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A generalization of the one-particle Haken-Strobl model for the exciton-phonon interaction to the case of mteractmg 
excitons is proposed. In the framework of thts model the exact set of stochastrc Liouville equations for the exciton subsystem 
density matrix is obtamed. In the case of strong transverse relaxatton and weak resonance transfer of molecular excttations tt is 
reduced to a chain of coupled equations descnbing random walks of incoherent excitons wtth allowance for their dynanuc 
tnteraction (the main result of the work). These equations with a Lorentz-type Jump probabtlity dependence on the 
exaton-phonon and exctton-exctton interaction parameters and, moreover. those. ones generalized in a way discussed in the 
paper are relevant to a number of applications including the dcscriptton of exctton annihilation, recombinahon of point defects 

in crystals and many others. The connection of the obtained random-walk equations with classical diffusion equations for a 
system of Interacting brownian particles is also discussed. 

1. Introduction 

Mathematical models for many real processes are based on the equations describing random-walk 
motion of particles (quasi-particles) in a given discrete space. The concept of random walks proved to be 
useful in the description of both one-particle and many-particle systems. In the case when only one particle 
effectively participates in a process (incoherent energy transfer in molecular crystals, energy trapping in the 
photosynthetic unit, ion transport through membrane channels) the corresponding equations are well 
known [l] and used in solid-state physics, physical chemistry and biophysics [2-lo]. 

Less has been done so far as to the description of many-particle processes such as reactions between 
particles (exciton-exciton annihilation, annealing of point defects, recombination of solvated electrons with 
suitable reaction partners, etc.) when the interparticle interactions conserving the particle number (dy- 
namic) and the non-conserving one (resulting in reactions) are important. In the theoretical study of these 
processes an adequate formalism is based on the chain of coupled equations for the density matrix [ll-171. 
But usually only the non-conserving part of the interaction is taken into account consistently. The role of 
the dynamic interaction which affects the reaction rate has been investigated at the stage of the two-particle 

correlation function [l&24]. In the framework of such an approach many-particle aspects of the problem 
are omitted and consequently the effect of high concentrations in the case of dynamic interactions cannot 
be considered. To avoid these difficulties in the theory of diffusion-influenced reactions one should start 
from a chain of equations describing random walks of particles with allowance for their dynamic 
interaction. The derivation of the corresponding equations is the aim of the present paper. 

To take into account the mutual influence of particles on their motion resulting in a change of the jump 
probabilities it is necessary to consider both the interaction between particles and their interaction with the 
medium in which they move. Our discussion is concerned with a system of excitons interacting with each 
other and also with phonons. The generalized Haken-Strobl model [25] discussed in section 2 serves as the 
starting point. The above model introduced first to describe exciton dynamics [25-271 has been extensively 
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used in studying one-particle excitation properties [28]. Being generalized through the-allowance for 
exciton-exciton dynamic interactions, it is used here to obtain the stochastic Liouville equations in the case 
of a many-particle system (section 3). In sections 4 and 5 the coupled chain of equations for a system of 
incoherent excitons is derived. To extend its range of apphcabihty which is Iimited by the particular form 
of the exciton-phonon interaction, a generalization of the equations describing random walks of interact- 
ing quasi-particles is also discussed in section 5. Finally, in section 6 the connection of the equations 
obtained with the standard BogoIjubov hierarchy chain for brownian particles is outlined. 

2_ Description of the model 

The hamiltonian operator of non-interacting Frenkel excitons reads 

(1) 

where I&“, with M f m is the matrix element defining the rate of the excitation energy resonance transfer 
from the nth molecule to the m th. M,,, is the excitation energy of a molecule at the lattice site n, the latin 
index corresponds to the coordinates of a molecule in a crystal and the summation over such an index is 
carried out at the positions of all molecules of a crystal. Bz and B,, are the creation and annihilation 
operators of a localized excitation at the n th molecuIe_ 

In the Haken-Strobl model (see refs. [25-281) the interaction between excitons and phonons is treated 
as a stochastic process described by the hamiltonian 

K,, = c h,,,(r)B,tBfi,. 

where the diagonal matrix element h,,(r) and the non-diagonal one h,,,(r) represent the stochastic 
variations of the excitation energy at the lattice site n and of the coherent interaction matrix element M,,, 

of (1) respectively_ The fluctuations of these quantities are assumed to be a gaussian stochastic process 
characterized by the following properties 

(3) 
where the angular brackets denote the averaging over fluctuations which, according to (3). are supposed to 
have a white spectrum_ The averages of higher products of the It,,, (t) can be expanded in terms of (3), i.e. 
the cum&ant averages of a product of more than two h,,,(t) are equal to zero [29]. The phenomenological 
quantities r,,,, depend on the distance between lattice sites n and nr and are commonly related to the local 
r,,, = r and non-local for n f mz scattering of excitons by phonons. 

Eqs. (l)-(3) reflect the basic assumptions invoived in the Haken-Strobl model describing one-partide 
excitation phenomena. To consider many-particle states with more than one moIecule involved in excitation 
and related processes, one should take into account the exciton-exciton interaction. Since the non-conserv- 
ing part of the interaction resulting in exciton annihilation has been considered in ref. [12], we include only 
the dynamic exciton-exciton interaction which can be written in the form 

(4) 

mhere the matrix elements of the interaction energy V,, as well as the Mnn, are assumed to be functions of 
Jn - rn]. 
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We extend f&her the Hak:n-1Strobl- model by taking intd account fiuctuatkks of the interaction 
energy. These are also treated as a gaussian stochastic process described by the hamiltonian _ c - _ 

where the time-dependent matrix elements are supposed to be random quantities with the following 
properties 

(6) 

The first of these relations means that the mean value of the interaction energy fluctuations is included in 
(4), the second one shows that the fluctuations described by h,,(t) and hi,(t) are assumed to be 
statistically independent, the thud relation implies the independence of the interaction energy fluctuations 
of different pairs of excitons. The parameters x,,,, represent the contribution to the non-local scattering 
rate of excitons arising from the fluctuations of the exciton-exciton interaction energy. 

Thus, the total hamiltonian of the considered system reads 

H= Hbf + H,+ H,,, + H:,,. (7) 

3. The stochastic Liouville equation for the exciton subsystem density matrix 

We derive the stochastic Liouville equation (SLE) for the exciton density operator following the 
standard procedure described in ref. [28]. 

Averaging the formal solution of the equation of motion of the density operator with the hamiltonian (7) 
over the fluctuations we obtain (ti = 1) 

c(t)= (Texp( -i/b[~~~(t’)+~~~(r’)]dt’))p(O), (8) 

where p(t) is the density operator of the exciton subsystem, the circumflex denotes the interaction 
representation b(t) = exp[i( HM + Hy)xt]p(t), A x B = AB - BA for any two operators A and B, T is the 
time ordering operator, ordering operators in the expansion of the exponential from right to left with 
increasing time. 

Rewriting (8) in terms of cumulant averages [29] and using the properties of the stochastically 
time-depending part of the hamiltonian (7) we get 

B(t) = Texp( -fJbdtl/bdt2<[fi~I(fl) +%,T(t,)] [%(t,) +&k~(tz)]))p(o) 

where 

(10) 

(11) 
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Differentiating (9) with respect to time and transforming the resulting equation to the Schrochnger 
representation we arrive at the following equation of motion 

dp(r)/dt=[-i(y,,+H,)X-QQ,-Q,]p(t), (12) 

with H,f, H,, Q,%,, and QV defined in (1). (4) (lo), and (11) This equation reduces to that derived by 
Haken, Strobl and Reineker if we put H, and QV equal to zero. Since we are interested in the exciton 
dynamics when more than one excitation is present H, and QL, cannot be ignored here. 

The evolution of an exciton subsystem with S excitons is completely defined by the set of quantities 

P 
(s) 
n,“l , = Sp(p(r)Bn:B,s -__Bn+;B,;B,;...B,;). n.:n;n; _ n, s=1,2 ,---7 S. (13) 

which will be called hereafter the matrix elements of the density matrix. The diagonal eIements p,$l, define 
the excitation distribution in molecules of a crystal. i.e. the exciton concentration; p$+R,n2 gtves the 
probabihty of finding a pair of excitons at molecules n, and nz. etc. Non-diagonal matrix elements 
#s) 
“, n,.n; n; define phase relations for one-particle, two-particle. . . . , s-particle excitations in a crystal. 

The equations of motion for these quantities follow directly from (12) and the commutation relations for 
the creation and annihilation operators which are supposed to be the Pauli ones 

B,B; - B,tB,, = 6,,,,(1 - 2B,tB,), B,‘= B;‘= ()_ (14) 

It is convenient to represent the time derivatives of the matrix elements of the density matrix 
symbolically 

where indices of the derivatives denote the summand of the right-hand side of the eq. (12) due to which the 
change in the density matrix is produced_ The corresponding expressions for these conventional derivatives 
are obtained using (12) and (14) in (13). They read 

06) 

The expressions for (dp(“/dt) H,I for s > 2 can be easily written down in an analogous way. 
We proceed with writing explicitly (dp”‘/dr),y 



The contribution to the change in the density matrix due to the interaction with phonons is represented by 

dd:‘.,~.n;__~: 
dt 

= -Sp{p(t)Q,B; ---B;Bn;---B,;) 
QH 

1 -s-l 2 s,,,; 
j.k=l 

l#n, J,k- 1 

J&--l 

(21) 

where terms with P(~+‘) are omitted, and 

dp”! 
“,_ n,:n; - n: 

dt 
= -Sp{ p(r)Q,B,‘; -.-B;B,,; . ..B.,:} 

QV 

= -2 

/#k’-2 

+c Ii X?l,i+Xn;r-2Xn,r 2 %p; i (22) 
I J=l /'-I 

The substitution of expressions (16)-(22) into the right-hand side of (15) leads to a coupled chain of 
equations for $’ JY,;ni FYiy s=l,2 , _ . _ , S. The stochastic Liouville equations for the matrix elements of the 
exciton density matrix are exactly defined for the system with the hamiltonian (7) and can be used, in 
genera& for the description of crystal properties at high levels of excitation. As in the case of the 
one-particle Haken-Strobl model, it is not necessary to make any a priori assumptions as to the character 
(coherent or incoherent) of the exciton motion. 

In what follows we deaI only with those crystal excited states which may be regarded as an ensemble of 
incoherent excitons. The corresponding equations cau be derived from the above SLEs under certain 
conditions. 

With this aim in mind we remind briefly the procedure of the derivation of the master equation 
describing the dynamics of an isolated incoherent exciton. Restricting ourselves to one-exciton states 
(pts) = 0, s 2 2) we obtain from (15)-(22) 

r,,,P::‘:) (23) 
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This equation is equivalent to the one obtained by Haken and Strobl for the one-exciton density matrix, 
differing from the latter only by the sign of the first sum in (23) because of different definitions of-the 
matrix elements of p(r). 

When the rate of local and (or) non-local scattering is large in comparison with the coherent transfer 
rate, 

(24) 

in other words, if the scattering length of excitons is smaller than the lattice constant, then, for times longer 
than the transverse relaxation time (E,r,)-’ (scattering time), the number of variables needed to describe 
exciton dynamics is cut down and eq. (23) simplifies. It is easy to show [25,30] that on the time scale 
mentioned above the non-diagonal matrix elements &i. are negligibly small as compared to pit!, = pi” and 
the latter satisfy the master equation describing a stochastic markovian process of random walks of an 

isolated quasi-particle 

(25) 

where 

is the probability of a jump of an excitation from the nth molecule to the n’th. 
To reduce the chain of SLEs to one containing only diagonal matrix elements p::’ n,-n1 “I 

= p”‘.‘. the 
fulfilment of inequality (24) is not sufficient as is shown below. The approximations needed to ex~id~ the 

non-diagonal matrix elements ~y~o)n~__ and at the same time to take into account the interaction between 
excitons are clarified when a two-particle system is considered. 

4. Master (random-walk) equation for the two-particle density matrix of an isolated pair of incoherent 
excitons 

The stochastic Liouville equation for the two-particle density matnx following from (15), (17), (19), (21), 
and (22) with pC3’ = 0 is exact for a svstem with two excitons. It has the form 

(27) 
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&r-diagonal matrix elemehts pA$;-it follows from-(27) ._ - -- , _ - . 
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11 

377. 

CaIculating p$Ldiag the left-hand side of (27) can be ignored when the evolution of the system is sufficiently 
close to the steady-state limit, i.e. it is supposed that the rate of change in p~$,.,-d,~ is small compared to the 
rate of transverse relaxation at tikesi Z+ (CJ,)-‘. Assuming also that inequality (24) is satisfied we neglect 
products such as Mp~~-d,ag in comparison with T’p~,Zdn-d,ng. Then, to find the non-diagonal matrix elements 

occurring in (28) we obtain the following set of equations 

(29) 

where n1 + n;_ Introducing for convenience the quantities p!$&n;+ = P:$,~,,,;,, - P!$~,,,,“~, eqs. (29) and (30) 
can be transformed as follows 

-,g ik,,,- L Kzn;) -i IX. + xnzn, + xn ne - r ( ’ - z 1 n1=1 

)I ( c+, P~~~~;,i”~ - P~L;~ (31) _ _ 
2 I’ 

First we consider the procedure of the elimination of P!$)_,,~~ from (28) using (31) when V= x = 0. 
Applying the spatial Fourier transformation to the coordinates PZ~ in (31) 

PC’) - 
n,nl.n;nz =CfAti:(q) exp(iqn2), 

4 
(32) 

where the summation is performed over the first Brillouin zone, one gets 

P 
(2) - 

exp[iq(nl--I)](~~~~--~~~) _ 

SF?? 2[r+r(o)] +I& -r(q) ’ np27+2 (33) 

_ 

where r(q) =C,+,, f. r exp(iql), N is the total number of m_olecules in a crystal. - 
. - 
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The permutation of indices n1 * n2 in (33) gives the expression of another 
non-diagonal matrix elements contained in the equation for p$,_ Inserting &La& in 
(28) we get 

combination of the 
the form of (33) into 

where the notation 

(35) 

is employed. 
Eq. (34) takes the form of a random-walk equation if for all values of the wave vector q the condition 

2r t I-(O) + r,, B IF(O) - z-(q) 1 (36) 

is obeyed. In this case it follows from (34) 

(37) 

where the probability Wiz of a jump of an incoherent exciton is defined by eq. (26). 
Inequality (36) holds for all q when the local scattering rate r is much greater than the non-local one. 

Under this condition the non-diagonal matrix elements can easily be excluded from (28) taking into 
account the quasi-particle interaction. Thus, we obtain an equation for pJ$ coinciding in form with (37) 
but the jump probabilities, accounting for the interaction between excitons, take the form 

Thus, the SLE for the two-particle density matrix reduces to the random-walk equation at times larger than 
the exciton scattering time when the conditions (24) and (36) are fulfilled. 

We further use the recipe just discussed in the derivation of random-walk equations in the case of a 
many-particle system. 

5. Random-walk equations for a system of interacting incoherent escitons 

Now we turn to finding the chain of equations for the diagonal matrix elements of the density matrix 
with an arbitrary number of excitons in a system. It is assumed, as in section 4, that the rate of resonance 
energy transfer is small in comparison with the scattering rate and that the dominant mechanism of 
scattering is local_ Under these conditions we can neglect the coupling in the SLEs via products such as 

“P::.& in the equation for s-particle density matrix. However, we should take into account the terms 
containing Vp~~~~ag and xp$,lii,,. Since for the system under consideration the basic “survival” quantities 

are PDF&, ad PZL,,~~ in comparison with them are small, we can use, in determining the latter, the 
approximate expressions for prOzl& appearing in the equations for pg&_ It is just p$zitag that are 



, 
dp”’ - 

^ -_ 

-=tCM (( pj’, L 
d;l I _“a P:3+2cr,,l(P:“- PL;‘)- 

. ( - _ - 
(3?) 

Taking into account the abovementioned conditions the needed non-diagonal matrix elements of p(l) at the 
late stage of the sy&em’s evolution are determined by 

(40) 

where n, f ni and Pepsi, = p,$R;, _ +&& In the same approximation the equations for the two-particle 
density matrix take the form * 

where n, f n{. 
To eliminate pz_dlag from (40) we find them from (42) omitting the terms with P!&~~~. In this 

approximation we have 

(43) 

and 

Using these expressions in (40) and the result obtained in (39) we arrive at the following equation 

dp:’ 
Jr = c Ky( P:” 

I 
(45) 

where the jump probabilities Wn’,‘) 
Similarly when p$ti4j, 

and W$(I’) areadefined by (26) and (38), respectively. 
tie eliminated From (42) We use the solution of equations For pitid+ in terms of 



and 

p’3’- 
n,n:n,_R;n~“J 

= 

4 sr,+ q=2.3(X”,“, + x,,; ,I’- m2,n;> + [E,=2,3(~,nt - t,n;)]2 - 

(47) 

Eliminating the terms with p~~~_,,ag from (42) by means of (46) and (47) and inserting the result into (41) 
we obtain 

(48) 

where the jump probability fV(1z;(n,n,) of an incoherent exciton between molecules n, and ni in the 
presence of two other ones on the lattice sites n7 and n3 is equal to 

4 
bV;*$( n& = 2r,,,; + [ WI+ ~,=23(xrz,,, +x,,;) -r,,,,;] M&,; 

i[ 
>I2 - qn;} +[Ld3(v,“, - c,J]‘- (4g) 4 Gr, + x,-z 3(X”,n, + x,,; 

The use of the above procedure in the equattons for the s-particle density matrix yields 

(50) 

vhre { N,},~_, denotes the coordinates of s incoherent excitons nt. nl, _ . - ,ns with n, replaced by 6 {n, }:, 
denotes the position of s - 1 excitons in a group of s excitons with the coordinates nt, n2, - - - ,ns without the 
one on the Iattice site n,. and 

(51) 
is the exciton jump probability between molecuies n, and )I; when there are s - 1 other excitons on 
molecules with coordinates { nS ]i, # n;. It is imphed in (50) that 
least two coincident ones and that I f ( ns >. 

px)_, , = 0 if among the indices there are at 
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> The-equations obtained determine~the-density matrix, of thesystemzunder &nrsideration at long- times 
and have altransparent probability‘interpretation. Their derivation exemplifies a practical realization of 
Bogoljubov’s idea [31] that the number of parameters needed to describe a systein is reduced-at the late 
stage of the system’s evolution. -= - I- - -- _ - _ - 

The structure of the chain (50) is analogous-to the Bogoljubov chain-of equations [32]. The-coupling of 
the equation for the density mat&of the group of s excitons *tith that of the group of s + 1 excitons is due 
to the non-equivalence of the exciton jump over the same dist&nce and in the same direction in groups of s 
and s + 1 quasi-particles, respectively. It is the direct consequence of the interparticle interaction. In 
contrast to classical systems, the exciton-exciton dynamic interaction does not enter the coupling terms of 
the chain linearly. It enters the jump_ probabilities as an interaction energy change in a group of s 
incoherent excitons when one of them changes its position jumping from one molecule to the other. 

The probability expression (51) has the Lorentz form corresponding to +he model of the exciton-phonon 
interaction and to the accepted relations between the microscopic parameters of the system. Note that (51) 
is analogous in form to the transition probability in a two-level system provided that the half-width of the 
levels is larger than the interaction stipulating the transition between them. The change in the interaction 
energy at a jump (see (51)) corresponds to the energy difference between the levels, and the local and 
non-local scattering rates are an analogue to the half-width of the levels. 

Surely, the expression obtained for the jump probability is not general_ Still the model discussed can be 
consistent with some real situations. For example, the random-walk equations (50), supplemented by 
adding certain terms accounting for the non-conserving part of the exciton interaction and the monomolec- 
ular excitation decay 1121, are appropriate for the description of incoherent exciton annihilation with 
allowance for the dynamic interaction. 

The range of applicability of (50) can be considerably extended by taking into account the non-equiva- 
lence of exciton jumps from one molecule to another and backward in the presence of one or several 
excitons at the other lattice sites. Owing to this the chain of equations describing random walks in a system 
of interacting quasi-particles reads 

for the one-particle density matrix, and for the s-particle one 

where the probabilities (+’ W, *Fn, ({n }’ ) should oe considered as phenomenological quantities. They have 
the same meaning as the o&sbefif;e8 by (51) but, in contrast to the latter, are supposed to be dependent 
on the direction of the excitonlump W$?,Y;({ n,}:,) f W$~,,;({ n,}:,). 

Applications of random-walk equations m the form of (53) cover a wide range of problems mentioned in 
section 1, provided particles taking part in a process execute random walks. The dependence of jump 
probabilities on microscopic parameters of a system can be calculated for actual models of interaction of 
particles with a heat bath. An example of such a dependence, differing from that defined by (51), is given 
in section 6. 
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6. Bogoljubov’s hierarchy chain for a system of interacting diffusing particks as a specific case of 
random-walk equations 

The one-particle random-walk equation (25) is known to be transformed into a diffusion equation [l] 
when the change in p:” at a distance of the order of the lattice constant is small. In this sense eq. (53) is 
connected with a chain of coupled diffusion equations for s-particle distribution functions_ Such a chain 
can be derived by the method of Bogoljubov [32] under the assumption that the particle motion is subjected 
to the Smoluchovski-Debye equation 

(54) 

where D, p are the components of the diffusion tensor, 8 is the absolute temperature (k, = 1). U(r) is the 
potential energy of a particle at the pomt with coordinates T, g”‘(r, t) is the one-particle distribution 
function. 

Here we show that the random-walk equations (53) can be reduced to a chain of coupled diffusion 
equations of the abovementioned type for a certain dependence of the jump probabilities on the interaction 
between excitons For this purpose we use the expressions for ZV~~n;({n,}~,) which are obtained in the 
case of a strong exciton-phonon interaction [33]. These can be represented in the form [34] 

(55) 

where c is the jump activation energy of an isolated incoherent exciton. 
Inserting (55) into (53) we expand the quantities depending on I in a series in (I - n,) restricting 

ourselves to powers not exceeding 2. In this approximation we can change the summation over I’, a discrete 
index. by an integral in the continuous coordinates r’: & --, jd3t-‘/v”_ As a result, eq. (52) is transformed 
as follows 

dg”‘( r, t) 

dt =c WX, 
V-P 

v#)(r. f)+k/g(Z)(r. r', t) vFV,;d3r'), 

where 

D 
‘P 

=~(~/~r)“‘exp(--/4B)C~~~,fn,--I)‘(n,-z)r, 
I 

(56) 

(57) 

u3 = a,a, a_, a, are the lattice constants, g(“( r , . _ .r-, t) = c-=p;;.) *,,C = S/N_ 

Similarly, it can be shown that for any s eqs_ (53) and (55) for small gradients reduce to diffusion 
equations of the form 

dg”’ 
-(I-, .._ 

dr 

+ -$q g(‘+‘)( r, ---r-. r’. t)( vJ)r<,r,d3r'] 

ri 

, (58) 

which coincide with those obtained in ref. [32] by the method of Bogoljubov. 
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Note that in the general case &_e passage from (53) to (58), Gith D,,+ independent of the interaction 
energy betkeen quasi-particles, does not apply. Moreover, the assumption of small changes in the-density 
matrix and-the interaction energy on the length a, is not &ways‘justified, in particular, when particles 

nearly come into contact. Therefore, it seems more plausible to use (53) inste@l of (58) as has been done so 
far [11,15,17,24] (and references therein), for erknple in the case of short-range dynamic interactions. Such 
applications of the random-walk equations obtained here will be published elsewhere_ 
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