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A mrcroscoprc theory of the e%crton anmhtfatron based on the superposrtron appro\unstlon for a three-parttcle denaty 
matrL\ is proposed. A new efiect oi the enhancement of lummescence quenchmg IS predxted for excrtons with the dlsper- 
Son law close to one- or tao-dlmenslonal. 

A decrease m the Iummescence quantum yield with 
increasing external excitation mtensity (rmrdinear 
quenching) has been discovered m 1967 [l] and 1s 
berg intensively studied [2,3] _ It 1s well established 
that the nonlinear quenchmg IS caused by the exciton 
annrhdation (fusion). The well known equation im- 
plymg that this reaction proceeds pairwise, 

ac/at=r- gsrc2, (1) 
is commonly used in the phenomenological descnption 
of nonlinear quenching. In eq. (l), C IS the relative 
exclton concentration, Z is the external excitation in- 
tenslty relative to the total molecular number m a sys- 
tem, j3 is the inverse hfetune of an exciton noninteract- 
mg wth the others. -y is a constant determining the rate 
of exclton decay due to annihilation. It IS worth men- 
tloning that most of the recent experiments can be de- 
scribed by eq. (1) or by an equation analogous to it, 
but comphcated by taking into account the spatial in- 
homogeneity of pumping. However, there are experi- 
mental results [4] showmg that at sufficiently h@ ex- 
citation levels this equation falls *. 

The microscopic approach to descnbe exciton anni- 

’ Eq. (If IS not relevant to describe nontmear quencbmg m the 
case of nearly unmovable evuner ekcftabons ES] 

Wation was fust discussed by Suna 163. In particular, 
he has shown that an exact set of exclton density ma- 
trix equations in steady-state con&tions reduces to eq. 
(l), S the annMatron term is small compared to the 
monomolecular decay term 

PSTC (2) 

Jnequahty (2) may, m fact, be satisfied, for exampfe, 
when the magnetic field effect on delayed fluorescence 
IS studled [7]. But in experiments on nonlinear fluores- 
cence quenchmg it 1s obviously violated. 

A new microscopic theory of exciton annMatron 
appkabie to a much wider con~ntration region than 
that implied by (2) IS developed in the present paper. 
Usmg this theory It is shown that the question concetn- 
mg the applicabdity of the phenomenologkal equation 
(1) is highly dependent on exciton anisotropy. For ex- 
citons wth three-dimensional isotropic motion eq. (1) 
gives quahtatsvely good results. In the case of one- and 
two-dunensronai excitons the annihilation rate constant 
has to be replaced by a function T(Z). This implies an 
inclusion into eq. (1) of high concentration effects. 
Therefore, m crystals with high anisotropy of the dis- 
persion law the dependence of the luminescence quantum 
yield on excitation ~tensity is expected to be different 
from that described by eq. (I). 
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We shall discuss the kinetics of nonlinear lununescence 
quenching for incoherent excitons (exciton motion has 
a hopping character). As is shown in ref. [8], the coher- 
ent exaton motion becomes incoherent after a few 
scatterings by phonons, impurities, etc. Thus, in study- 
mg nonlinear quenching one can assume the excitation 
motion to be incoherent when the time of coherence 
destrhction in the exciton subsystem is small compared 
to the exclton anmh&tion time (the exciton gas is not 
too dense, the exciton bands are not very wide). 

The evolution of a system of incoherent excitons 
interacting with each other and with an external excita- 
tion 1s completely described by the functions 

&(W) = SP P(Qri,, 

p#.i,t) = sp p(t)i$fi,, . _ -, (3) 

where fir IS the operator of the occupancy of an excited 
state of a molecule at r, p(t) 1s the nonequlbrium den- 
sity matrix of a crystal. In the spatially homogeneous 
case the exciton concentration 

C(t) = P 1 (rr 0- 

Applymg a method analogous to that used in ref. [6] 
one can show that the functions 

Q(‘1 - $0 = P#l, r#lc%), 

g3(‘1”2”3’t)~Pg(~l,‘2,‘3’t)lc3(~) 

may be found from the cham of equations 

aclat=z- PC- ~*~~rg~(~,r). (4) 

aga(f,t)/at=(2.f/c)[~ -g,(f,t)] 4dr-2wrk,ko 

+ ~Wf~C[g,(f,f + i,r’,t) + g3(-f,” - r,f’,f) 

- 2g*(f’og~~f’,oll. (5) 

Here W’ is the exclton hopping rate at &stance Irl, W, 
is the bimolecular annihilation probability for excitons 
separated by r. 

SUM’S approach consists in neglecting the contribu- 

tion of the three-particle -bution function g3 _ For 
terminating the chain of equations we shall apply an 
approximation analogous to Kirkwood’s superposition 
approximation [9] often used in the theory of dense 

gases 

=g*(‘l - QJk*(Q - f3 .fk*($ - r3 ;0- (6) 

In steady-state conditions, by substituting eq. (6) 
into eq. (5) we have for the quantities y(r) = 1 - g2(r) 
(r # 0) in the nearest-neighbour approximation 

tif) = [1+ q&y: 1)c 1 

+ * 2 [+ - GB] u(@u(-s - A), (7) 
. 00 

where 

a= j/c, M=p-’ F WA, 

e(k) = (l/m gcos(k -A), 

A is the vector between nearest neighbour molecules, 
2d is the number of nearest neighbours in a ddimen- 
sional crystal (d = 3,2,1), j = I//3, N is the total number 
of molecules_ 

In this case eq. (4) reduces to 

Gj$)=ar- 1, 

where the quantity 

68) 

is the exciton annihilation rate in B units. 
Let us consider the case when the monomolecular 

decay term is negligible compared to the nonlinear decay 
term, ck s 1. (This is just the opposite condition Lo that 
treated by Suna [6] .) In addition, the inequality (1~ -GM 
must hold; 
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I ear 4ilf. 00) 
Here &fiiz is the dunensronless exciton d~fu~on length. 
Racticaby, both sides of eq. (10) may easily be satis- 
fied. 

Condition (10) permits us to solve eq. (7) by the 
iteration procedure. In zeroth approximation we neglect 
the nor&near terms of eq. (7). The corrections to the 
solution defined by 

(o/M 1 c (G~~/G~*)3 = (o/M) ~(~~~~), d = 3, 
r 

e (o/j@-=+ d = 2,1(* l) 

are small and may be neglected. As a result, we get for 
the annifulatron rate 

n/$6) = 1+ n/2/M, d = 3, (12) 

= 1 + (s2~2M)[h(4ilZC/$) - I], d = 2, (13) 

= 1 + (~/~~~~~C/~~)li2, d = 1, (141 

where Q = 8’ XAWa - 
In the following we discuss separately the case of a 

diffusion-controlled annihilation and the case when 
the opposite situation is realised, i.e. the anmhrlation 
process practically does not depend on the exciton mo- 
tion (kinetrc regune). 

Note that only for three-dimenaonal motion is the 
aviation controlled by diffusion when u > IV (tti 
IS usually implied). But this condition reduces to o 2 
Iv in two-, and to R 9 A1112 u-r one-drmensional cases. 
The latter may be satrstied even at S?. 44f when the 
exciton diffusion length is suf~ciently large. At h&r 
concentratxons the first turo condrtions are not much 
violated, but the third one IS to be changed to St S 
O^lncp2. 

In the case of a drffusron-controlled annihilation the 
monomolecular decay term is small compared to the 
annotation term when 

C@ lI4M 113, C 9 In(4M)j2rrZtl, C P l/&f, 

for d = I ,2,3, respectively, 
As follows from these condrtrons, for the amuhiia- 

tion effect to be dominant it is necessary to create the 
densest exctton gas m the case of one-sessional ex- 
citons (at the same values of ah the other parameters). 

From eqs. (8) and (12)-(14) one can see that the 
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quantum yield dependence on excitation intensity is 
drfferent for excitons movmg in different drmensions. 
Namely. 

4cpO) = (M,)--lf2, d = 3, 

in [4itf@G)] /@o) = Zltn@, d = 2, 

@(j) = (16nr)“113,-2/3 , d=l, 

where e(j) = C/j. 
In the case of a three-drmensronaf system the quan- 

tum yield dependence on mtensrty comcides with that 
given by eq. (1) rewrrtten for steady-state condrtions. 
But for two- and one-dimensional systems there is a 
qualitatrve drfference between eqs. (161, (17) and the 
phenomenological dependence. 

Eqs. (16) and (17) show that for one- or two-dimen- 
sional excrton motion the nonlinear quenc~g effect 
is stronger at higher Z than at lower I. An effect of thts 
kind has recently been observed in anthracene [4] . To 
expiain it the occurrence of new ovation centers 
was supposed. Within our approach eq. (16) may give 
a quite different explanation of the strengthening of 
the luminescence quen~~g at high excitation intensr- 
ties If two-dimensional exctton motion is relevant to 
the case In the framework of this hypothesis the effect 
of an additional quenching may be connected with an 
mcrease m the anruhilation probabdity of each exciton 
as a result of its interaction with many others whi[e it 
travels. Thus, the a~dation process becomes not a 
pairwise, but a many-partrcle reaction at high concen- 
trations 

In the kinetic regrme of annihilation the pecuhari- 
ties of excrton motion m different dimensrons are no 
longer important. We have a condition S2C % I guaran- 
teeing that the exciton annihilation channel is dommant. 
The quantum yield then is +Q> = (st/Z)rj2. 

To clarify our results a model calculation of the 

quantitres r%>, Cb) and G$j) was performed. Figs. 1-3 
correspond to the one-, two- and gee-d~en~on~ 
cases, respectively. The equahtyfif = 107, for example, 
corresponds to a hopping rate of lOto s-l and to a 
monomolecular decay time of 1W3 s which are typical 
of triplet excitor% For the ratio St = 10 ilf taken the 
dimensionless annibilatron rate T(O) = rl@ is equal to 
1.26 X 104. For this value of T(O) the ~on~ent~tlon 
and quantum yieId dependences are represented by the 
dashed lines, in accordance with Suna’s theory. It is 
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(b) 

0 5 10 J x103 

Fig. 1. One-dnnensional excltons. $f = IO’, n/M = 10. (a) 
Curves 1,2,3 correspond to 5 X lO*C, l@*z lOa. respectwAy; 
(b) curves 1,2,3 correspond to lO*C, l@y, lo@, respectively. 
The dashed lines correspond to C and Q, calculated for y(O) = 
+’ = 1.26 x 104- 

easrly seen that high concentration effects infhrence 
appreciably these dependences in the one-dimensional 
case (solid lure, fig. l)*- In the three-dunensional ease 
these effects are negligiile. 

in the one-dunensional case (fig. 1) when (Y changes 

* The curtes of ti-gs l-3 were calculated usmg v(A) from eq. 
(7). Cakula~ons were carried out for a 4 M wtthout USIW 
the condition Q * 1. 
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5 10 j x10” 

Fq_ 2. Twodmennonal eucitons. $W = 10'. n/M= LO. tlIurves 

1.2 correspond to 106C. 5 X ltT’7, respectively_ Tke dzshed 
he corresponds to C calculated for T(O) = +I = 1.53 x 10’. 

from 1 to 7 the 7%) increases approximately 4 times. 
When the excitation intensity starting from those values 
ofj where the nonlinear quenching effect is noticeable 
increases by about two orders of magnitude the quench- 
ing is enhanced 3 times (quenching enhancement is 
proportional to [*)lqO)J *I2 for Q 5 I). 

Our calculation shows that in the case of one-dimen- 
sional exciton motion it is necessary to take into ac- 

5- __.,._.-.-.-.-_-.-T-‘- 
2 

_______ 

0 10 J X 10’ 

Fig. 3. Three-diiensional exntons. -$U = IO’, SZ~M = 10. 
CUNZS 1,2,3 correspond to 103C. 2.5 x l@y, LO@. respective- 
ly. The dashed fines correspond to C and Q, calculated for %t% 
=q@-’ = 1.75 x 104. 
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count the dependence of the annihilation rate on exci- 
tatlon intensity_ This dependence may turn out to be 
negligible when two-dimensional exciton annihilation 
takes place. But at sufficiently high concentrations it 
may also prove to be important. 

At the same time, in calculating the annihilation 
rate constant it is possible to neglect many-particle ef- 
fects when the annihrlatron of excrtons with three- 
dunensional isotropic matron is described. Thus, the 
theory based on eq. (1) IS always applicable when 
C 4 1 only m the case of nearly isotropic three-dimen- 
sional exciton motion 

The authors express their gratitude to Professor V.I. 
Sugakov for valuable discussions_ 
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