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A wmucroscopic theory of the evciton anmhilation based on the superposition approximation for a three-particle density
matrix is proposed. A new effect of the enhancement of luminescence quenching 1s predicted for escitons with the disper-

ston law close to one- or two-dimensional.

A decrease in the luminescence quantum yield with
increasing external excitation intensity (nonlinear
quenching) has been discovered in 1967 [1] and s
being intensively studied [2,3]. It 1s well established
that the nonlinear quenching 1s caused by the exciton
annthilation (fusion). The well known equation im-
plying that this reaction proceeds pairwise,

aC/at =1 — BC — vC2, )]

is commonly used in the phenomenological description
of nonlinear quenching, In eq. (1), C 1s the relative
exciton concentration,  i1s the external excitation in-
tensity relative to the total molecular number 1n a sys-
tem, f is the inverse hfetime of an exciton noninteract-
ing with the others. 7 is a constant determining the rate
of exciton decay due to anmhilation. It 1s worth men-
tioning that most of the recent experiments can be de-
scribed by eq. (1) or by an equation analogous to it,
but complicated by taking into account the spatial in-
homogeneity of pumping. However, there are experi-
mental results [4] showing that at sufficiently hugh ex-
citation levels this equation fails #.

The microscopic approach to describe exciton anni-

* Eq. (1) 1s not relevant to describe nonlnear quenching i the
case of nearly immovable exuner excitations {5]
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hilation was first discussed by Suna [6]. In particular,
he has shown that an exact set of exciton density ma-
trix equations in steady-state conditions reduces to eq.
(1), if the anmihilation term is small compared to the
monomolecular decay term

B>~C )

Inequality (2) may, in fact, be satisfied, for example,
when the magnetic field effect on delayed fluorescence
15 studied [7]. But in experiments on nonlinear fluores-
cence quenching it is obviously violated.

A new microscopic theory of exciton anmhlation
applicable to a much wider concentration region than
that implied by (2) 1s developed in the present paper.
Using this theory 1t is shown that the question concern-
g the applicability of the phenomenological equation
(1) is highly dependent on exciton anisotropy. For ex-
citons with three-dimensional isotropic motion eg. (1)
gives qualhitatively good results. In the case of one- and
two-dimensional excitons the annihilation rate constant
has to be replaced by a function ¥(Z). This implies an
inclusion into eq. (1) of high concentration effects.
Therefore, 1n crystals with high anisotropy of the dis-
persion law the dependence of the luminescence quantum
yield on excitation intensity is expected to be different
from that described by eq. (1).
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We shall discuss the kinetics of nonlinear lununescence

quenching for incoherent excitons (exciton motion has
a hopping character). As is shown in ref. [8], the coher-
ent exciton motion becomes incoherent after a few
scatterings by phonons, impurities, etc. Thus, in study-
ing nonlinear quenching one can assume the excitation
motion to be incoherent when the time of coherence
destruction in the exciton subsystem is small compared
to the exciton anmhilation time (the exciton gas is not
too dense, the exciton bands are not very wide).

The evolution of a system of incoherent excitons
interacting with each other and with an external excita-
tion 1s completely described by the functions

p,(r,r)= Sp p()A,,

pz(r,r',t) =8p p(DA, 11, ..., 3)

where 71, 1s the operator of the occupancy of an excited
state of a molecule at r, p(¢) 1s the nonequilibrium den-
sity matrix of a crystal. In the spatially homogeneous
case the exciton concentration

=0

Applying a method analogous to that used in ref. [6]
one can show that the functions

gz(rl - rZst) = pz(r]_ H r:)_ ,t)/Cz(t),
g3(’1 ,r2,r3 at)E p3(r1 :r2,r3 7t)/C3(t)

may be found from the chain of equations

aC/ar=1— C ~ €223 w,8,(r.0), @
~ @38,
9g,(r.0)/0t = 2U/C)1 — g,(r.0] —(w, —2W,)g,(r,?)
~220 (W, [g,(r) —£,()]

+ %wr.C le3Cr+7. 0,0 + g5 (—r,r —r.,F 1)

— 2g,(r.0)2, (", )1} )

Here W, is the exciton hopping rate at distance |r|, co,
is the bimolecular annijhilation probability for excitons
separated by r.

Suna’s approach consists in neglecting the contribu-
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tion of the three-particle distribution function g3. For
terminating the chain of equations we shall apply an
approximation analogous to Kirkwood’s superposition
approximation [9] often used in the theory of dense

gases
&3(ry.ry.r3,t)

=g2("1 - rz,t)gz(rl - ’3-08'2(’2 - f3:t). ©)

In steady-state conditions, by substituting eq. (6)
into eq. (5) we have for the quantities v(r) = 1 —g5(r)
(r # 0) in the nearest-neighbour approximation

G,
- a—1 ro
7 [1+2(1lf—a+1)C Goo

s=at1l > [G0%o0
2d  sAL Ggo

G,,s,] v(s)v(s —A), ()

where

cos(k - r)cos(k - r')
Mita— 3B —a+)ek)’

Gy =N 22
a=j/c, M=g" Z‘)w ,

e(k) = (1/2d) ?cos(k-A),

A is the vector between nearest neighbour molecules,
2d is the number of nearest neighbours in a d-dimen-
sional crystal (d = 3,2,1),j =I/B,N is the total number
of molecules.

In this case eq. (4) reduces to

AU)=a—1, (8)
where the quantity

70) =67 27 wop [1 —2(a)] ©)

is the exciton annihilation rate in 8 units.

Let us consider the case when the monomolecular
decay term is negligible compared to the nonlinear decay
term, & > 1. (This is just the opposite condition to that
treated by Suna [6] .) In addition, the inequality & <M
must hold;
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l<a<M. (10)

Here M 1/2 is the dimensionless exciton diffusion length.
Practically, both sides of eq. (10) may easily be satis-
fied.

Condition (10) permits us to solve eq. (7) by the
iteration procedure. In zeroth approximation we neglect
the nonlinear terms of eq. (7). The corrections to the
solution defined by

(@/M) 25 (Gyo/Goo)® =~ (/M) In(ayM),  d=3, an
11

d=2,1

are small and may be neglected. As a result, we get for

the annihilation rate

e (aﬂ”)l-lly’

QG =1+Q2M, d=3, (12)
=1 +(Q/2M)[In(4MC) — 1}, d=2, (13)
=1 +(QU2BIC/aDIZ, d=1, ad

where §2 = B“‘EA@A.

In the following we discuss separately the case of a
diffusion-controlled annihilation and the case when
the opposite situation is realised, i.e. the anmhilation
process practically does not depend on the exciton mo-
tion (kinetic regime).

Note that only for three-dimensional motion is the
annihilation controlled by diffusion when > W (this
1s usually implied). But this condition reduces to w <
W in two-, and to 2 > M /2 1n one-dimensional cases.
The latter may be satisfied even at <€ M when the
exciton diffusion length is sufficiently large. At high
concentrations the first two conditions are not much
violated, but the third one is to be changed to Q>
U/MON 2.

In the case of a diffusion-controlied annihilation the
monomolecular decay term is small compared to the
annihilation term when

C>» 1/aM 12| C>in(4M)/2nhd,

ford = 1,2,3, respectively,

As follows from these conditions, for the anmhila-
tion effect to be dominant it is necessary to create the
densest exciton gas 1n the case of one-dimenstonal ex-
citons (at the same values of all the other parameters).

From egs. (8) and (12)-(14) one can see that the

c>1/M,
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quantum yield dependence on excitation intensity is
different for excitons moving in different dimensions.
Namely.

()= MN12, d=3, as)
In{4rM®()] (B2() = 20Mj, d=2, (16)
‘I’(]) = (16.5{).1/3 -—2/3, d=1, (]7)

where ®(f) = C/j.

In the case of a three-dimensional system the quan-
tum yield dependence on mtensity comcides with that
given by eq. (1) rewntten for steady-state conditions.
But for two- and one-dimensional systems there is a
qualitative difference between eqs. (16), (17) and the
phenomenological dependence.

Egs. (16) and (17) show that for one- or two-dimen-
sional exciton motion the nonlinear quenching effect
is stronger at higher J than at lower I. An effect of thus
kind has recently been observed in anthracene {4]. To
explain it the occurrence of new anmhilation centers
was supposed. Within our approach eq. (16) may give
a quite different explanation of the strengthening of
the luminescence quenching at high excitation intensi-
ties if two-dimensional exciton motion is relevant to
the case In the framework of this hypothesis the effect
of an additional quenching may be connected with an
mcrease m the annihilation probability of each exciton
as a result of its interaction with many others while it
travels. Thus, the annihilation process becomes not a
pairwise, but a many-particle reaction at high concen-
trations

In the kinetic regune of annihilation the pecubari-
ties of exciton motion mn different dimensions are no
longer important. We have a condition 2C > 1 guaran-
teeing that the exciton annihilation channel is domnant.
The quantum yield then is ®() = (2/7)1/2.

To clarify our results a model calculation of the
quantities (1), C(s) and ®(/) was performed. Figs. 1-3
correspond to the one-, two- and three-dimensional
cases, respectively. The equality M = 107, for example,
corresponds to a hopping rate of 101% s~ and to a
monomolecular decay time of 10-3 s which are typical
of triplet excitons. For the ratio €2 = 10 M taken the
dimensionless annihilation rate 7(0) = /B is equal to
1.26 X 10%. For this value of ¥(0) the concentration
and guantum yield dependences are represented by the
dashed lines, in accordance with Suna’s theory. It is
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Fig. 1. One-dimensional excitons. 34 = 107, /M = 10. (a)
Curves 1,2,3 comrespond to 5 X 104 C, 1045, 10, respectively;
(b) curves 1,2,3 correspond to 10%C, 107%5, 10, respectively.
The dashed lines correspond to C and ® calculated for 5(0) =
261 =1.26 x 10%.

easily seen that high concentration effects influence
appreciably these dependences in the one-dimensional
case (solid line, fig. 1)*. In the three-dimensional case
these effects are negligible.

In the one-dimensional case (fig. 1) when « changes

¥ The curves of figs 1—3 were calculated using v(A) from eq.
(7). Calculations were carried out for o <€ M without using
the condition o > 1.

CHEMICAL PHYSICS LETTERS

1 May 1980

A
k e
10 A _/"__- 2
7
14
] _-
-] ~
-
- -~
-~
5 4 P 1
7
] e
/7
v/
14
T T T v r —
0 5 10 jx1at

Fig. 2. Two-dmmensional excitons. %ﬁ! =107, /M = 10. Cusrves
1,2 correspond to 105C, 5 X 10777, sespectively. The dashed
hine corresponds io C calculated for 5(0) =4 ! = 1.53 X 107.

from 1 to 7 the F{j) increases approximately 4 times.
When the excitation intensity starting from those values
of j where the nonlinear quenching effect is noticeable
increases by about two orders of magnitude the quench-
ing is enhanced 3 times (quenching enhancement is
proportional to [3{7)/A{0)] /2 for &> 1).

Our calculation shows that in the case of one-dimen-
sional exciton motion it is necessary to take into ac-

10

—r
i0 1x10?
Fig. 3. Three-dimensional excitons. M = 103, /M = 10.
Curves 1,2,3 cormrespond to 103C, 2.5 X 10%7, 10®, respective-
ly. The dashed lines correspond to C and @ calculated for ¥(9)
=61 =1.75 x 10%.
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count the dependence of the annihilation rate on exci-
tation intensity. This dependence may turn out to be
negligible when two-dimensional exciton annihilation
takes place. But at sufficiently high concentrations it
may also prove to be important.

At the same time, in calculating the annihilation
rate constant it is possible to neglect many-particle ef-
fects when the annihilation of excitons with three-
dimensional isotropic motion is described. Thus, the
theory based on eq. (1) 1s always applicable when
C < 1 only 1n the case of nearly isotropic three-dimen-
sional exciton motion

The authors express their gratitude to Professor V.I.

Sugakov for valuable discussions.
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