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The influence of short- and long-range (multipole-mulupole) mnteractions on diffusion-mediated annihilation reactions 1s
studied. The precise form of the boundary condition 1s obtained from the microscopic descnpuion of the incoherent excilon
annifulation. The dependence of Lhe rate coefficient 1n the radiation boundary condition on the excitonic parameéters is
determined As a result the apparent rate coefficient of the annihilatton reaction 1s obtained using only those paramelers which
appear 1n the microscopic equations describing the annihilation process. This enables us to find the general dependence of this
coeflicient on Lhe parameters of motion and both short- and long-range inleractions of excitons.

1. Introduction and theory

The main subject of interest in the theory of dif-
fusion-mediated reactions is the apparent rate coef-
cient (ARC) ¥{f) which determines the time depen-
dence of the concentration c(¢) of reacting species,
when bimolecular reactions, such as donor—acceptor
energy transfer or exciton annihilation (considered
here), take place. The standard procedure of caiculat-
ing 7, recognized to be valid at small ¢, is based on
the solution of the diffusion equation

dg(r, DIt = 2DV2g(r, £) — A(D) (. ©) ¢}

subject to the so-called radiation boundary condition
(RBC)

9g(r. D/orl,-g =ke(R, 1) . (@3]

The ARC () is defined by the relation (see, for
example, refs. [1,2] and references therein)

v(t) = 8xDR %0g(r, Dfarl,-g
+an f AP et DA dr. )
r=R

In egs. (1)—(3) g(r, 1) is the two-particle correla-
tion function normalized with respect to cz(r). This

means that for three-dimenstonal diffusion g(r, r) = 1
when the distance between reactants r goes to infinity.
D 1s the diffusion coefficient of the reactants assumed
here to be identical, A(r) is the distance-dependent
probabulity per second which will be specified below,
R is the contact (minimal) distance between any two
reactants; k is usually considered as a phenomenolog-
ical quantity characterizing the efficiency of the col-
lision reactions: k& — o= corresponds to the case of the
collision reactions which occur instantly, X = O repre-
sents the opposite case when no reaction occurs at r
=R.

To complete the descnption of the diffusion-me-
diated reaction kanetics, one must link the reaction
coefficient (RC) & to physically significant quantities
depending on the specific microscopic picture of the
reaction process. In this work the annihilation reaction
of incoherent excitons in a crystalline lattice is con-
sidered starting from the master equation

ag(", t)/a tln__'ﬁo

=2 2

. = wln—n'|(g(n" 1) —g(n 1)
n'.n's#0
—Nn)g(n, 1), @)

where » is a discrete index denoting the relative posi-
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tion of two cxcitons in a crystal with lattice constant
a; W\, _p - 1s the probability per second of an exciton
jump from the lattice site rm to n’, supposed to be de-
pendent on [n — 1’| only; AM(n) is the probability per
second of the annihilation of two excitons localized
on lattice sites separated by the distance n

Eq. (4) comes from the coupled chain of equa-
tions for the exciton density matrix first introduced
to exciton annihilation theory by Suna [3]. In ob-
taining (4) we have followed the recipe for the chain
truncation procedure proposed in ref. [4] which, in
the absence of sources of reacting species, is equiv-
alent to Waite’s method [5]. In the framwork of such
an approach the many-particle problem is reduced
to a two-particle one and the solution of (4) makes
it possible to calculate the ARC defined as [3]

~(d) =a> 2 A e D . )

The theory of ref. [3] and subsequent papers {4,
6] concems the annihilation reaction due to the
short-range type of exciton—exciton interaction ap-
propriate to the case of triplet—triplet annihilation.
For singlet exciton annihilation in molecular crystals,
the long-range dipole—dipole interaction is known to
be important experimentally [7]. Since, in this case,
an analytical solution of (4) is not available, the the-
oretical treatment of the process is usually performed
with the help of egs. (1)—(3) where the reaction coef-
ficient k is interpreted on intuitive physical grounds.
As a result the actual dependence of the ARC on mi-
croscopic parameters of excitons is left unclear. To
clarify this dependence 1n the particular case of the
diffusion-mediated anntiulation of incoherent exci-
tons, eqgs. (4) and (5) are used here to obtain the cor-
rect form of the boundary condition (BC) on the “‘re-
acting surface’ free of adjustable parameters and to
give an estimate of the accuracy of the integral formu-
la (3) used instead of (5) for the calculation of the
ARC of annihilation reactions. The defimition of k&
used so far in the theory of diffusion-mediated re-
actions [1,2,7—13] cannot be used 1n our case, since
the particular form of the BC as well as the range of
validity of the diffusion equation approach used in
the cited papers are rather sensitive to the parent
transport equation, the character of interaction of
the reaction species, the dimensionality of the sys-
temn, etc. — see, for example, refs. [14—18].
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In what follows, we obtain the correct formm of the
BC accompanying the reduction of (4) to the diffu-
sion equation, and then we demonstrate how the de-
finition of the reaction coefficient k relevant to the
case of incoherent exciton annihilation via short-
and long-range interaction can be understood from
the dependence of the ARC on the exciton diffu-
sion rate. This dependence turns out to be qualita-
tively different from that obtained for the same
kind of the reaction process [1,2] but with another
definition of k.

At first let us specify the arnihilation probability
1 the form

A(n) = wla/n)®*M +5, 0, 6)

where the first term corresponds to the probability of
exciton—exciton annihilation via multipole—multi-
pole interaction: Mf = 3, 4, ... for dipole—dipole,
dipole—quadrupole, ... interactions. This probability
is analogous to the one obtained by Forster [19] and
Dexter [20] for donor—acceptor energy transfer. It
differs only in the interpretation of the corresponding
Forster radius which, in our case, is proportional to
the overlap of fluorescence and lower excited singlet
state absorption spectra.

The second term contributes to the annihilation
probability when excitons are located on nearest-neigh
bour molecules. Note that the Forster type of annihila-
tion probability results from the expansion of the
electrostatic interactions between excited states (re-
sponsible for the non-radiative disappearance of exci-
tons) in a multipole series. The utilization of the dom-
inant term of the expansion represented by the first
term in (6) is justified for all distances between exci-
tons, except the minimal one 7 = g at which the an-
nihilation probability can differ considerably from
that predicted by a monotonic dependence of the
type n—2M_ To account for this difference we intro-
duce the second term in the annihilation probabihity.

The reduction of the master equation (4) to the
diffusion equation (1) is justified at # 3> W. At long
times the change in the two-particle correlation func-
Hon at a distance of the order of the lattice constant
is small, and one can expand g{(#', £) in (4) as a Taylor
series in the vicinity of the point 7z retaining only lin-
ear and quadratic terms. Then, eq. (1) follows from
eq. (4) for n = a. In this case the discrete index n is
changed to the continuous coordinate r, and D = Wa?2
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on the assumption that the exciton can jump between
nearest neighbours only. The zeroth and first terms
of the expansion in the summation in (4) vanish for
all n except n = a. It is easy to see that for n =a the
first term resulting from the expansion of g(#', #) in
powers of |n' —n| and from the summation over n’
in (4) is proportional to 3g(n, £)/on|,-,. To pass
from discrete coordinates to the continuous case, we
use the relation

22 ag(n, H)fon = 4ndg(r, Dforl,-, - (7

n.,n=a

Under this condition the equation for g(r, 1) atr=a,
i.e. the BC, takes the form

2g(1, 1)fdr = $aWog(r, Hfor —a(1) g(1, 1) . (8)

In (8) and below the coordinates are expressed 1n units
of the lattice constant 2. The BC obtained coincides
with the form proposed in ref. [12].

It can be shown that at long times ¢ > W the solu-
tion of (1) approaches a steady state. At this stage of
the annihilation process the time derivatives in (1)
and (8) can be 1gnored. Under this condition (8) re-
duces to the RBC with R = 2 and the reaction coeffi-
cient defined as

k= (3/4m) (R + o)W . ©)

Thus, Q + w is associated with the collisional (short-
range) mechanism of the annihilation and can be in-
terpreted as the probability of reaction taking place
inside the reaction volume 6a3.

Using in (5) the steady-state solution of (1) subject
to the RBC with k defined by (9) one can calculate y
at long times. Examples of such a calculation are pre-
sented in fig. 1a (dotted lines) where the dependence
of the effective annihilation radius (in units of ) de-
fined by

v=81Da’R (10)

is shown. Substituting the same solution into (3) we
obtain the analytic expression for Ry as a function
of the microscopic parameters « /W and 2/W,

w \v 2l _ (@) + 2wkl _ (2)
Rege =4y (W) zl, ,(2) +2vkl (2) * an

where v = 1/2(M — 1), Z = 2v(co[2W)V/2, I, is a mod-
1
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Fig. 1. The effective annihilation radius Refp = (82Wa3)"14
as a function of the parameter y = 0.6 76(w/2W)'* for cif-
ferent values of the ratio £ = Q/w: (1) -2 =0, (2) -1 = 10,
(3) —§1=10%, (4) —§& = =. On both graphs the solid lines
correspond to the values of Reff obtained from eq. (11).
Dashed lines represent the function Reg(p) calculated in
accordance: (z} with eq. (5) in the diffusion equatjon approx-
imation; (b) with the interpolation formula (18).

ified Bessel function, q,, = »2*I(1 — v)/T'(1 + v) = 0.676,
0.67, 0.68 for M = 3, 4, 5 respectively.
Note that (3) is equivalent to

a3y =6(Q+ )e() + 4mew [ OPM 2] ar.
r=1 12)

which corresponds to the simplest estimate of the lat-
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tice sum (5) [21]. The curves in fig. 1a show the ac-
curacy of this estimate. It is seen that (11) is adequate
for both qualitative and quantitative analysis of the
dependence R ¢r = R rf(co/W, $2/W). The quantitative
differences between the values of R.¢ predicted by
(11) and those obtained from (5) in the diffusion equa-
tion approximation do not exceed 20% for the dipole—
dipole type of interaction. In most cases it is less than
the uncertainty in experimental data for ~y.

2. Discussion

Formula (11) for the effective radius of the reac-
tion which takes place via long-range (multipole—
multipole) and short-range (upon direct contact) in-
teractions has been derived previously (see, for exam-
ple, refs. [1,7])- Nevertheless, since the dependence
of R ¢r on the parameters of motion and interaction
of the reactants is tightly linked with the interpreta-
tion of the reaction coefficient in the RBC and since
many choices of this coefficient have been used [1,
2,7—13,22—-27], it is worth discussing the qualitative
behaviour of R_¢¢ for different exciton parameters
This behaviour is fixed by egs. (9) and (11) which
contain no free parameters.

For z > 1 (slow diffusion) eq. (11) gives

Rerr = q,(w/2W)” , 20(wf2W)12>1 . (13)

Eq. (13) was obtained by Yokota and Tanimoto [23]
for dipole—dipole excitation energy transfer and has
been redenved in many subsequent papers [1,2,7,13,
24-27].

For small values of z,

_ k+025[p(1 — u)]_lz2
1+£k

Resr

_(@&/W /(A — v) + (3/2m) (1 + Qe)] i
1+ GaANWRMA + 9oy - OP

In this case one can expect a quite diffeient depen-

dence of R ¢ on the diffusion rate, namely
Rer=1; 2Kw2m2 <1, w<Q (15)

and
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Rege = [v/(1 — ) +3/27) w/2W + (3/4m) QW
/2?2 <1, W Q. (16)

Thus, in general, there exist three regions of the
diffusion rate: slow, interrnediate and fast, where the
dependence of R ¢ on W is qualitatively different.

Eq- (13) corresponds to the reaction via multipole—
multipole interaction only. In this case the reaction
takes place at most at distances larger than r = ¢ and
therefore the result (13) is not sensitive to a particular
choice of the rate coefficient in the RBC.

Eq. (15) is the same as in the case of the collisional
type of diffusion-controlled reactions. This regime of
the reaction is more or less pronounced depending on
the magnitude of 2. Numerical calculation shows
that, for example, for M = 6 a noticeable region of W
where R rr = 1 does not exist when 2fw» < 103 (see
fig. 1). :

Finally, ea- 7~ 6) represents the so-called kinetic re- -
gime of the reaction when the ARC is independent of |
diffusion.

Note that the kinetic regime of annihilation does
not exist only for £2 = oo, i.e. ¥ = co. Such a BC was
used [2,24,25] for the description of long-range exci-
tation energy transfer with diffusion. For an estimate
of R.¢¢ a useful interpolation formula was proposed:

re=q (W2W)F <1 ;
rf> 1. (17)

Reff'_'l H
=rf,

When the rate of the reaction upon direct contact
is finite (k  =°) it follows from our derivation that
the interpolation formula for R ¢ in the annihilation
reaction, valid for any £2, reads

Rop = @2 /(1 — ) + (3/2m)(1 + 2/w)]
eff 1+@2n)(w2W)(1 + Qlw)

rf< 1;
s >1. (18)
The deviation of the values of R ¢+ obtained from
(18) from those calculated from (9) and (11) do not
exceed 15%. Results of the corresponding calculations
are shown in fig. 1b. ’
It is instructive to compare the present treatment
with the treatment of the donor—acceptor excitation

energy transfer given by Heisel and Miehe [1]. They
also used in their analysis the expression for the ARC

=rf’
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defined by (10) and (11) but the reaction coefficient
in the RBC was treated differently. In particular, the
absence of the collisional channel of the reaction in
ref. {1] (and in refs. [2,13,26]) associated with the
condition k£ = 0. For a reaction taking place purely
via multipole—multipole interacdon they obtained

Regs =a,(w2W)’I; _ ()I,—1@) - (19)

whereas 1n our case this condition cannot be used in
the sense mentioned above except for the situation
when the long-range 1mteraction is absent. Then

v=8uDgp, p=kl/(1+k), k=3Qf4nW. (20)

Therefore a dependence of R ¢ on the exciton pa-
rameters such as (19) cannot be realised for incoherent
exciton annihilation in crystals.

It is also to be noted that according to our analysis
the reaction (annihilation) regime is kinetic when the
diffusion of the reactants is sufficiently fast (see eq.
(16)), excluding the case of immediate collisional re-
action (£2 = o). In contrast, Heisel and Miehe arrived
at the conclusion that for fast diffusion the reaction
regime is diffusion-controlled: R ¢ & p. This discrep-
ancy arises from the fact that p is treated in ref. [1]
as a fixed parameter.

Thus, despite the fact that the expression obtained
for ARC (11) coincides with the corresponding result
of ref. [1], we arrive at quite different conclusions as
to the dependence of 7y on the diffusion rate. To the
best of our knowledge, the possibility of three regimes
of incoherent exciton annihilation differing in the
qualitative dependence of ¥ on D has not been pre-
dicted before.

In conclusion, we surnmarize the results of this work.

(i) The correct form of the BC for diffusion-me-
diated annihilation of incoherent excitons is obtained
from the microscopic equation describing the process.
At long times the BC found here reduces to the usual
form of the RBC with the reaction coefficient defined
in terms of microscopic parameters of the exciton sys-
* tem. These parameters £, «», W can be defined from
a quantum-mechanical desciptica of the spatial mo-
tion and the non-conserved part of the exciton inter-
action with non-excitonic degrees of freedom (see for
example, refs. [3,28]). Therefore all the quantities
appearing in the expression for ARC are well defined
microscopically.

(ii) The reaction coefficient k in the RBC (see eqs.

CHEMICAL PHYSICS LETTERS

2 August 1985

(2) and (9)), just as the ARC of annihilation vy, turn
out to be a function of three independent parameters,
two of which represent short- and long-range interac-
tions responsible for annihilation. It is shown that the
absence of the collision channel of the reaction can-
not be described by the BC dg(r, £)/9r|,_, =0 in the
presence of an annihilation channel via long-range in-
teraction. The appropriate form of the RBC in this
case is adg(r)/or|,-, = 3wg(a)/4nW.

(2ii) The dependence of the reaction coefficient in
the RBC on the interaction parameters gives rise to a
peculiar behavior of the annihilation rate as a func-
tion of the diffusion rate. Specifically, under the in-
fluence of combined short- and long-range interac-
tions on the annihilation process, 1n general three re-
gimes of annihilation can emerge that differ by the
qualitative dependence of the ARC (the effective an-
nihilation radius R ¢ on D. They are (1)y «<D!—¥
for slow diffusion, (2)v o« D for intermediate rate of
diffusion and (3) v is independent of D for fast dif-
fusion.

(iv) For the description of this dependence an in-
terpolation formula (18) is proposed which extends
the applicability of an equation given in refs [2,25],
which was valid in the case of instant reaction upon
direct contact of reactants only.
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