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The mlluence of short- and long-range (multipole-mulupole) rnlerncCons on dlffuslon-medIaled anmhllahon rexlIons IC 
studted. The precise form of the boundary condllion IS obtained from the mlcroscoplc descnpuon of the Incohcrenr ewlon 
anmlulation. The dependence of the rale coefficienl m the radIalion boundary condillon on the ewzilonic paramewrr IS 
determined As a rem11 the apparent rale coeflicient of Lhe annihlhxron rcaclion 1s oblamcd usmg only those pnramelen uhxh 
appear m Lhe microscopic equations describrng the nnnihllalion process. This enables us IO find the gcnenl dependence of thlr 
coefficient on Lhe pammetcrs of mot,on md both short- and long-range interacuons or exc,rons. 

1. Introduction and theory 

The main Subject of interest in the theory of dif- 
fusion-mediated reactions is the apparent rate coef- 
cient (ARC) r(t) which determines the time depen- 
dence of the concentration c(t) of reactmg species, 
when bimolecular reactions, such as donor-acceptor 
energy transfer or exciton annihilation (considered 
here), take place. The standard procedure of calculat- 
ing y, recognized to be valid at small c, is based on 
the solution of the diffusion equation 

ag(c t)/ar= 2m2g(~ t) - h(r) gk t) (1) 
subject to the so-called radiation boundary condition 

WC) 

a&# 0/W,,, = MR. 0 - (2) 

The ARC y(r) is defined by the relation (see, for 
example, refs. [1,2] and references therein) 

7(t) = 8nDR 2ag(r, t)/arl,, 

+4nj X(r)&, r)? dr. (3) 
r=R 

In eqs. (1)-(3)g(r, f) is the two-particle correla- 
tion function normalized with respect to c2(r). This 

means that for threedimensonal diffusion g(r, C) + 1 
when the distance between reactants r goes to infinity. 
D 1s the diffusion coefficient of the reactants assumed 
here to be identical, X(r) is the distancedependent 
probabfity per second which wiU be specified below, 
R is the contact (minimal) distance between any two 
reactants; k is usually considered as a phenomenolog- 
ical quantity characterizing the efficiency of the col- 
Lisbon reactions: k + m corresponds to the case of the 
collision reactions which occur instantly, k = 0 repre- 
sents the opposite case when no reaction occurs at r 
=R. 

To complete the descnption of the diffunon-me- 
diated reaction lanetics, one must link the reactlon 
coefficient (RC) k to physically significant quantities 
dependmg on the specific microscopic picture of the 
reaction process. In this work the annihilation reaction 
of incoherent excltons in a crystalline lattice is con- 
sidered starting from the master equation 

- Nn)gh 6 > (4) 

where II is a discrete index denoting the relative pan- 
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tion of two excitons in a crystal with lattice constant 
n; Win _n ., is the probability per second of an exciton 
jump from the lattice sate n to n’, supposed to be de- 
pendent on In - n’l only; X(n) is the probability per 
second of the annihilation of two excitons localized 
on lattice sites separated by the distance n 

Eq. (4) comes from the coupled chain of equa- 
tions for the exciton density matrix fast introduced 
to exciton annihilation theory by Suna [3] _ In ob- 
taining (4) we have followed the recipe for the chain 
truncation procedure proposed in ref. [4] which, in 
the absence of sources of reacting species, is equiv- 
alent to Waite’s method [5]. In the framwork of such 
an approach the many-particle problem 1s reduced 
to a two-particle one and the solution of (4) makes 
it possible to calculate the ARC defined as [3] 

y(r) = 2 c h(?z) g(n, r) - (5) 
n 

The theory of ref. [3] and subsequent papers 14, 
61 concerns the annibrlation reaction due to the 
short-range type of exciton-exciton interaction ap- 
propriate to the case of triplet-triplet annihilation. 
For srnglet exciton anmhilation in molecular crystals, 
the long-range dipole-dipole interaction is known to 
be important experirnent.aIIy [7]. Since, in this case, 
an analytical solution of (4) is not available, the tbe- 
ore&al treatment of the process is usually performed 
with the help of eqs. (1)+3) where the reaction coef- 
ficient k is interpreted on intuitive physical grounds. 
As a result the actual dependence of the ARC on mi- 
croscopic parameters of excitons is left unclear. To 
clarify this dependence m the particular case of the 
diffusion-mediated annihdation of incoherent exci- 
tons, eqs. (4) and (5) are used here to obtain the cor- 
rect form of the boundary condition (BC) on the “re- 
acting surface” free of adjustable parameters and to 
give an estimate of the accuracy of the integral forrnu- 
la (3) used instead of (5) for the calculation of the 
ARC of annihilation reactions_ The defirution of k 
used so far in the theory of diffusion-mediated re- 
actions [1,2,7-131 cannot be used m our case, since 
the particular form of the BC as weIl as the range of 
validity of the diffusion equation approach used in 
the cited papers are rather sensitive to the parent 
transport equation, the character of interactron of 
the reaction species, the dirnensionahty of the sys- 
tem, etc. - see, for example, refs. [14-181. 
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In what follows, we obtain the correct form of the 
BC accompanying the reduction of (4) to the diffir- 
sion equation, and then we demonstrate how the de- 
finition of the reaction coeffrcrent k relevant to the 
case of incoherent exciton .’ .’ tion via short- 
and longrange interaction can be understood from 
the dependence of the ARC on the exciton diffu- 
sion rate. This dependence turns out to be quahta- 
tively different from that obtained for the same 
kind of the reaction process [1,2] but with another 
definition of k. 

At first let us specify the ar-nihilation probability 
m the form 

X(n) = w(o/n)2M + 6, ,$2 , (6) 

where the fii term corresponds to the probabihty of 
exciton-exciton annihilation via multipole-multi- 
pole interaction: M= 3,4, . . . for dipole-dipole, 
dipole--quadrupole, . . . interactions. This probability 
is analogous to the one obtained by Fbrster [19] and 
Dexter [20] for donor-acceptor energy transfer. It 
differs only in the interpretation of the corresponding 
F&ster radius which, in our case, is proportional to 
the overlap of fluorescence and lower excited singlet 
state absorption spectra. 

The second term contributes to the an.niUation 
probability when excitons are located on nearest-neigh 
bour molecules. Note that the Fbrster type of annihila- 
tion probability results from the expansion of the 

electrostatic interactions between excited states (re- 
sponsible for the non-radiative disappearance of exci- 
tons) in a multipole series. The utilization of the dom- 
inant term of the expansion represented by the first 
term in (6) is justified for all distances between ex&- 
tons, except the minimal one n = a at which the an- 
nihilation probabili& can differ considerably from 
that predlcted by a monotonic dependence of the 
type n-m_ To account for this difference we intro. 
duce tbe second term in the annihilation probabfhty. 

The reduction of the master equation (4) to the 
diffusion equation (1) is justilied at t % IV. At long 

times the change in the two-particle correlation func- 
tion at a distance of the order of the lattice constant 
is small, and one can expand g(n’, f) in (4) as a Taylor 
series in the vicinity of the point n retaining only lin- 
ear and quadratic terms. Then, eq. (1) follows from 

eq. (4) for n = a. In this case the discrete index IL is 
changed to the continuous coordinate r, and D = Wa* 
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on the assumption that the excitun can jump between 
nearest neighbours only. The zeroth and first terms 
of the expansion in the summation in (4) vanish for 
allnexceptn=a.Itiseasytoseethatforn=athe 
first term resulting from the expansion of An’, r) in 
powers of 1 n’ - n 1 and from the summation over n’ 
in (4) is proportional to ag(n, t)/an In_. TO past 
from discrete coordinates to the continuous case, we 
use the relation 

2 ag(q t)/an = 45rag(7, t)/arlrzo . 
n,n=a 

(7) 

Under this condition the equation for&, f) at r = u, 
i.e. the BC, takes the form 

ag(i, t)/at=$ma~, t)/ar-~(i)g(i, t) . (8) 

In (8) and below the coordinates are expressed In units 
of the lattice constant a. The BC obtained coincides 
with the form proposed in ref. [12]. 

It can be shown that at long times t S W the solu- 
tion of (1) approaches a steady state. At this stage of 
the annihilation process the time derivatives in (1) 
and (8) can be ignored. Under thrs condition (8) re- 
duces to the BBC with R = a and the reaction coeffi- 
cient defined as 

k = (3/47r) (S-Z + w)/W _ (9 

Thus, Q + w is associated with the collisional (short- 

range) mechanism of the annihilation and can be in- 
terpreted as the probability of reactron taking place 
inside the reaction volume 603. 

Using in (5) the steady-state solution of (1) subject 
to the RBC with k defined by (9) one can calculate 7 
at long times. Examples of such a calculation are pre- 
sented in fig la (dotted lines) where the dependence 
of the effective annihilation radius (in units of o) de- 
fined by 

y = 8&3R& (10) 

is shown. Substituting the same solution into (3) we 
obtain the analytic expression for& as a-function 
of the microscopic parameters o/W and a/W, 

R 
w 

( ) u z.Il_ “(Z) + mL,(z) 
eff = Qv 2w d y_ 1 @I + 2pkl,Iz) 

(11) 

where v = 1/2(M - l), Z = 2v(w/2hJ)l/2, XV is a mod- 
I 
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Fig. 1. The effective annihilation raclius&ff = (8&J~3)-17 
as a function of the parametery = 0.676(w/2w)1Hfor Gif- 
ferent values of the ratio 5 = n/w: (1) -E = 0, (2) -5 = 10, 
(3) -6 = 104, (4) -5 = -_ On both graphs the solid lines 
correspond to the values of Reff obtaiued from eq. (11). 
Dashed lines represent the function R.&v) calculated in 
acmrdancer (a) with eq. (5) in the difrusion equation approx- 
imation; (b) with the interpolation formula (18). 

ified Bessel function, 4” = vzVy(l - v)/I’( 1 + V) = 0.676, 
0.67,0.68 for&f= 3,4, 5 respectively. 

Note that (3) is equivalent to 

K3r = 6(52 + o)g(l) + 47~~ / rgW~M-2] dr. 
r=l (12) 

which corresponds to the simplest estimate of the lat- 
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tice sum (5) [21]_ The curves in fig. la show the ac- 
curacy of this estimate_ It is seen that (11) is adequate 
for both qualitative and quantrtative analysis of the 
dependence R,ff = R&w/W. !2fW). The quantitative 
differences between the values of Reff predicted by 
(11) and those obtained from (5) in the diffusion equa- 
tion approximation do not exceed 20% for the dipole- 
dipole type of interaction. In most cases it is less than 
the uncertainty in experimental data for y_ 

2. Discussion 

Formula (11) for the effective radius of the reac- 
tion which takes place via long-range (multipole- 
multipole) and short-range (upon direct contact) m- 
teractions has been derived previously (see, for exarn- 
ple, refs. [ 1,7] )_ Nevertheless, since the dependence 
ofR eff on the parameters of motion and interaction 
of the reactants is trghtly linked with the mterpreta- 
tion of the reaction coefficient in the RBC and smce 
many choices of this coefficient have been used [ 1, 
2,7-l 3,22-271, it is worth discussing the qualitative 
behaviour of Reff for different exciton parameters 
This behaviour is fmed by eqs. (9) and (11) which 
contain no free parameters_ 

For I > 1 (slow diffusion) eq. (11) gives 

R eir = 4”(w12w)V 3 2V(w/2W)l’2 z+ 1 _ (13) 

Eq. (13) was obtained by Yokota and Tanimoto [23] 
for dipole-dipole excitation energy transfer and has 
been redenved IJ-I many subsequent papers [1,2,7,13, 
24-27]_ 

For small values of z , 

R 
eiT= k+0.25[v(l -V)]_1z* 

l-tk 

JG;jWj[ir/(l -Y) + (3/2~) (1 + f2L/w)] 
1 + (3/2rr)(o/2w)(l + a/o) - (14) 

In this case one can expect a quite cllffeient depen- 
dence of Rerf on the diffusion rate, namely 

R (.ff = 1; 24w/2 W)1/2 e 1, wei- (15) 

and 

R efr- = [v/( 1 - u) + 3/2rr] wf2W + (3/4ir) !2/W 

2v(o/2W)l’2 4 1, wz+ G? _ (16) 

Thus, in general, there exist three regions of the 
diffusion rate: slow, intermediate and fast, where the 
dependence of Reff on W is qualitatively different. 

Eq. (13) corresponds to the reaction via multipole- 
multipole interaction only. In this case the reaction 
takes place at most at distances larger than r = rz and 
therefore the result (13) is not sensitive to a particular 
choice of the rate coefficient in the RBC. 

Eq. (15) is the same as in the case of the collisional 
type of diffusion-controlled reactions. This regime of 
the reaction is more or less pronounced depending on 
the magnitude of R. Numerical calculation shows 
that, for example, for M = 6 a noticeable region of W 
where R,_r = 1 does not exist when SZ/ol < lo3 (see 
fig. 1). 

Finally, eq- ‘- 6) represents the so-called kinetic re- 
gime of the reaction when the ARC is independent of 
diffusion. 

Note that the kinetic regime of annihilation does 
not exist only for R = -, i.e. k = m_ Such a BC was 
used [2,24,25] for the description of long-range exci- 
tation energy transfer with diffusion. For an estimate 
ofR eff a useful interpolation formula was proposed: 

R 1, eff = ‘f = q,(w/2wy < 1 ; 

= ‘f 9 rf>l. (17) 

When the rate of the reaction upon direct contact 
is finite (k # -) it follows from our derivation that 
the interpolation formula forRetf in the annihilation 
reaction, valid for any SL, reads 

R eff = (~12w) rvl(l - V) + (3/2n)(l + n/w)] 
1 + (3/2n)(o/2w)(l + a/o) ’ 

rf<l; 

= ‘f s q>l. (18) 

The deviation of the values of R,, obtained from 
(18) from those calculated from (9) and (11) do not 
exceed 15%. Results of the corresponding calculations 
are shown in fig. lb. 

It is instructive to compare the present treatment 
with the treatment of the donor-acceptor excitation 
energy transfer given by Heisel and h4iehe [l] _ They 
aLso used in their analysis the expression for the ARC 
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defined by (10) and (11) but the reaction coefficient 
in the RBC was treated differently. In particular, the 
absence of the collisional channel of the reaction in 
ref.,[l] (and in refs. [2,13,26]) associated with the 
condition k = 0. For a reaction taking place purely 
via multipole-multipole interaction they obtained 

R eff = q,(w/2W)“1~_,(2)/1”- l(Z) ’ (19) 

whereas m our case ‘tis condition cannot be used in 
the sense mentioned above except for the situation 
when the long-range mteraction is absent. Then 

7=&r&p, p=k/(l+k), k=3AI2/4rW. (20) 

Therefore a dependence of R,, on the exciton pa- 
rameters such as (19) cannot be real&d for incoherent 
exciton annihilation in crystals. 

It is also to be noted that accordmg to our analysis 
the reaction (annihilation) regune is kinetic when the 
diffusion of the reactants is sufficiently fast (see eq. 
(16)), excluding the case of immediate collisional re- 
action (S2 = -). In contrast, Helsel and Miehe arrived 
at the conclusion that for fast diffusion the reaction 
regime is diffusioncontrolled: R, up_ This discrep- 
ancy arises from the fact that p is treated in ref. [1] 
as a fmed parameter. 

(2) and (9)), just as the ARC of annihilation y, turn 
out to be a function of three independent parameters, 
two of which represent short- and long-range interac- 
tions responsiile for annihilation. It is shown that the 
absence of the collision channel of the reaction can- 
not be descnied by the BC i&(r, f)/arl,=, = 0 in the 
presence of an annihilation channel via long-range in- 
teraction. The appropriate form of the RBC in this 
ca5e is aa&)/&&=, = 3wg(a)/4nW. 

(ti) The dependence of the reaction coefficient in 
the RBC on the interaction parameters gives rise to a 
peculiar behavior of the am&ilation rate as a func- 
tion of the diffusion rate. Specifically, under the in- 
fluence of combined short- and long-range interac- 
tions on the annihilation process, m general three re- 
gimes of - annihilation can emerge that differ by the 
qualitative dependence of the ARC (the effective an- 
nihilation radius R eff 0nD. They are (I)7 aDlmV 
for slow diffusion, (2)7 = D for Intermediate rate of 
diffusion and (3) y is independent of D for fast dif- 
fusion. 

Thus, despite the fact that the expression obtained 
for ARC (11) coincides with the corresponding result 
of ref. [l] , we arrive at quite different conclusions as 
to the dependence of 7 on the diffusion rate. To the 
best of our knowledge, the possibility of three regimes 
of incoherent exciton annihilation diffetig in the 
qualitative dependence of 7 on D has not been pre- 
dicted before. 

(iv) For the description of this dependence an in- 
terpolation formula (18) is proposed which extends 
the applicabihty of an equation given in refs [2,25], 
which was valid in the case of instant reaction upon 
direct contact of reactants only. 
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diated annihilation of incoherent excitons is obtained 
from the microscopic equation describing the process. 
At long times the BC found herz reduces to the usual 
form of the RBC with the reaction coefficient defined 
in terms of microscopic parameters of the exciton sys- 
tem. These parameters Q, ~3, W can be defined from 
a quantum-mechanical descripticn of the spatral mo- 
tion and the nonconserved part of the exciton inter- 
action with nonexcltonic degrees of freedom (see for 

example, refs. [3,28]). Therefore all the quantities 
appearing in the expression for ARC are well defined 
microscopically. 
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