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A generalization of the one-particle Haken—Strobl model for the exciton—-phonon interaction to the case of interacting
excitons is proposed. In the framework of this model the exact set of stochastic Liouville equations for the exciton subsystem
density matrix is obtained. In the case of strong transverse relaxation and weak resonance transfer of molecular excitations 1t is
reduced to a chain of coupled equations describing random walks of incoherent excitons with allowance for their dynam:c
mteraction (the main result of the work). These equations with a Lorentz-type jump probability dependence on the
exciton—phonon and exciton—exciton interaction parameters and, moreover, those ones generalized in a way discussed in the
paper are relevant tc a number of applications including the description of exciton annihilation, recombination of point defects
in crystals and many others. The connection of the obtained random-walk equations with classical diffusion equations for a
system of interacting brownian particles is also discussed.

1. Introduction

Mathematical models for many real processes are based on the equations describing random-walk
motion of particles (quasi-particles) in a given discrete space. The concept of random walks proved to be
useful in the description of both one-particle and many-particle systems. In the case when only one particle
effectively participates in a process (incoherent energy transfer in molecular crystals, energy trapping in the
photosynthetic unit, ion transport through membrane channels) the corresponding equations are well
known {1] and used in solid-state physics, physical chemistry and biophysics [2—10].

Less has been done so far as to the description of many-particle processes such as reactions between
particles (exciton—exciton annihilation, annealing of point defects, recombination of solvated electrons with
suitable reaction partners, etc.) when the interparticle interactions conserving the particle number (dy-
namic) and the non-conserving one (resulting in reactions) are important. In the theoretical study of these
processes an adequate formalism is based on the chain of coupled equations for the density matrix [11-17].
But usually only the non-conserving part of the interaction is taken into account consistently. The role of
the dynamic interaction which affects the reaction rate has been investigated at the stage of the two-particle
correlation function [18-24]. In the framework of such an approach many-particle aspects of the problem
are omitted and consequently the effect of high concentrations in the case of dynamic interactions cannot
be considered. To avoid these difficulties in the theory of diffusion-influenced reactions one should start
from a chain of equations describing random walks of particles with allowance for their dynamic
interaction. The derivation of the corresponding equations is the aim of the present paper.

To take into account the mutual influence of particles on their motion resulting in a change of the jump
probabilities it is necessary to consider both the interaction between particles and their interaction with the
medium in which they move. Our discussion is concerned with a system of excitons interacting with each
other and also with phonons. The generalized Haken—Strobl model [25] discussed in section 2 serves as the
starting point. The above model introduced first to describe exciton dynamics [25-27] has been extensively
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used in studying one-particle excitation properties [28]. Being generalized through the-allowance for
exciton—exciton dynamic interactions, it is used here to obtain the stochastic Liouville equations in the case
of a many-particle system (section 3). In sections 4 and 5 the coupled chain of equations for a system of
incoherent excitons is derived. To extend its range of applicability which is limited by the particular form
of the exciton—phonon interaction, a generalization of the equations describing random walks of interact-
ing quasi-particles is also discussed in section 5. Finally, in section 6 the connection of the equations
obiained with the standard Bogoljubov hierarchy chain for brownian particles is outlined.

2. Description of the model

The hamiltonian operator of non-interacting Frenkel excitons reads

H1!= z A[nnan+Bm“ (1)

nm

where M, with n + m is the matrix element defining the rate of the excitation energy resonance transfer
from the nth molecule to the mth. M, is the excitation energy of a molecule at the lattice site n, the latin
index corresponds to the coordinates of a molecule in a crystal and the summation over such an index is
carried out at the positions of all molecules of a crystal. B and B, are the creation and annihilation
operators of a localized excitation at the nth molecule.

In the Haken-Strobl model (see refs. [25-28]) the interaction between excitons and phonons is treated

as a stochastic process described by the hamiltonian

Hlnl = Z hnnx(t)Bn+ Bﬁ!’ (2)

n.mnt

where the diagonal matrix element #4,,(t) and the non-diagonal one #,,,(z) represent the stochastic
variations of the excitation energy at the lattice site n and of the coherent interaction matrix element M, ,,
of (1) respectively. The fluctuations of these quantities are assumed to be a gaussian stochastic process
characterized by the following properties

(h,m(£))=0,
<knnx ( tl )hn'nr'( 2’2 )) = [Snn'amm' + 6,""'8,""'(1 - 8nm )] 21-;11)18( Il - !:‘. )’ (3)

where the angular brackets denote the averaging over fluctuations which, according to (3). are supposed to
have a white spectrum. The averages of higher products of the /,,,,(¢) can be expanded in terms of (3), i.e.
the cumulant averages of a product of more than two &,,, (7) are equal to zero [29]. The phenomenological
quantities I, depend on the distance between lattice sites n and m and are commonly related to the local
I,,,, =TI and non-local for n + m scattering of excitons by phonons.

Egs. (1)-(3) reflect the basic assumptions involved in the Haken-Strobl model describing one-particle
excitation phenomena. To consider many-particle states with more than one molecule involved in excitation
and related processes, one should take into account the exciton—exciton interaction. Since the non-conserv-
ing part of the interaction resulting in exciton annihilation has been considered in ref. [12], we include only
the dynamic exciton—exciton interaction which can be written in the form

HV=-‘:? Z V:rnan+BnB::—an‘ (4)

n,m
n¥+m

where the matrix elements of the interaction energy ¥V, as well as the M, ,, are assumed to be functions of
jn — mj.
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-

We extend further the Haken—Strobl model by taking into account fluctuations of the interaction -

energy. These are also treated as a gaussian stochastic process described by the hamiltonian - -

H,.=Y k. (t)B}B,B;B,, - B &)
24 ‘ :

where the time-dependent matrix elements are supposed> to be random quantities with the following
properties

(h:lm(t)> =0, <h:tm(t)hn'm'(t')> =0,
<h::m(tl)h:r'm'(t2)> = (snn'smm' + anm'smn’)x:rms(tl - t2)' (6)

The first of these relations means that the mean value of the interaction energy fluctuations is included in
(4), the second one shows that the fluctuations described by 4,,(¢) and A, (z) are assumed to be
statistically independent, the third relation implies the independence of the interaction energy fluctuations
of different pairs of excitons. The parameters x,,,, represent the contribution to the non-local scattering
rate of excitons arising from the fluctuations of the exciton—exciton interaction energy-

Thus, the total hamiltonian of the considered system reads

H=HAI+HV+Hnm+Hx:u‘ (7)

3. The stochastic Liouville equation for the exciton subsystem density matrix

We derive the stochastic Liouville equation (SLE) for the exciton density operator following the

standard procedure described in ref. [28].
Averaging the formal solution of the equation of motion of the density operator with the hamiltonian (7)

over the fluctuations we obtain (/= 1)
~ - T A< ’ (72X [ 47 ’
p(1) = (T exp =i [ T A5 () + B ()] ar o (0), (®)

where p(r) is the density operator of the exciton subsystem, the circumflex denotes the interaction
representation p(t) = expli(H,, + H,,)*t]p(t), A*B=AB — BA for any two operators 4 and B, T is the
time ordering operator, ordering operators in the expansion of the exponential from right to left with
increasing time.

Rewriting (8) in terms of cumulant averages [29] and using the properties of the stochastically
time-depending part of the hamiltonian (7) we get

p(0) = Texp( — 1 ['an, [an [ A5 () + B ()] [ (12) + 2 (1)) ) e (0)

—exp(— [12u(2) + 0y (2] }0(0), (©)

where
QA! = E [%I‘snm +(1 - snm)rnm](B:Bm)x(Bn+Bm + Br:Bn)x ? (10)
0,= Y x..|(8B:B.B,)*]". 1)

n,m
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Differentiating (9) with respect to time and transforming the resulting equation to the Schrodinger
representation we arrive at the following equation of motion AN

dP(t)/dt= [_i(HM'*'HV)x_QM_’QV]P(t)s (12)

with H,,, Hy,, Q,,, and @, defined in (1), (4) (10), and (11). This equation reduces to that derived by .
Haken, Strobl and Reineker if we put H, and Q, equal to zero. Since we are interested in the exciton
dynamics when more than one excitation is present H,. and Q,, cannot be ignored here.

The evolution of an exciton subsystem with S excitons is completely defined by the set of quantities

LD, mmimy.w,=SP{0(1)BB}....B} BB ...B,}, =1,2,....8. (3)

which will be called hereafter the matrix elements of the density matrix. The diagonal elements p,(,‘l’ n, define
the excitation distribution in molecules of a crystal, i.e. the exciton concentration; p’('?')lz-'h"z gives the
probability of finding a pair of excitons at molecules n, and n,. etc. Non-diagonal matrix elements
o8 . w, define phase relations for one-particle, two-particle. ..., s-particle excitations in a crystal.

The equations of motion for these quantities follow directly from (12) and the commutation relations for
the creation and annihilation operators which are supposed to be the Pauli ones

B,B. - B:B,=$,,(1-2B'B,). B =B =0 (14)

nm

It is convenient to represent the time derivatives of the matrix elements of the density matrix
symbolically

d o' d o) dot® de'™! d ot}
R (L] +{ =2 +[ =2 +[ 2 . (15)
dz d: H,, d: H, ds Oue dr e
where indices of the derivatives denote the summand of the right-hand side of the eq. (12) due to which the
change in the density matrix is produced. The corresponding expressions for these conventional derivatives

are obtained using (12) and (14) in (13). They read

dpr(:l‘)n"
dz

) = isp{ p(I)H::;BnJ:Bn; } = iz [Mnllpyzl" - Mn;lpr(zt)l - 2( Mn‘lpl(l.f},n‘n; - Mn'llpr(x’zzx;:n'll)] »
Hy !

' (16)

: - @ @ . _ @ | _ @
) - lZ [Mn‘lplnl'n{n'l + ‘wnzlpnll nyns Mn;lpnlnz.ln'z Mnf_.lpnlnz nyf
Hy, 14

(3) (3) _ (3) — (3)
*Z(M ,lpn,nzl,n;n':rn + Mn:lpnyx-_.l,n'ln'zn-_. Mn'llpn,n:n',.n;n':l Mn'zlpnln:n'z.n'ln'zl)] . (17)

n

The expressions for (dp'*'/d¢) u,, for s > 2 can be easily written down In an analogous way.
We proceed with writing explicitly (dp'®)/dt)

r ) =iSp{p(1)H BB, } =i . (Vin, = Vini) 05} s (18)
H, 14

dp@ ..

nyrainyny . _ 2) _ 3

( d: )H B 1((]/'“": V:!;n':)pmnz.n;n'z + Z(Iflm + Vl": V’"; - I/l"':)p'(hz’z’-"'l"'zl ’ (19)
H
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and for any valueof s ~ -~ - - - - . S - -

- ~ - _ .

- - e - - - e - -

) - : - - gt o
On, . .n:nf i . d - - ol - =
] =i E (Fe =V )O mimsm+ X X (Vi = Vi )08 2 1] (20)
dt jek=2 J] '» T j=1 "y 7

The contribution to the change in the density matrix due to the interaction with phonons is represented by

dp -
Ty Lty 0.
_— = —Spi o(? B*...B'B....B,
( dt ) . p{ ()QM ny n, "y _,}

fok=1 t+0

= —Z{S[r(l —S‘l Z Snl";) + Z I"]p,(:)“n”n'l n’,
J

5
()
- Z Z Fnllsnln'kpn‘. o=l nny. nh=1 .,
I¥n, k=1
i

5
¢
- Z Fnln;(l - 8nln',‘)pn:.). n,=n,. n.ny.ni=n, . n;} - (21)
7.k=1

where terms with p©®*! are omitted, and

dpls? ..
ny. n.ln; -0, .
(T)Qf —Sp{p(+)QyB; ...B;'B,;...B, }

s s
—_ —_ (s)
=-2 Z (annk +xn;n; Zannk Z snlnjsnkn;‘ )P,,-:_ n,.ony. n

I<k=2 Ik =2
s s
(s+1)
+ Z Z (an.'-*-xnzl— 2anl Z anln} Bn,..ont:in} .t} (22)
I =1 7 =1

The substitution of expressions (16)-(22) into the right-hand side of (15) leads to a coupled chain of
equations for p{® , ... .., s=1,2,...,S. The stochastic Liouville equations for the matrix elements of the
exciton density matrix are exactly defined for the system with the hamiltonian (7) and can be used, in
general, for the description of crystal properties at high levels of excitation. As in the case of the
one-particle Haken—Strobl model, it is not necessary to make any a priori assumptions as to the character
(coherent or incoherent) of the exciton motion.

In what follows we deal only with those crystal excited states which may be regarded as an ensemble of
incoherent excitons. The corresponding equations can be derived from the above SLEs under certain
conditions.

With this aim in mind we remind briefly the procedure of the derivation of the master equation
describing the dynamics of an isolated incoherent exciton. Restricting ourselves to one-exciton states
(=0, s > 2) we obtain from (15)-(22)

do®

Prjiny |
T = 1; (Mnllpgr)ﬁ - Mn{lpt(lgl) - 2( Z[: (npfrgn; - 8n,n;1-:1|lp§;12) - (1 - sn,n; )I;n‘n;pp(x},zn, ) - (23)
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This equation is equivalent to the one obtained by Haken and Strobl for the one-exciton density matrix,
differing from the latter only by the sign of the first sum in (23) because of different definitions of the
matrix elements of p™M.

When the rate of local and {or) non-local scattering is large in comparison with the coherent transfer
rate,

M,,,,,V(Zl‘,r,+ 1“,"")<< 1, (24)

in other words, if the scattering length of excitons is smaller than the lattice constant, then, for times longer
than the transverse relaxation time (X,I;) ™! (scattering time), the number of variables needed to describe
exciton dynamics is cut down and eq. (23) simplifies. It is easy to show [28,30] that on the time scale
mentioned above the non-diagonal matrix elements p{!}. are negligibly small as compared to pf!), = pf? and
the latter satisfy the master equation describing a stochastic markovian process of random walks of an

isolated quasi-particle

dp{P/de =3 w2 (e — o), (25)
o
where
wii=2L,, + M2 /(E,0,+T,.) (26)
is the probability of a jump of an excitation from the nth molecule to the n’th.
To reduce the chain of SLEs to one containing only diagonal matrix elements pf> , ., , =p!> , the
fulfilment of inequality (24) is not sufficient as is shown below. The approximations needed to exclude the
non-diagonal matrix elements p{J), 4., and at the same time to take into account the interaction between

excitons are clarified when a two-particle system is considered.

4. Master (random-walk) equation for the two-particle density matrix of an isolated pair of incoherent
excitons

The stochastic Liouville equation for the two-particle density matrix following from (15), (17), (19), (21),
and (22) with p*® = 0 is exact for a system with two excitons. It has the form

def?

3. R|n1 - -

PRI . S (2) —_ (2) — (2)

dr - l(Z(Mnllplnz snyn% + M Ipnll nins M lpn‘n, in% Mn-.lpnln-. n,[)
!

( s n,n~)pp(:2:-..nln-.> (r[ - %(snln'l + 8nln'; + 8n1n'| + anln':)] + Z E)Pfxfz.z-n',n’,

I+0

+2Z[ " l(l n I)( nlnlpln‘ tn% + snlnapglle n‘l)

(2) 2)
J(l - n-.l)( n«nlpn,l in% + 8n2n-.pnll nll ] +2 r (1 n,nl)pr(:,n-. iyt

n,n (1 - n,n»)pl(i)nq n,n, n-.n‘( n-n,)pn,rn n1n2 nzn (1 - n-,nz)pr(lle:-. n|n1]

2
_Z[Xn,n: + x 2xn|n2( nyny nzn, + 8n1n-.8n-,n,)] pr(r,Zz-. nin%*° (27)



AL O_mpko / S;ocha.m'c Lioumlle:equdtioné Jor mteractmé quas: - particles ) - T 377-
For diagonal matrix elements p{Z)- it follows from (27) =~ - - . - L R

d 2y - - R -
Pn,n, _ i): M ( o2 a2 ) +M ( 0@ —o® )
dz K ; mli\¥inyimny pn,nz:lnz ny\ Py, nyin, nynasmd

~2E [0 (02, — o) + Lo - 2)]- (28)

Calculating p$3, aiag the left-hand side of (27) can be ignored when the evolution of the system is sufficiently

close to the steady-state limit, i.e. it is supposed that the rate of change in o2, -duag 1S small compared to the
rate of transverse relaxation at times ¢ > (X,I;) ~!. Assuming also that inequality (24) is satisfied we neglect
products such as Mp(2, ... in comparison with Ip{2), 4.;- Then, to find the non-diagonal matrix elements
occurring in (28) we obtain the following set of equations

—1 —_ (2) — 2)
[2( 2111 + Xnyn, + ann',) l( I/n:nl I/.nzn'l )] pn,nl'n"nz 2Fn,n;pn',n1;nln2
l

= iMn,n;(pr(r%Zzz - pr(terz) -2 E Fn-_.l(pr(llerz:n'lnl - pr(xll;.n',l)s (29)
l+n,

H 2 (2
[2( ZI'I + annl + ann',) + l( I/n:nl - Ifnzni)] pl(n'lzxz:n,nz - 21—;lln'|pn12x-_..n'ln-_.
{

= —1iM, '(p'(|:’312 - p,(:?sz) -2 Z Rx:l(pﬁz;:zl:“nln;pl(z%;,nxl)’ (30)

mnpm
l+#n,

where n, # nj. Introducing for convenience the quantities p&) ... = 0%, nin, — PG, nyn €0S- (29) and (30)
can be transformed as follows

2 2
2 - (2)—
{4[(;1‘1 + Xnyn, + ann;) - Fn.n’l} + (p:rznl - I/n:n'l) }pn‘nz;n"n:

. 2 2
= 41{ Mn,n;(zr‘l + annl + ann; - Fn,n{)(pr(:'xlz - P,(z,zxz)
{

- 2 [%(V;lznl - V;z:n;) - i(EI‘l' + Xnan, + Xnany Fnln;)]rnzl(pr(z?l:;n'lnz - p:(-z::;;_n’,l)} - (31)

l#n, I

First we consider the procedure of the elimination of p{2, 4., from (28) using (31) when V'=x=0.
Applying the spatial Fourier transformation to the coordinates n, in (31)

O in, = 2P, () explign,), (32)
q -
where the summation is performed over the first Brillouin zone, one gets
o M 5 Z explig(n, — 1)](e2 — o2) ) ] 33)
pnx"z:nxnz R N T a 2[I’+ I‘(O)] __*_1“"!"; _I"(q) ? R

where I'(¢) =X, oI, exp(ig!), N is the total number of molecules in a c}ystal. -
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The permutation of indices n, @ n, in (33) gives the expression of another combination of the

non-diagonal matrix elements contained in the equation for p{), _ Inserting P82, uiag In the form of (33) into
(28) we get
dpb-)

- =Z[(M,i,c;n2,,+zr 5, )(p”)_pa) )+(M32,G -+2T, 8, )(p,, ~ 0 )] (34)

1 explig{n—1)

Glz!=T;Z Al h’[f\\’ s T }“( \ (35)
&Ny AL LU, L)

ic emnlaved

15 CIMp:CYCa.

Eq. (34) takes the form of a random-walk equation if for all values of the wave vector g the condition

2I +I'(0) + I, > |I'(0) — I'(q)] (36)

e
%]

2)
dp(_ .

— I 1 P
==X W(o2 - 63, )+ W (62— 63 )] 37)
¥

where the probability W} of a jump of an incoherent exciton is defined by eq. (26).

Inequality (36) holds for all g when the local scattering rate I” is much greater than the non-local one.
Under this condition the non-diagonal matrix elements can easily be excluded from (28) taking into
account the quasi-particle interaction. Thus, we obtain an equation for p,‘,z,’1 coinciding in form with (37)
but the jump probabilities, accounting for the interaction between excitons take the form

4!.,112 v~ : —r
MIAZr T + Xpymy + Xy = Do)

4[():'1"'4-3( + % \ --I"|+(V -—»V.)

i i 4 Anyny Nnalj i g nanmy nyi

W= w.P(ny)=2L,,+

W= w2 (ny). (38)

Thus, the SLE for the two-particle density matrix reduces to the random-walk equation at times larger than
the exciton scattering time when the conditions (24) and (36) are fulfilled.
We further use the recipe just discussed in the derivation of random-walk equations in the case of a

many-pariicie system.

5. Random-walk equations for a system of interacting incoherent excitons

Now we turn to finding the chain of equations for the diagonal matrix elements of the density matrix
vith an arbitrary number of excitons in a system. It is assumed, as in section 4, that the rate of resonance

re
FritAl RIZ QR OULLAGL Y ALUIAULE U TARIEVLRS i & SIAL. S8 I3 RSS=MANS, &5 2R

energy transfer is small in comparison w1th the scattering rate and that the dominant mechanism of
scattering is local. Under these conditions we can neglect the coupling in the SLEs via products such as
Mpe T in the equation for s-particle density matrix. However, we should take into account the terms

ncn~duxg
containing Fplir L. and xplsrL... Since for the system under consideration the basic “survival” quantities

are p§7),, and pL3) y.e in comparison with them are small, we can use, in determining the latter, the

approximate expressions for p{S+!, appearing in the equations for p§),. It is just p{5iJ,. that are
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determmed ‘using the equatxons in whnch P _ﬁ}ag are equated to zero. - - -

In order to illustrate ‘the chain decouphng procedure n, terms of. non—dlagonal matnx elements “we )

consider in. detail the derivation’of the equauons for. pf,f,)g at s=1, 2.-For pdms it follows from (15), (16),
(18), (21) and (22) i - ;

dol® ' 7
= le..,,(p},‘.Z ~ )+ 2L L (o0~ ) ) _ (39)
- l - -~

Taking into account the abovementioned conditions the needed non-diagonal matrix elements of p{’ at the
late stage of the system’s evolution are determined by

. 2 —
2(;‘[; nln,) pr(tlJ:, - Pﬁ?..) 21Mn|n,(pr(|§) - pr(tt)) +; {l( If(n, s V;n‘)pr(tl:;:.l - Z(Xhu + Xln,)pn‘} n,!]
(40)
where n; * nj and p) %, = o3} .o, £ p5).,. ;. In the same approximation the equations for the two-particle
density matrix take the form -

2
dﬂﬁi,

= 12( ;Iplrzx)z-—n,n\ + M..zlp.‘,f?"n,nz) + 22 [Fn,l(f’g)z - Pp(.?.,) + I‘nzl(p:(rf; P,(zﬂz)] {41)
z

(22 —_ )
[2(ZE + Xnyn, + xnzn") ( nyny nzn'.)] Oninyinin, ZI:x.n,pn,nz nyny
!

=iM, (62, — 6@ )+ T iV = Vit) =20+ Xui)] 0Dt it (42)

nyny
[

where n, # nj.
To eliminate p3), 4., from (40) we find them from (42) omitting the terms with p&), 4... In this

approximation we have

"l"l( "'-"1 "2"1)(‘)'('?'2 - p'(’zlz“) (43)

4[(211.; + annl + x"z"l) ”l"l] ( "w"\ z ’1)2 ’

(23+ = —
Pninyinin, =

and
4i(ZI;I‘I + x:zzn‘ + ann; n,n,)Mnlnl( r(tf:ts - pr(l‘:?t-.)
HEL A Xim,  Xn) = T+ Vo = Vi)

Using these expressions in (40) and the result obtained in (39) we arrive at the following equation

o (49)

B, ngny, =

dp,,l
~Z (e o) + 2 LG W) (o - 62, (45)
where the juml; probabilities wp w,2(1") are deﬁned by (26) and (38), respectwely

Sumlarly when o0 ;.. are ehmmated from (42) we use the solution of equations for p},f?n,d,ag in terms of

i¥3)
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The correspondmg expressxons are -

380
4.

p$), neglecting the terms which are proportional to p( or-diag-
- 3) T __ (3 - » - i
p(3)+ . _ Zl‘lfrr,n,Z =2.3(I/n,n, ;,n n;)(pr(r,n,n_-, P}:,LG,) - - (46)
M2y a0y 2
4([21111 + Z]=2.3(Xn}n. + Xn]n; )] - Ijrz‘n,} [Zj=2.3( n,my l/nln;)]
and
Gy— 4i[ZII} + Z =23 (annl + Xn n,) n,n,] n,nl(pl(r?r)r-.ns - pl(!?l)!-.n:,) (47)
p’l|ll-n3 n,rhns = )
4{[211-}+ Zj=2.3(Xn_,n, + ann; )} I:z.,nl} [ j=2 3( n n, n n,)]
Eliminating the terms with p{, 4., from (42) by means of (46) and (47) and inserting the result into (41)
we obtain
dp,. e . ,
— = Z[ n(,l) ( P,(f:.) + m(:zl)(”l)(l)ln, - pr(z,.)h)]
+ CA{[ WD (n20) = w2 (n)] (02 = 620.1)
Lr
~ W) (02 — pr))- (48)

3
+[W;x:1)(”1[ nal
where the jump probability (3’(n1n3) of an incoherent exciton between molecules n, and »} in the

presence of two other ones on the lattice sites n, and n; is equal to
4[Zin + Z/sz B(Xn 1y + Xn n’) T in n',] anln', (49)
3 -
_I:t-,nl} [zj=" 3( 1y V:tln;)]

mm,

y 3, nyn, ) 2r n,n. L
{[leﬁl + Z_]=2 3(Xn,nl + ann; )]
The use of the above procedure in the equations for the s-particle density matrix yields

(+) — (")
n,=Il n, pn. -n,)

an ..
== X (S (0ns) o

ST
(s+1)

} )}(pl(l-:.L}!):[ n,t’ —pnl n,d’

) (50)

+ Z [ 2 (On o) = w2

where {7}, ., denotes the coordinates of s incoherent excitons 7;, n,,...,n, with n, replaced by /, {n, }n,
denotes the posmon of s — 1 excitons in a group of s excitons with the coordinates nl, n,,...,n without the
one on the lattice site n,. and

] M,;I n;

4[211-‘[ + Zi= l(l\#_,)(x'x_,n,‘ + Xn;n,‘)
2
~ V)]

”n(:z)'({n:}:l)—'zln n'+ i
4 ZI‘ll t Eixl(k#j)(Xn ng t Xn'n,‘)]- Ipxzn' =1(L¢j)( n,n
2 > 1 ] %
(51)

is the exciton jump probability between molecules n , and n, when there are s —1 other excitons on
= 0 if among the indices there are at

molecules with coordinates {n,}; = a}. It is implied in (50) that p{*
leasi two coincident ones and that !+ {n,}
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" The -equations obtained determine:the density matrix- of the system under consideration at long" times
and have a.transparent probability interpretation. Their derivation exemplifies a practical realization of

» Bogoljubov’s idea [31] that the number of parameters needed to descrlbe a system is reduced at the late

stage of the system’s evolution. -- -~
The structure of the chain (50) is analogous to the Bogol_]ubov chain of equanons [321. The couplmg of

the equation for the density matrix of the group of s excitons with that of the group of s + 1 excitons is due
to the non-equivalence of the exciton jump over the same distance and in the same direction in groups of s
and s+ 1 quasi-particles, respectively. It is the direct consequence of the interparticle interaction. In
contrast to classical systems, the exciton—exciton dynamic interaction does not enter the coupling terms of
the chain linearly. It enters the jump probabilities as an interaction energy change in a group of s
incoherent excitons when one of them changes its position jumping from one molecule to the other.

The probability expression (51) has the Lorentz form corresponding to the model of the exciton—phonon
interaction and to the accepted relations between the microscopic parameters of the system. Note that (51)
is analogous in form to the transition probability in a two-level system provided that the half-width of the
levels is larger than the interaction stipulating the transition between them. The change in the interaction
energy at a jump (see (51)) corresponds to the energy difference between the levels, and the local and
non-local scattering rates are an analogue to the half-width of the levels. *

Surely, the expression obtained for the jump probability is not general. Still the model discussed can be
consistent with some real situations. For example, the random-walk equations (50), supplemented by
adding certain terms accounting for the non-conserving part of the exciton interaction and the monomolec-
ular excitation decay [12], are appropriate for the description of incoherent exciton annihilation with
allowance for the dynamic interaction.

The range of applicability of (50) can be considerably extended by taking into account the non-equiva-
lence of exciton jumps from one molecule to another and backward in the presence of one or several
excitons at the other lattice sites. Owing to this the chain of equations describing random walks in a system

of interacting quasi-particles reads

Ill—'

e [ = ]+ (W20~ W e [~ W ). D

for the one-particle density matrix, and for the s-particle one

dp(‘) s
k Z (E[Wn‘,’l:({n,}l )P,(xf) =l.n, L{/n(;-)»l({n }a )P'(xf)ﬂ] [W(H”({n }n =1’)

_m(,{ll({"s}:'l)]lf’,(.f+}.i=1 ,.r_ [W("”)({n Yo, ) - W‘ ]p(s-i'}') ), (53)
Ly

where the probabilities W‘g,,l({n, }.. ) should oe considered as phenomenological quantities. They have
the same meaning as the ones defined by (51) but, in contrast to the latter, are supposed to be dependent
on the direction of the exciton jump W, 2. ,.({n,}, )= W52 .({n}})-

Applications of random-walk equatmns in the form of (53) covera 'wide range of problems mentioned in
section 1, provided particles taking part in a process execute random walks. The dependence of jump
probabilities on microscopic parameters of a system can be calculated for actual models of interaction of
particles with a heat bath. An example of such a dependence, differing from that defined by (51), is given

in section 6.
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6. Bogoljubov’s hierarchy chain for a system of interacting dnffusmg particles as a specific case of
random-walk equations

The one-particle random-walk equation (25) is known to be transformed into a diffusion equation [1]
when the change in p{!? at a distance of the order of the lattice constant is small. In this sense eq. (53) is
connected with a chain of coupled diffusion equations for s-particle distribution functions. Such a chain
can be derived by the method of Bogoljubov [32] under the assumption that the particle motion is subjected
to the Smoluchovski-Debye equation

m
dg (f' 1) Z v.D [V,‘gm(“ 1) +07%gW(r, 1) VFU(r)], rp=x,y,z2. (59)

where D, , are the components of the diffusion tensor, 8 is the absolute temperature (kg = 1), U(r) is the
potential energy of a particle at the point with coordinates r, g'¥’(r, ¢) is the one-particle distribution
function.

Here we show that the random-walk equations (53) can be reduced to a chain of coupled diffusion
equations of the abovementioned type for a certain dependence of the jump probabilities on the interaction
between excitons. For this purpose we use the expressions for W ) ({n },, ) which are obtained in the
case of a strong exciton—phonon interaction [33]. These can be represented in the form [34]

Wi (()2) = (E)l/anz,n;eXP(‘[HZ““*J:(;:"_I/"‘";)r),

where € is the jump activation energy of an isolated incoherent exciton.

Inserting (55) into (53) we expand the quantities depending on / in a series in (/— n,) restricting
ourselves to powers not exceeding 2. In this approximation we can change the summation over /’, a discrete
index, by an integral in the continuous coordinates r’: ¥,- — [d3r’ /v3. As a result, eq. (52) is transformed
as follows

(55)

d (I
___g (r. 1) Z v,D, ( v,gP(r. 1) +—§—0fg(2)(r. r,t) Ver'rd3")’ (56)
-

where

o= 3(/8¢) "exp(—€/40)2 My (n,~1), (n,—1),, (57)

—s5,.(5)

v’=a_a, a., a, are the lattice constants, g N r...r, y=c"%> ,,c=S/N.
Similarly, it can be shown that for any s egs. (53) and (55) for small gradients reduce to diffusion

equations of the form

d (s) _ . s
g —=—(r...r,1)=2] E (v,)),D, . |(v), g9(r-.r.t)+87g(r...r,,1)(V,), X ¥,
k=1

vl g=1
k+y

—5 [ (. () ]| (58)

which coincide with those obtained in ref. [32] by the method of Bogoljubov.
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_ Note that in the general case the passage from (53) to (58), with D, , independent of the interaction
energy between quasi-particles, does not apply. Moreover, the assumption of small changes in the density
matrix and the interaction energy on the length a, is not always justified, in particular, when particles
nearly come into contact. Therefore, it seems more plausible to use (53) instead of (58) as has been done so
far [11,15,17,24] (and references therein), for example in the case of short-range dynamic interactions. Such
applications of the random-walk equations obtained here will be published elsewhere.
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