution of reagents at 
an initial time corresponds to the conditions 

The expression (12) is in this case simplified to 

L?n(s)=yly5;“‘(s), nzo. 
0 

Reverting it to the original and substituting it into (8), we obtain 

XJT) = */k,,(v t)II(t) dt= 
247) 0 

$$dt K,(T - t)Wc*(t), 
7 0 

where 

The solution obtained enables us to exclude the unknown g,,(r) from (5) and we thus have 

where 

and the terms that take into account a kinematic reagent repulsion are explicitly written out. 

06) 

(17) 

(18) 

(19) 

(20) 
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For our further discussion it is instrumental to distinguish in the ARR equation the contributions from 
terms linear and non-linear in g,(T). To achieve this, we use the Green function (13) to transform the 
Laplace image of the equation (19) to 

(21) 

where q(s) = G;‘(s) - s + (dw/W)(l + s/2d). Substituting (21) into the definition of the ARR Laplace 
image 

i;(s) = 2d(w/W)g,(s) 

and taking the relation (14) into account, we obtain 

X(s) = a [G(s)] -’ - 1 - (1 + $)n$o #(4 
1 s 

The original (22) has the form 

y(t) = y(‘)(t) - 2Wi2WfdT 1 Q,(2Wz - T)v,(T), 
N#O 

where 

I. (22) 

(23) 

(24) 

and y(‘)(t) corresponds to the ARR definition in the two-particle approximation (when non-linear terms 
in the equation for g,(t) are neglected) 

y(‘)(t) = Wh’“‘(2Wt) = & 1:: ds ezwstACo)( s), 
100 

(25) 

X’“‘(s) = (2dw/W)[l -sG,(s)]/.sq(s)G,(s). (26) 

The set of equations (21) (23) is an exact analog of (2) (5), (6) at d = 1, 2, 3. The specific form of the 
Green function that defines, finally, the ARR behaviour at large times is rather sensitive to the system 
dimensionality. Below we investigate the influence of correlation effects on the reagent concentration 
decay rate at various reaction stages, using (23) and restricting ourselves to the case of a three-dimensional 
system. 

3. Limit estimates of the correlation effects in (A + B = O)-reaction kinetics 

A characteristic feature of the initial set of equations (5), (6) is the existence of a “positive feedback” 
through non-linear terms that take into account interparticle correlation in the superposition approxima- 
tion. The decrease in g,(T) caused by the presence of a drain at n = a leads to g,(7) (and X,(r)) 
increasing with time. In the two-particle approximation that neglects third and higher-order correlations 
this effect is disregarded. 
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Under the initial condition (15) X,(T) 2 1 - g,(r) >, 0, the function v,( 7) is positively definite at any 
time, so that taking into account higher-order correlations (in addition to two-particle ones) results in y( 7) 
decreased as compared to Y(‘)(T). 

We note that in the case of identical-particle reactions A + A = 0 (a corresponding equation for y(r) 
follows from (23) at X,(r) = 0) the effect is opposite and is small at sufficiently small initial reagent 
concentration (see appendix B for more details). 

We now estimate the upper limit of the possible decrease in ARR in the reaction A + B = 0 for the case 
w -+ co, when the correlation effects are most pronounced. Since the condition v,,(r) c c(~)y(~)X,(r) is 
valid at T > 0, we can use the right-hand side of the inequality as a majorant v,( 7) to obtain the above 
estimate by replacing the exact equation (22) with an approximate one 

x(s) =x(‘)(s) - --& c G,(s)lmdl e-“%(t)c(t)X,(t) 
#I#&1 

(27) 

which involves no term with n = 1, because gt(s) = 0. The replacement simplifies the problem of studying 
the equations (l), (21) that define g,,(r) and c(r), but it still requires solving the set of non-linear 
equations (l), (27) for the unknown Y(T), c( 7). An additional simplification can be achieved by excluding 
C(T) from (27) with the help of the formal solution (1) 

C(T) = c(0) 1+ ( +)/ddf h(t))Y 

Substituting (28) into (27) yields 

x(s) =??‘)(s) - -$$ c Gn(s)imdt e-“h(l)( 1 + ql’dr A(r))x,(r), 
nz1,o 

40) f 
-2 

X.(~)=JbdlK.(7-f)h(f)(l+l~d7’ A(+) . 

(29) 

(30) 

Under sufficiently small initial reagent concentration there appears to be a time interval from the 
reaction beginning ro, for which the following conditions hold: 

To * 1, C(To) = c(0). (31) 

This implies that an appreciable change in the reagent concentration at c(0) -=K 1 is observed only after a 
sufficiently large number of hops perfomed by each of the particles. As is seen from (29), (30) the 
contribution of the non-linear term to (29) for T < 7. is proportional to c(0) and it can be neglected. With 
T > TV, however, the above proportionality no longer holds, and to compare the contributions from the first 
and the second terms in (29) we must have their explicit forms. 

At w + cc, we have from (26) 

ii’“‘(s) = 2[1 -~G,(s)]/s(l + ;s)G,(s) (32) 

and taking the dependence G,(s) at s + 0 into account (see appendix A), we finally get 

y@)(t) = wP~(ccr)[l+o((fV~)-“2)], Wtz+l, (33) 

where 

XCo’(cc) = liiorxCo)(s) = 2/G,(O). (34) 
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We now derive the expression y(t) for long times in first-order perturbation theory, regarding the 
second term in (29) as a perturbation. Substituting (33) into (29), (30) and using the above definition of Q, 
we find 

p)(s) = s-‘p)(~) - -$$ C Gn(s)(Jc,“dt e-S’[Aco)(f) -A(“‘(co)]x~o’(t) 
n+O,l 

+x(“)(m)[x”~o~(s) - :h'")(m)c(o)a~p)(s)/as]), s s I, (35) 

where the index (0) at x,(r) (and in the other functionals that follow) denotes the replacement of y(7) 
with y(‘)(7) in the functional (30). Using the definition of xA”( T), (32), (33), it is easy to show that the 
term with the integral in (35) gives a negligibly small contribution to T;“‘(s) at s + 0, so that (35) with (16) 
taken into account can be rewritten as 

p)($) = s-‘~(yoo) - c(o)x’“‘(m) l7(“)( s) 
S-Z1 G,(s) 1 - sG,(s) 

(36) 

The summation over n enables us to express x(‘)(s) for small s only in terms of IIco)(s) and the Watson 
integral whose behaviour at s + 0 is well studied [24]. The analysis of the contributions from different 
terms to (36) is made in appendix A. Restricting ourselves in the expansion Ax(‘)(s) = Ti”‘(s) - X(“)(co)/.r 

to the term - n(0)(o)[(a/as)z nto,~G%L-o that defines the asymptotics (36) at s + 0 and inverting the 
resultant Laplace-image expansion by Abel’s theorem, we have 

y(‘)(t) =y’“‘(cc){l - Jzi;;[qc(0)X’“‘(m)/24G,(O)]~}, Wtz- 1, (37) 

where 6G,(O) = 6G,(O) - 1 = Z(1) - 1; Z(1) = 1.516, 4 = 3/2~ [24], and A’o’(co) is defined in (34). 
The approximate equality (37) is meaningful only at 4.5c(O)m +z 1. The definition of ARR within the 

traditional two-particle approximation is valid over the above time interval. The continuity of the initial 

reaction stage for which y(t) = y(‘)(t) is obviously dependent on c(0) and can be quite considerable under 
small enough initial concentrations, such that the reaction depth n = log c(O)/c(t) will be about or much 
greater than unity. (The dependence on c(0) of the values of n defined with the values of t for which the 
correction term in (37) is equal to 0.1 is represented in fig. 1.) But already at c(0) = 10V2 the correction to 

y”‘(t) is small only in the region Wt 5 102, so that under such concentrations the application of the linear 
theory to define ARR is limited to a small time interval. 

We now define the applicability limits for the perturbation theory used to derive (37). The derivation 
was based on the condition (31). Since y(‘)(~~) = y’o’(cc), we can put $c(O)/ch(z) dt = c(0)ycO)(cc)to, to 
estimate c(t) by the formula (28) at Wt, B= 1. Setting to = low-‘, y’o’(co) = 24W, we obtain the upper 
limit for the initial concentration c(0) = 10-4-10-3, up to which the conditions used to derive (37) are 
satisfied. 

The analysis of the initial reaction stage kinetics that was made for w + cc using the majorant 
estimation of non-linear terms in the ARR definition (24) remains basically unchanged, if the reaction rate 
under reagent collisions is finite. The form of (37) is in this case the same, whereas X(‘)(oo) is defined not 
by (34) but by the general formula resulting from (26) 

A’“‘( co) = 
6w/W 6w/W 

1+3G,(O)w/W = 1+~/4W’ (38) 
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- lg c(0 
I I 

3 4 5 

1 

Fig. 1. The reaction depth 7 = lop[ c(O)/c( t )] for which [ y @)( t ) 
- y(t)],+(‘)(t) = 0.1, depending on the initial concentration 
value when k -B co; the dotted line corresponds to the calcula- 
tions by formulas (1) and (39), the solid line to the results of a 
numerical solution to the set (l), (43), (44); y(‘)(t) is defined 

by the expression (B.2). 

According to the formulas (37), (38) the time interval of the initial reaction stage will be greater (as 
compared to the case w + cc) with the ARR 

y(t) = Y’o’(t)(l - c(o)xrn), (3% 

where 

Wt K [xc(O)] -‘, x = fi&“+o)/24G1(0) = 4.5, 
0’00 (40) 

as well as the estimate of the maximum initial concentration value for which the derivation of the 
approximate equality (39) is valid. The correlation effects that lead to an ARR decreasing with time are 
weakened with a decreasing parameter w/W. 

Let us turn to the initial equation (22). It is obvious (see (20)) that taking into account non-linear terms 
omitted in (27) will result in a partial compensation of the tendency for y(t) to decrease at times 
Wt 1 [xc(O)]-~. As shown in appendix B, the time dependence (39) and the condition (40) remain 
unchanged qualitatively, if we use the exact equation (22) instead of (27), to define the ARR at the initial 
reaction stage. It then follows that the specific behaviour of y(t) at long times for the reaction A + B = 0 
is due formally to the linear term taken into account in (27) and is primarily defined by a growth in time of 
the difference g,(t) - g,(t). Comparison with the results of the numerical solution of a set of non-linear 
equations confirms the above conclusion and the correctness of the estimating formulas (39), (40). 

The long-time divergence (negativeness) of (39) is directly connected with the asymptotics c(‘)(t) - t-’ 
used in (29). For clarity, we write out this equation at t + 00 (see appendix B) 

[Y(t) -Y(“)(d]t--tm = -WJ(t) = --$-i’dT’( h(7;$ (+& - 1). 
71 7 7 

(41) 

As seen from (41), the necessary conditions for y(t) being positively definite and bounded may be satisfied 
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only if the long-time concentration decay is described by a dependence slower than t-‘. The simplest 
approximation that satisfies this requirement is the following: 

c(t) - P, y(t) - t-l+u, t + cc, 0 <(Y < 1. (42) 

Employing the dependences (42) in (41) yields J(t) - 72u-3’2, so that we get LY = i from the conditions for 
J(t) to be convergent and monotonic. Substituting (42) into the definition of X,(t) also results in the value 
(Y = a, if we require the time derivative of the function X,,(t) at t + cc being finite and having constant 
sign. We emphasize that the dependence in (42) indicates the character and the order of the values of the 
expected effects upon the reagent concentration decay deceleration and the ARR time fall, but are not 
intended to solve the system of non-linear equations (l), (21), (22). 

The above analysis shows that the non-linear terms in the ARR equation for the reaction A + B = 0 
cannot, in general, b.e omitted at great times under arbitrarily small reagent concentrations (macroscopi- 
tally viewed) and their consideration defines the qualitatively new time behaviour of the observed 
characteristics of a system of reacting particles at Wf z [xc(O)]-~, more specifically, the ARR time 
decrease and, as a consequence, the concentration decay deceleration as compared to formal kinetics. The 
estimate (39) and the fact that the non-linear terms in (23) close in their values, have different signs enable 
us to make the qualitative conclusion that the expected deviation of c(t) from c(‘)(t) observed, according 
to (40) at times inversely proportional to the initial reagent concentration is “slow”. 

The details of the behaviour of y(t) and c(t) are studied in the next section using numerical simulation. 

4. Numerical results 

In the concentration range considered the correlation effects that result in a decelerated reaction can be 
pronounced only at times Wt x=- 1, when the descriptions of the process in the framework of lattice and 
continuous (diffusion) models are basically the same. To solve the equations which define the pair 
distribution functions, we can therefore restrict ourselves to a continual approximation which reduces (5), 
(6) to a set of non-linear diffusion equations. The passage to a continual approximation is formally 
justified when the distribution functions change smoothly at distances in the order of the lattice constant. 
Under the initial conditions (15) this requirement should be satisfied already at times Wt z 1. 

Following the passage procedure presented in ref. [22], we have, instead of (5) (6) at d = 3 

&Y(r, T)/aT = vr2g( r, r) - +)A(++, r)[g(r, r) - 11, (43) 

G(r, T)/ar = v&r, 7) - +)X(T)&, T)[ g(r, 7) - 11, w 

where g(r, r), g(r, 7) are the analogues of the pair distribution functions, g,,( 7) (for particles of different 
type) and &(T) (for particles of the same type), r (Y > 1) are the continuous variables which define the 
relative coordinates of particle pairs in lattice constant units. At r = 1, we have from (5) (6) [22] 

3g(l, 7)/% = $Clg( r, 7)/3r I r=1- (42W)g(L T) - +)~(dg(L 7>[g(1, 7) - 11, 

qq(l, 7)/h= fdjf(r, 7)/h Ir=l -47)A(7)g(l, 7)[g(l, 7) - 11. (45) 

The second pair of boundary conditions corresponds to the principle of correlation weakening at 
infinity, 

g(m, 7) =g(oo, 7) = 1, (46) 

which appears to be satisfied by the lattice model equations. 
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The boundary conditions (45) are different from those traditionally used in the theory of bimolecular 
reactions of diffusing particles (see, for example, ref. [23]) 

ag(r, 7)/ar I r=l = kg(i, + ag(r, ++ I r=l = 0. (47) 

If in (45) we neglect the time derivative and the non-linear terms that take into account three-particle 
correlations, we get k = i&o/W for the phenomenological parameter k which defines the reaction 
efficiency under reagent collisions. 

It is easy to see that the definition of ARR (2) is in this case the same as the conventional one, 

y(t) = 8aWag(r, t)/ar I r=l. (48) 

The calculations made over a wide range of the parameters c(O), k show that the difference between (45) 
and (47) is not fundamental. While the calculation results for C(T), y(7) are qualitatively the same, their 
quantitative difference does not exceed 10% in the case c(0) = 0.1, and is less than 1% at c(0) = 10e3. To 
facilitate a comparison with the predictions of the conventional theory of bimolecular reactions of 
diffusing particles [2,23], the results given below correspond to the numerical investigation of the set of 
non-linear equations (l), (43), (44), (48) under the boundary conditions (46) (47). We note that in the 
particular case k + co (g(1, 7) = 0) these equations have been investigated by analytical and numerical 
methods in refs. [18-211. 

The idea of the microscopic picture of the process A + B = 0 is given by the evolution of pair 
distribution functions of particles of the same and different types, represented in fig. 2. In the course of the 
reaction the deviation of g( r, 7) and g( r, T) from the initial (uniform) distribution rises with the time, and 
the rates are proportional to the initial reagent concentration. In the two-particle approximation, that is, 
when the non-linear terms in the equations (43), (44) are neglected, jj(r, co) = 1, and the dependence 

Fig. 2. The distribution function profiles of identical g( r, Z) and different g( r, t) particles (k + co) at times 2Wt =lO, lo’, 103, 104, 
lo5 for curves (l)-(5), respectively; (a) c(0) = 0.1, (b) c(O) = 0.01. The dashed line correspond to the values of g(‘)(r, co), calculated 

in the two-particle approximation (Smoluchowski-Waite theory). 
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8 I 

I 2 3 4 5 6 7 a 

Fig. 3. The time dependence of Refl = y(t)/S?rW at different 
values of the initial concentration c(0): log[c(O)] = (a) - 2.6, 
(b) - 3.6, (c) - 4.6; k + 03. The dashed lines denote the values 
of R,,=R$[l - 4Sc(O)m] where R$$ is defined by the 

expression R,, co) = 1 + (2nWr)-‘/’ (curve (d)). 

Fig. 4. The time dependence of the reaction depth n = 
log[c(O)/c(t)] for various values of the initial concentration 

c(O)=(a) lo-‘, (b) 10-2, (c) lo-‘, (d) 1O-4 (solid lines); 
k -B CO. The dot-dashed lines determine the incline ICu : a = 
(a) 0.82, (b) 0.88, (c) 0.93, (d) 0.97. The dotted lines correspond 
to the values of c(‘)(t) obtained in the framework of the 

two-particle approximation. 

g(r, co) is marked by the dotted line. As shown in appendix B, this approximation is quite satisfactory for 
the reactions A + A = 0, but cannot be applied to describe the process A + B = 0. The separation of 
particles of different kind is important for the latter process, and this is manifest in the behaviour of pair 
distribution functions and is not taken into account in the conventional Smoluchowski-Waite theory of 
bimolecular reactions. The character of the increasing g(r, 7) shows that identical particles primarily 
survive at small distances, that is, accumulations of identical particles form under the reaction. The regions 
with closely placed particles of different kind become depleted. The fraction of the reagents in the 
accumulations increases with the time. The formation and the increase of accumulations may account for 
the decrease in ARR (see below). We wish to emphasize that there is an analogy in the reaction 
deceleration by accumulations of identical particles (dynamical fluctuations) and by fluctuations in the 
initial reagent distribution. 

We now consider the time dependence of the reagent concentration and ARR. We first of all appraise 
the correctness of the analytical approximation of the ARR (38) which describes the initial reaction stage. 
Fig. 3 compares the values of the effective reaction radius (expressed in units a : R,,(t) = y(t)/8aW) that 
were obtained by numerical calculations and by the formula (39) at k + co. The difference in the 
corresponding values of R,,(t) does not exceed 5% over the time interval Wt 4 [xc(O)]-*. The same 
coincidence is typical of the finite values of the parameter k. The functional dependence on t of the 
correction term in (39) fairly roughly reflects the behaviour of R,,(t) because of the approximations used 
in deriving it, and yet this dependence is quite acceptable for qualitative estimates over the time interval 
considered. 

The dependences c(t) at Wt 2 [xc(O)]-‘, when the perturbation theory developed in section 3 is 
inapplicable, are represented in figs. 4, 5. As the calculations show, the reagent concentration decay in the 
reaction depth range 0.5 ,< 9 5 5 may be described by the dependence (42), where the index (Y is a function 
of the initial concentration c(0) and k. The time interval over which the dependence is realized is defined 
by the value of c(0) at fixed k. For example, at k + 00, c(0) = 0.1 the lower bound of the above interval is 
at Wt = 5, the upper bound at Wf = 106; for c(0) = 10e4, lo3 4 Wt 5 lo*. To determine the dependence 
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Fig. 5. The time dependence of the reaction depth n for 
various values of the parameter k = 3w/4W (solid lines); 

c(0) = 0.1. The dot-dashed lines determine the incline tea: (a) 

log k= 1.5, (I =0.82, (b) log k= -0.5, a=O.93, (c) log k= 

- 1.5, a = 0.98. 

(Y = a(c(O), k), numerical calculations were made over a wide range of the parameters c(0) and k. The 
corresponding results are given in figs. 6, 7. We emphasize the fast decrease in the deviation of (Y from 
unity when both c(0) and k decrease. For example, in the case k + 00, (Y = 0.82, 0.86,0.97 at c(0) = lo-‘, 
lo-‘, 10w4, respectively. 

As the calculated results show (fig. 8), the lesser the value of the parameter k, the weaker the decrease in 
ARR is displayed and the larger are its decay times. Such a dependence was to be expected, because the 
ARR time drop effect is due to inter-particle correlations whose contribution is proportional to the reagent 
interaction intensity (0). Also, the diffusion in the system (IV) leads to a dissipation of dynamical 
fluctuations that form under the reaction and are a direct consequence of interparticle correlations. (The 
rise and dissipation of fluctuations are pronounced in the evolution of the pair distribution function of 
identical particles, see fig. 2.) The result of the competition between the two opposite tendencies is thus 
dependent on the ratio w/W, defining the value of (Y for a given initial reagent concentration. In 

1.0 

0.9 

0.0 

Fig. 6. The dependence of the index cr on the initial concentra- Fig. 7. The dependence of the index a on the parameter k for 
tion c(0) for various values of the parameter k; k = (a) co, (b) various values of the initial concentration c(0); c(0) = (a) 

0.4, (c) 0.1. lo-‘, (b) 10-2, (c) 10-4. 
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Fig. 8. The time dependence of the effective reaction radius 
ReB(t) for various values of the parameter k; c(0) = 0.1; log 
k=(a) 1.5, (b) -0.5, (c) -1, (d) -1.5. The dashed lines 
correspond to the values of ~~~~(f), obtained in the two-par- 

1 2 3 4 tide approbation. 

particular, at c(O) = 0.1, ar = 0.92 at k = 0.4; (Y = 0.98 at k = 0.1. The first of the values of k corresponds 
to w = 2W, that is, to an equal probab~ty for a pair of reagents that come into contact to react and go 
away at a large distance (see the lattice model devotion, section 2). 

The influence of density fluctuations on the reagent concentration drop rate is maximum for the case of 
diffusion-controlled reactions and is fastly weakened with decreasing ratio between the rates of reaction 
and diffusion. This conclusion appears to us to be independent of a specific mechanism generating density 
fluctuations. We note that the relationship between the manifestation of the fluctuations in reaction 
kinetics and the value of the parameter w/W has not been investigated. 

The calculation of the kinetics of more distant reaction stages indicates a slow deviation of the 
dependence c(t) from t-* towards concentration fall deceleration (decreased ARR), figs. 4, 5. This trend 
may be regarded as evidence of the existence of a limit dependence e(t) - t-3/4, t + co in the reactions 
A -t B = 0 (cA = ca = c) for any values of the parameters c(O) and w/IV. The possibility to experimentally 
confirm such a dependence is quite problematic, because it is very difficult to achieve and measure the 
necessary reaction depth n > ( zz- 15. 

5. Conclusion 

The present analytic and numerical investigation of the solutions to the equations which define one- 
and two-particle distribution functions (with higher-order correlations taken into account) in a system of 
reacting particles enables us to outline the basic features of the microscopic picture of the process 
A + 3 = 0 involving diffusing particles and to conjecture its experimental behaviour. 

In the case of a uniform initial reagent distribution in space when the reagent concentrations are the 
same (small) the Smoluchovsky-Waite theory has been confirmed to be able to define the kinetics of the 
process at an initial stage, the duration of which depends on the initial concentration and the ratio between 
the rates of reaction when the reagents are in contact, w and their diffusion, IV. At this reaction stage 
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accumulations of identical particles are formed as a result of a depletion of pairs of different particles and 
the preservation of pairs of identical particles with a probability inversely proportional to the distance 
between particles in a pair. The higher the concentration and the larger the ratio w/W, the more 
pronounced is the accumulation generation effect. The generation of accumulations of identical particles 
under the reaction A + B = 0 results in a monotonic (very slow) decrease in ARR with the time. With the 
reaction depth 0.5 5 1) s 5, the ARR time dependence is approximately described by the dependence 
y(t) - tl-a, $ < a(c(O), w/W) < 1. 

The correlation effects that lead to the formation of accumulations of identical particles in the reactions 
A + B = 0 (dynamic fluctuations) can be detected experimentally by the deviation of the dependences c(t), 
y(t) from the predictions of the two-particle appro~mation. The dependence ar(c(O), w/W) obtained in 
this paper indicates the range of the parameters in which we can expect an exper~ent~ m~festation of 
the correlation effects under study that are negligibly small if ar = 1. In particular, at c(0) = 10w4, o -+ co, 
a: = 0.97. 

The dependence of cy on the initial reagent concentration and on the ratio between the rates of the 
reaction and of diffusion over the experimentally most important time interval distinguishes clearly the 
manifestations of dynamical density fluctuations in reaction kinetics from the effect due to fluctuations of 
the initial reagent distribution. This effect must, according to ref. [3], lead to a decay law c(t) - te3j4 
independent of the values of the parameters c(0) and w/W. 

Appendix A 

The sums in (36) are easily calculated 

- c G:(f) = aG&)/as -t [I + 6(1+ $f)‘]G&) - 2(1+ ;s)G,(s) + ;, 
nfO,l 

;s -- c G:(s) = a2Go(s)/as2 + 2[1+ 6(1+ :)“I G0(s)8G,/&s + 2(1+ $)G,~(.s) 
r##O,l 

tA.1) 

(A-2) 

(A.3) 

Substituting into (A.l), (A.2) the expression for a Watson integral at small s (p + 1-O) 1241, 

I( #u) = I(1) - qs1’2 + I@‘2 

(q and 4 are constants), we get 

c G;(S) = +rqs-1’2 + O(1) 
n=+O,l 

c w?(s) 4 -3,2+ _1 6-710) 4’ - s-,0. 
nzo,1 as Xis 44 9 i 

+ yj s ““+0(l), 
I 

(A4 

(A.9 

We now consider the behaviour of the function [l - sG~(~)]-‘II~~~(~) and its derivative for s --, 0. The 
equalities (A-4) and 

II(“)(s)~= i”dr e- YP)( t) + bum 
eeS’ dt 

70 [1+ ~P+o)c(0)t]2 
(A-6) 



382 Yu.B. Gaididei et al. / Kinetics of bimolecular reactions 

that takes into account the condition (31) yield directly 

~~~~(‘)t~)/[l- sG,(s)] = 2/c(O). (A.7) 

The above equation makes it possible to note that as seen from (26) and (13), (21), @‘)(s) for .r --j 00 is 
independent of s, that is, A(‘)( +0) = const. As is known [2,16,23], in the diffusion approximation 
$Q(7) _ 7-l/2 as T + 0, but in this case, too, the equality (A-7) remains valid. 

Using (A.6), we have for the derivative of the function considered 

a So)+) 4 

z 1 -sG,(s) = ~O~(~)~*(o~ 
In s i- O(1). 

Substituting (A.5), (A.7) and (A@, we get 

(A-8) 

(A.91 

The behaviour of y(‘)(t) defined by (A.9) is described by the function (37) presented in the main text. 

Appendix B 

As shown in section 3, in the ease of sufficiently small concentrations an appreciable deviation from the 
usual kinetics of bimolecular reactions A + B = 0, described in the two-particle approximation (without 
non-linear terms in (23)), is observed only at Wt% 1. Taking into account the smoothness of the function 
in (23), we can therefore represent the solution to this equation in first-order pert~bation theory as 

y(r)(~) -y’0’(r) - 8~~~d~~2~~~~~, r- ~~y(“)(r~cto)(~~ 

x { X(‘)fr, t) - [l - g@)(r, t)] fg”‘(r, t) i- X@)(P, t>l} dt, (B-1) 

where the summation over discrete coordinates is replaced by the integration over continuous coordinates 
r, and to obtain the functions 

y”“(7) = 8?rW[l+ Qrr+“‘“], 

Q(r, T) = [(r- 1)/2rrr”‘273’2] exp[ -(r-- 1)‘/47], 

X’O’(r, 7) = 
7 y(“yt)[cyt)]2 

16rr3:ifC:0’oj2 J, dt tT_ $12 -p(-- (l;;-‘i;)’ P.4 

g{‘)(r, T> = 1 - “t Q(r, t), 
f (B.5) 

use was made of the expansion of the Green function (13) with an accuracy up to the term s112. Eqs. 
(B-2)-(B.5) correspond to the instantaneous reaction model w -+ co and are obviously generalized to the 
case of arbitrary u.. 

We first confine ourselves to taking into account only the first term in the curly brackets, and this 
corresponds to the majorant estimate of correlation effects performed in section 3. Substituting (B.3), (B.4) 
into (B.1) and integrating over r, we get 
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or, on integrating by parts, 

Ay”‘( 7) = - w /‘df y(O)(t) 
26 0 (r-q’2 

[(c@‘(t) ,‘_I]. 
P(r) 

(B-7) 

For large times, yCo)(cc)c(0)t x-= 1, the dominant contribution to (B.7) is given by the integration in the 
range of small t (5 r. -=zz r), so that the resulting integral is easily calculated 

AY - 
(1) _ _ 49~(“Y4Y(oY4 \/wt 

2\/27 
(B-8) 

The estimate (B.8) is seen to agree well with (37). The small difference in numerical coefficients is due to 
the diffusion approximation used in (B.2)-(B.5). 

We now consider the second of the integrals in (B.l) that contain X”‘(r, t) 

Ji( 7) = 8nII’iwdr r2/de( r, r- t)y’“‘(t)c’“‘(t)[1 -g”‘(r, t)] X(‘)(r, t) dt. 

Noting that 

Jh) < 
y’“‘(t) exp[-(r-l)2/4(r-t)] 

c@)( t )( 7 - t)3’2 

x a’dr, t;3’2 
J 

we perform the integration over the variables r and 1,. As a result, we get 

(B-9) 

where 

d+, f, 21) = a [ i arctan 
t”2( 7 - ty2 

(7 - ty2( t - t1y2 I _ [t(T-t)(t-tl)(T-rl)]1’2 

1 
t(T-~)+7(t-t1) . 

The condition 0 < + G 1 is satisfied for the function C#J at any values of the variables r z f > 5, z 0, and at 
+ = 1, (B.9) is the same as (B.6). It then follows that the estimate of Ay”‘(t) by the formula (B.8) remains 
basically the same also with the integral J1(7) taken into account in (B.l). 

The integral in (B.l) that contains no function Xco)(r, t) is represented as 

8nwimdr r2Jadt y(‘)(t)c(‘)(t)Q(r, T- t)g”‘(r, t)[l -g(‘)(r, t)] 

x / fdt exp(-r2/%) 
1 

1_ 
0 t1 3/2 

2(r:l)fi J fdt ev(--r2/4tl) 
' 

= 
0 t:12 

J2 - J3. (B.lO) 
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Note that at X’*‘(r, t) = 0 the equality (B,l) corresponds to the ARR definition for identical reagents in 
the first order of perturbation theory. 

On iteration over r and t, in J,(r), we get 

J2( T) = 8n112Wj.ht y’*‘( t ) c(*)( t)(l,/‘&-? - l/G). 
0 

At T > T* we thus have finally 

J,(t) = y(0f(cc)(?V~)-“2. (B.ll) 

It is easy to show that J&f) c J*(t), so the maximum cont~bution from (B.lO) into the ARR definition for 
large times can be estimated by the formula (B.11) and is negligibly small compared to (B.8). 

The effect of triple and higher interparticle correlations in the reactions A + A = 0 is thus insignificant 
under small reagent concentrations, but can result in appreciable decrease in ARR for large times in the 
reaction A + B = 0. 

The present estimate of the integral term in (B.1) immediately generalizes to the case of a finite reaction 
rate under collisions, o, and reduces to the replacements in (B.8), (B.ll), of the expression for y(*)(co) at 
w + 00 (see (B.2)) by the general expression for y(*)(co) in the diffusion approximation 

y(‘)(~~ = 8nWk,‘(l C k), k = ~3/4~)~/~. 
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