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A closed form is obtained of the length distribution of open and closed clusters in binary randomly 
disordered finite chains and its first three moments are calculated. It allows to express configura- 
tional averages of interest in chains with randomly distributed broken bonds, with randomly 
distributed infinite masses and related finite disordered systems and to calculate them exactly. 
A particular case of random walks on a chain with chaotically distributed pure absorbers is con- 
sidered without any restrictions on the chain length and the number of absorbers. The exact 
expressions of the averaged survival probability and averaged lifetime of a particle in the chain 
are obtained and discussed. 

HOJIyYeHbI aHaJII$TM9eCKMe BIQameHMR paCIIpeAeJIeHMfi OTKpbITbIX I4 3aHPbITbIX KJIaCTe- 
POB no AJlMHaM B OQaHMqeHHOfi CnyqafiHO pa3yIlOpRaOseHHOfi 6 ~ ~ a p ~ o H  UeIIOYKe M 
Bbl’lBCJIeHbI TPM IIepBbIX MOMeHTa yKa3aHHbIX PaCIIpeAeJIeHMfi. 3 T O  KI03BOJIReT OIIpeHe- 
J l M T b  KOH@HrYPaqAOHHbIe CpeAHHe B UeIIOsHe CO CJIyqafiHO paCKIpeAeneHHhlMI4 pa3Op- 
BaHHbIMM CBH3SiMH, B UeIlOqKe CO CJly’iafiHO paCnpeAeJIeHHblMM 6eCKOHeUHbIMH MaCCaMM 
M I I O H O ~ H H X  HeyIIOpRnOqeHHblX OrpaHHqeHHblX CMCTeMaX B 3aMKHYTOfi, yao6aoa $WR 
TO’IHOI‘O paCqeTa @OpMe. nOJIy’IeHHbIe pe3yJIbTaTbI HCIIOJIb30BaHbI &JIR peLUeHMA 3aAa’Iki 
cnysafiHbix 6 n y m ~ a ~ ~ f i  B Uenowe c XaoTmecm pacnpeAeneHHbiMH a6COnloTHO norno- 
rYaIommmi noByruKaMti Be3 K ~ K M X - J I M ~ O  orpaamemifi Ha AJIMHY qenown M ~ C J I O  
JIOByIIIeH. HafiReHbI T04HbIe BbIpalKeHHR KOH4HrYPaUHOHHbIX CpeAHMX BePORTHOCTEi 
BblWBBaHMR M BpeMeHM lKI43HM YaCTMUbI B UeKIOWCe, KOTOpbIe MOl‘YT 6bITb MCnOJIb30BaHbI 
AJIH OIIMCaHMFI ,I(OHOPHOft JIIoMIlHeCUeHrIMM B AOHOp-aKUeIITOpHbIX pa3yIIOpUAOseHHbIX 
OAHOMepHbIX CHCTeMaX . 

1. Introduction 
A theory of one-dimensional disordered systems has been elaborated in recent years 
(cf. [l, 21). This was stimulated by the extensive experimental work on materials 
with quasi-one-dimensional properties. From the theoretical point of view these 
studies are extremely interesting providing a number of exact analytic results that  
are not available in more complicated cases of two- and three-dimensional disordered 
systems. Moreover there exist some exactly tractable models with specified kind of 
disorder, but still very useful for investigations in many aspects. First, they can be 
relevant t o  real experimental situations [3]. Second, they give reliable bases for testify- 
ing and for comparing approximate approaches to  the description of disordered sys- 
tems [4,5]. Third, they supply the investigator with a unique opportunity to  get an 
insight into the nature of effects caused by disorder [l to  71. I n  the papers cited the 
importance to  study such models was convincingly demonstrated in the case of in- 
finite systems. Little has been done so far as to  finite disordered systems. I n  particular 
no attempts were made to  consider models discussed in [3,4, 6, 71 taking into account 
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the .size effects, though the importance of such considerations is self-evident. The 
present publication partly fills the gap. 

To be more definite a finite chain constituted of two types of structural components 
distributed a t  random is in the focus of our discussion. The cluster size distribution 
and its three first moments are obtained (Section 2) and used (Sect:ion 3) in calcula- 
tions of the exact averaged quantities characterizing random walks on a finite chain 
with an arbitrary number of pure absorbers regarded as one of the components of 
a disordered chain. These quantities, the survival probability and lifetime of a particle 
in a chain with absorbers, proved to  be useful for the description of light emission of 
one-dimensional donor-acceptor disordered systems. We conclude the paper sum- 
marizing the main results and putting emphasis on their applications in Section 4. 

2. Cluster Length Distribution and Its Moments 
The observable properties of binary substitutionally disordered systems are tightly 
linked with the existence of clusters composed, say, of n molecules of type A localized 
on adjacent sites of a periodical structure. The molecules of a cluster occupy the region 
with m molecules of type B on its boundary. I n  an infinite disordered chain the 
cluster size (length) distribution was used in the exact calculations of some con- 
figurational averages 13, 4, 6, 71. It is also useful for analogous calculations in the 
case of finite disordered one-dimensional systems, but little additional work should 
be done to  obtain its closed form. 

The only two types of clusters consisting of A molecules can exist in a finite chain 
with full number of sites N on which N A  molecules of the sort A and NB molecules of 
the sort B, N ,  + NB = N ,  are randomly distributed: the open ones - with one B 
molecule on the cluster borders (related to  the chain ends) and the closed ones - with 
two B molecules on the cluster borders (inside the chain). The same can be said about 
clusters consisting of B molecules. To obtain the cluster length distribution i t  is 
necessary to find the full number of open and closed clusters of the length n (cor- 
respondingly po(n) and pc(n) )  in all possible nonequivalent linear configurations of 
the given number of A and B molecules. Let us get first an expression for pc(n) of A 
clusters. 

The number of closed clusters of the length n in an arbitrary configuration is equal 
to 

N B - 1  

i = l  
C %r,n 2 (1 ) 

where qi denotes the length (expressed as the number of sites occupied by A molecules 
of a cluster) of closed clusters in this configuration, pi  E [0, N A ] ,  N B  - 1 is the limiting 
number of closed clusters in any configuration. We also introduce the notations qo 
and q N g  for the distances between the chain ends and B molecules nearest to them. 
To find pc(n) (1) should be summed over all possible configurations which is evidently 
equivalent to  the summation over all values of qi including qo and q N B  that satisfy 

Nn 
-1 P 

the condition C pi = N,. Thus we have 
i = O  

m NB-1 

p"(n) = C ~ N B  C 4 t , n  
qa,ql,  ..., qNB=O .z 4 i . N A  i=l  

2 = 0  

The summation in (2) is easily performed with the help of the Kronecker &function 
integral representation 

2n 

0 
(3) = (27c-l f exp [ip(n - m)]  dp 
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and gives 
0 Ng-1  -(NA + 1) z' - ( n + l )  

pC(n)  = -4%y ~ s dz s dz' ~ - (1 - z p  zz' - 1 ' 

c 6' 

(4) 

where contours of integrations are unit circles C and C' on the complex plane. Making 
use of the Cauchy theorem in (4) we get 

( N  - n - l)! 
= (NB - 2 )  ! ( N A  - n) ! * 

The function po(n) ,  the full number of open A clusters in all configurations, can be 
obtained similarly 

2(N - n - l ) !  
= ( N B  - I)! ( N A  

Note that for the given N po(n) forms the quadratic matrix \\posB,nlj with elements 
defined by the relations 

P%TB,B,12 = PONB,rl+l + PON,--l,n+l 9 

2 ,  N B + n = N ,  
p) ; ) ,n=2,  n = 1 , 2  )...) N - 1 .  

= { O ,  NB + n > N ,  
(7) 

The matrix corresponding to  p c ( n )  is simply connected with [Ip%.B,n[j due to  the fact 
that pc(n )  = ( N B  - 1)/2 p0(n).  

From ( 5 )  and (6) one can obtain the cluster length distribution 
NB(NA - l)! ( N  - n - l)! 

( N  - l)! (N* - n)!  
P(n)  = _ _ _ -  

normalized to unity 

n = l  

which defines the probability of existence of an A cluster of the length n in a binary 
randomly disordered finite chain. The probabilities to  find an open and a closed cluster 
of this length are as follows: 

(10) 
2 

PO(%) = -~ - - P(n) 
NB+1 

and 

respectively. 

a distribution of Poisson type, 
It can be easily shown that for N >  N B >  1 (8) reduces to the asymptotic form of 

P(n) + Pa,(%) = CB exp ( - ~ c B )  , 
N3NB@1 

where cB = N,/N. 
The moments of the cluster length distribution read as 

HA 

12=1 
m(i) = c n"(n) . 
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To obtain their explicit dependence on the component concentrations it is convenient 
to express them in terms of the generating function. Using the obvious relation 

one can write 

where the generating function is 

~ ) - ~ * - - l  exp [ ( N A  + 1) n] - (1 + z)-I exp (a) 
= ( 1 +  2)N-l - 

aaa (1 + z)-I exp (a) - 1 

(16) 
r1 + 

Advantages of the latter representation of Fi(z)  arise from the fact that after differen- 
tiating in a the terms containing the multiplier exp [(NA + 1) n] in (16) include 
powers of z not higher than N B  - 2. 

In  what follows we restrict ourselves to i = 0, 1 , 2 ,  3. For these values of i we have 

F&) = z-l[(l + 2)fl-l - (1 + z)NB-ll , 

F2(2) = Z - ~ W  + 2)" (2 + 2 )  - (1 + 
= 2-2{(1 + 2 ) N  - (1 + z p - 1  [(NA + l )  + l1) 9 

+ 1) z + 1i2 + z + 1 ) )  , 
F~(z) ~ ~ ( ( 1  + z ) ~  (6 + 62 + 2') - (1 + ~ ) ~ ' - - l  ( [ ( N A  + 1) z + 11" + 

+ 3(1 + 2, [(NA + l )  + l1 + (l + 2) (2 + 2))) . (17) 
Hence one can see that, after expanding Fi( z )  in powers of z, just the sum of two 
polynomials is obtained: the first of power N - 2 and the second of power NB - 2. 
Introducing for the latter (that makes no contribution to the moments) the notation 
- f f ( z )  we rewrite (17) in a more convenient form, 

N !  2 i - 4  + 
i = 4  N + l - i  ( N + 1  - i ) ( N + 2  - i )  i ! ( N - i ) !  1 6i  i(i - 1) N 

F3(z) = [B + 
+ ( N  + 1) ( N  + 6) Z N - 3  + ( N  + 1) ( N +  2) zN-' - f&) - (18) 

(19) 

Finally substituting (18) into (15) we get for i = 0 equation (9) and 

m(l) = (cB + N-1)-1 , 

Relations (5),  (6), (8) to (11) and (19) to (21) resulting from them can be applied 
to calculate the exact configurational average in finie tchains with randomly distrib- 
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uted infinite masses, randomly distributed broken bonds, etc. As an example the 
particular case of random walks on finite chains with chaotically distributed traps 
(absorbers) is considered in the next section. 

3. Example of an Exactly Solvable Model of a Disordered System. 
Random Walks on a Finite Chain with Chaotically Distributed Pure Absorbers 

The results obtained above can be effectively used in the classical one-dimensional 
random walk problem. We consider the particular case of randomly distributed pure 
absorbers which, for infinite chains, was discussed in [7].  The model of "interrupted 
chain" considered in [3, 4, 61 is very much alike ours. 

Random walk motion is equivalently described both by the generating function 
formalism [8] and the solutions to  master equations [ l ,  71 preferable in employing 
for our problem. 

Let a particle move along a chain jumping from one site of the chain to  another with 
the per second probability W. On any site occupied by an absorber a particle is 
irreversibly removed from the chain with the per second probability /3. The probability 
e(r,  t )  to  find a particle on the chain site r ,  r = 1, 2, ... , N ,  a t  time t ,  satisfies master 
equations which read 

where {k} denotes the summation only over the sites occupied by randomly distributed 
absorbers. These are associated in the following with B molecules. 

We are interested in the probability that a t  time t the particle still can be found 
in the chain, the survival probability, averaged over all configurations of the absorber 
distribution 

N 

r = 1  
e(t)  = c e(r ,  t )  2 (23) 

where the bar denotes configurational averaging. I f  a t  t = 0 the particle was distrib- 
uted over sites free of absorbers with equal probabilities Nzl ,  in the case of pure 
absorbers, p + co, (23) is reduced to  

where &(t), &(t) are the survival probabilities in open and closed clusters, respec- 
tively. The expressions for them follow from the solutions of master equations for 
n + 1 and n + 2 site regular chains with one and two pure absorbers on the chain 
ends. The corresponding expressions are 

1 - tg2(nn2i 2 ')exp{ -[I - cos(a-)]2~t}, 21 - 1 
2n + 1 e m  = (2% + 1) N A  Z=I 

xexp{-[l -cos(+)]2 ~ t } .  

Equations (25), (26) together with (lo), (ll), and (24) completely define the survival 
probability of a random walker in a chain of an arbitrary length N with an arbitrary 
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number N ,  of pure absorbers. I n  particular, (24) implies the effects of fluctuations 
of the absorber distribution. They are known to be actual in infinite chains [7 ]  leading 
to the characteristic time dependence of e(t) (see (27)). For the finite chains under 
consideration a new circumstance comes into play. The survival probability in an 
open (end) cluster is essentially greater than in a closed one of the same length. This 
is important and is reflected in the time behaviour of e( t )  if NB is not much greater 
than unity. 

I n  the limit N ,  NB + 00 with cB remaining finite and cB <l,  2Wt> 1, (24) cor- 
responds to the result of Balagurov and Vax [7] 

m 

C%Z2t" 
e(t)  = 2 1 z exp (- -) sinh-l(x) dx = 

0 

where end effects are ignored. Note that the same characteristic form, exp - (At)li3 
for long times (but with different A), was obtained in [3 ]  for the autocorrelation func- 
tion (see also El]) of the randomly interrupted chain. Both these results have the same 
origin, the complete localization of excitations within clusters, and can be extracted 
from the behaviour of the density of states near a band edge discussed by Lifshitz [9]. 

It is interesting to compare (27) with the exact result of (24) to  see how end effects 
manifest themselves. The difference between these two expressions is hard to be seen 
directly but it is easily exhibited by simple numerical calculations. 

We now treat an integral characteristic of the considered process which can be 
obtained in a closed form and thus, the role of end effects can be simply extracted. 

The mentioned characteristic is 
rn 

NA(NB + ') 2 [Po(%) T: + P:(n) T:] T = e( t )  dt = - s  0 N ?l=l 

which has the meaning of the average lifetime of a particle in the chain with pure 
absorbers. The expressions for lifetime of a particle in open (T:) and closed (T:) 
clusters are 

TE = (6WNA)-' + 1) (2% + 1) , 
T: = (12WNA)-I n(n + 1) (n + 2 )  , 

and coincide with appropriately defined mean first-passage times, the well-known 
quantities in the random walk theory [8]. Substituting (29), (30) into (28) and using 
the results obtained above of the moment calculations we get 

It can be seen that T is practically independent of the chain length when two 
simple conditions are fulfilled: N >  1,  cB> 7N-I .  But we would like to stress that 
end effects are important and manifest themselves in the dependence of T o n  cB in 
rather long chains (for example N = 100) when cB changes in a wide range (1 5 NB 5 
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5 10 in our example). This is the direct consequence of two factors: the probability 
of the existence of a closed cluster is by (NB - 1)/2 (not NB) times greater than that 
of an open one with the same length; the lifetime of a particle in an open cluster is 
greater than in a closed one (by four times for sufficiently long clusters). 

If the above-mentioned conditions are satisfied the relation between the average 
lifetime and the absorber concentration is 

2w3 = &.  (33) 
Note that (33) holds even when cB is close to unity. At the same time one can obtain 
(33) neglecting end effects and averaging (30) for n> 1 with the distribution (12), 
which is a correct procedure only for cB < 1.  

In the general case (31) and (32) give the exact expression of 9 in a finite chain 
with an arbitrary number of absorbers, but not larger than N - 1 and not smaller 
than 1 when the result is trivial. 

The results obtained in this section are directly applicable to the description of 
the luminescence decay and the luminescence quantum yield in one-dimensional 
donor-acceptor systems. For example, let A molecules be donors and their excited 
state be of the incoherent exciton type characterized by radiative lifetime t. The 
excitation amplitude a t  site r at time t is then exactly e(r ,  t )  exp (-t /z) and conse- 
quently, in the case of homogeneous 8-pulse excitation of donors, e( t )  exp ( - t /z )  re- 
presents the time dependence of donor molecule luminescence in presence of randomly 
distributed acceptors (absorbers). It can be also shown that 7 = 5z-I corresponds to 
the expression of the quantum yield in the case of %pulse excitation or quantum yield 
normalized to unity under stationary and uniform excitation of donors provided that 
the excitation decay is mainly due to absorption by acceptors. This is the case when 
Wz> cg2,  i.e. when the incoherent exciton diffusion length is much greater than the 
mean distance between acceptors. 

It should be pointed out that for an infinite donor-acceptor system the above- 
mentioned results were also discussed in [lo], where the expression 7 = ( 6 W ~ c ; ) - ~  
was obtained. This differs from ours by the factor 1/3. This quantitative discrepancy 
is due to the fact that the definition of configurational averages used in [lo] was not 
appropriate to the case. 

4. Conclusions 

The length distribution of open and closed clusters in binary randomly disordered 
finite chains was derived and the first three moments of this distribution were cal- 
culated. This allowed us to solve exactly the problem of random walks on a chain 
with arbitrary number of chaotically distributed pure absorbers. This was done earlier 
only in the case of infinite chains and small absorber concentrations 171. The utilization 
of the presented tJheory to the description of the donor luminescence quantum yield 
of one-dimensional donor-acceptor chains was also demonstrated. 

Some other fundamental physical quantities of one-dimensional disordered finite 
systems such as the density of states, the spectral density, the frequency-dependent 
hopping conductivity, etc. can be found quite similarly. The corresponding calcula- 
t,ions are now in progress. These calculations, among other questions of interest, permit 
to answer the two of primary importance: how long should a disordered chain be to 
be treated as an infinite one and what kind of deviations from the properties of 
infinite systems can be expected if end effects come into play. Both these questions 
are answered here concerning the lifetime of a particle in the presence of pure ab- 
sorbers ((31) to (33)). As to the time dependence of the survival probability simple 
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numerical calculations should be done to see the difference between the exact result 
(24) and (27) which is exact only asymptotically. 

The approach used here is restricted to systems with a specified kind of disorder 
(one of the component relative to the other should be a pure absorber, infinitely large 
potential, etc.). But still their theoretical studies are very useful providing exact 
results which serve as basis when treating more realistic cases. Note, in conclusion, 
that expressions for configurational averages analogous to (24) can be used as a zero 
approximation in an appropriately defined perturbation, but which is exact in the 
concentration of perturbed chain sites. 
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