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Abstract 

The spectrum of a two-component solid solution with a nondiagonal disorder is studied in the 
framework of the average T matrix method. For a one-dimensional system in the nearest-neighbor 
approximation the criteria for the system parameters are given such that at an in-band resonance, one 
or two “impurity bands” may be realized, and the corresponding model calculation is performed. In 
the single-site approximation an expression of the self-energy part of a nondiagonal disordered system 
Green’s function is found taking into account multiple occupancy corrections. The possibility of using 
it to describe a disordered system excitation spectrum and the calculation of state density moments are 
discussed. 

0. Introduction 

Two-component solid solutions consisting of two subsystems* randomly 
distributed in the points of a regular spatial structure belong to systems of great 
physical interest and have been the subject of much theoretical and experimental 
investigation. 

The application of approximations, based on a partial summation of a series of 
the Green’s function, to the above systems proved to be very useful in describing 
the phonon [ 1-31 and electron [4,5] spectra of binary alloys, the exciton spectra of 
mixed ionic [6] and molecular [7-91 crystals in studying structural transitions in 
the quasi-one-dimensional systems [ 101, and other related problems. We also 
note a certain correspondence of the model under consideration to some 
macromolecules, for example, nucleonic acids [ 111 whose physical properties 
are essentially defined by a random sequence of Watson-Crick pairs of bases: 
. . . ABBABBBBAAAB . . . (A, B are the different pairs of bases). 

The theory of disordered systems is developed in detail for the case of diagonal 
disorder, i.e., when the component molecules differ in their individual properties 
(mass or excitation energy) and the integrals of intermolecular interactions are 
supposed to be independent of the type of molecules (see reviews, Refs. 12 and 
13). The study of a nondiagonal disorder is a more complex mathematical 
problem, and the methods developed here are actually valid only under restric- 
tions on a nondiagonal perturbation which allow one to reduce a formal solution 
of the problem to the case of diagonal disorder [14-161. 

The present paper deals with the model of a disordered system taking into 
account the dependence of the excitation energy as well as the integrals of 

* In what follows we shall call the subsystem a molecule, implying that it may be an atom as well as a 
certain group of atoms or molecules. 
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excitation resonance transfer between molecules on the type of the component 
molecules (nondiagonal disorder). 

An expression for the self-energy operator in the average T matrix approxi- 
mation is found using the diagrammatic technique (Sec. 2) 

(G) = Go + G O T G O  + G O T G O T G O  + * * * (1) 

where (G) is the averaged Green's function of a disordered system, Go is its zero 
approximation, characterized by translational invariance, T is an average T 
matrix of a single defect. 

This approximation is then used to analyze and calculate the excitonic state 
density of a one-dimensional chain with nondiagonal disorder (Sec. 3). 

A more correct approximation of the Green's function may be obtained by 
taking into account multiple occupancy corrections in the expansion yielding Eq. 
(1) [13]. Different methods of calculating these corrections have been developed 
for diagonal disordered systems (see, for example, Refs. 17 and 18). Their 
inclusion results in an interpolation formula for (G), which satisfactorily describes 
the one-particle excitation spectrum at arbitrary concentrations of the 
components [3]. 

The possibility of the approach mentioned above is investigated in connection 
with nondiagonal disordered systems (Sec. 4). The expression for the Green's 
function self-energy part is derived taking into account multiple occupancy 
corrections. The expression obtained takes the known form if the nondiagonal 
perturbation is put equal to zero. But an analysis of the interpolation formula 
leads us to the conclusion that the single-site approximation cannot give an 
appropriate interpolation of the Green's function of a nondiagonal disordered 
system. Moreover, for some values of the system parameters this approximation 
leads to meaningless physical results (like spurious spikes in the state density and 
so on) even if the concentration of one of the components is small. In this 
connection an attempt to improve the approximation based on Eq. (1) by 
including some cluster effect corrections is made and the calculation of the state 
density and spectral density moments of a nondiagonal disordered system is 
discussed (Sec. 5). 

1. Hamiltonian Operator and Green's Function of the System 

Assuming that the Gautler-London approximation is valid the Hamiltonian 
operator of one-particle excitations in the occupation number representation has 
the following form 

H =  [ & R 8 R R 0 + k f R R ( 1 - 8 R R ' ) ] B k B R '  (2) 
R,R' 

where B;, BR are the creation and annihilation operators of the excitation on the 
Rth site, E~ is the molecule excitation energy in the site with coordinate R, MRR, 
are the matrix elements of the resonance energy transfer of the excitation from the 
molecule R to R'. 
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The results obtained below do not depend on the commutation properties of 
the operators BL, BR and therefore refer equally (except the model calculation) to 
the phonon, electron, and exciton branches of excitations. 

or 
pR = .s depending on whether the Rth site is occupied by a molecule of type A or 
B. The energy of the excitation resonance transfer between A type molecules is 
equal to MtR,, between B type molecules it is equal to M&, and between 
molecules of different components it is equal to M;;,. 

The distribution of molecules A and B on the sites of a regular lattice is 
assumed to be random, therefore the operator (2) has no translational invariance. 
Using the numbers y~ equal to 1 if the site with R coordinates is occupied by 
molecule B, or 0 if this site is occupied by A molecule, we represent (2) in the form 

For the two-component system under consideration we have ER = 
B 

H = H ~ + W  (3) 

where the translationally invariant part of the Hamiltonian H A  coincides with the 
energy operator of a system constructed of A molecules and the perturbation 
operator is equal to 

where 

The properties of a binary disordered system connected with one-particle 
excitations are defined by the configurationally averaged Green's function 

(G) = GA + GA(WG> 

GA =[(E+iO)l-HA]-' (9) 

(8) 

where 

E is the energy of the system under consideration, I is the unit operator, the 
angular brackets denote the configurational averaging. Since the distribution of 
molecules A and B in the lattice sites is assumed to be random each configuration 
is taken with equal weight 

(&'R)=cg, 1-cB=cA (10) 

where cB is the relative concentration of B molecules in the binary mixture. 
The relation (8)  may be represented in an equivalent form 

(G)  = [a-He@)l-', ! M E )  =HA +am (11) 
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after the self-energy operator 

- -  = GA (G)-’ 
is defined. 

2. Diagram Technique: One-Vertex Approximation 

The problem of defining the self-energy of elementary excitations of the 
system with the effective Hamiltonian (1 1) is connected with the summation over 
the series 

(G) = GA + GA(W)GA + GA(WGAW)GA + . . . (13) 
The matrix elements of the Green’s function represented by Eq. (13) may be 
expressed diagrammatically (Fig. 1) denoting (GRw) and (G&) by solid thick and 

+- + ... 
Figure 1. Diagram representation of an exact expansion of matrix elements of the 

Green’s function. 

solid thin lines, the matrix elements VRW, URW by dotted and wavy lines, 
respectively, and assuming the summation over the points of the convergence 
lines. 

In Figure 1 the series is written in such a way that the terms containing 
multipliers vR with coinciding indices (loop diagrams) are explicitly taken into 
account. Therefore under summation in terms of the series with two and more 
vertices (thick points) the terms in which any indices of vertices coincide should be 
omitted. Each vertex corresponds to the multiplier ( v i )  = cB where n is equal to 
the number of the interaction lines convergent in this vertex. Thus, the diagram 
order with respect to concentration is equal to the number of vertices. 

Let us calculate the contribution to the Green’s function from one-vertex 
diagrams. In this approximation the expansion of the Green’s function after its 
terms are regrouped in a certain way may be represented in the form given in 
Figure 2. 

The first term in Figure 2(a) describes the propagation of an undisturbed 
excitation wave of the system with the Hamiltonian H A .  The corrections to the 
undisturbed Green’s function, unlike an exact expansion, are taken into account 
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Figure 2. Series of the Green's function taking into account the total contribution of 
diagrams containing only one-vertex irreducible parts. 

only relative to consecutive scatterings by single centers of B molecules. In this 
case the role of perturbation is played by a configurationally averaged T matrix of 
the single scattering center. Indeed, the analytical expression of the diagram 
[Fig. 2(b)] defining this matrix has the form 

where the coefficients of S R R . ,  2 VRR~, 1~" VRR" VFR, correspond to the diagrams 
(Figs. 2(c)-(e)]. Reducing the obtained series by means of the generating function 

which coincides with the average T matrix of a single scattering center [19]. 
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We now turn to the summation of the series [Fig. 2(a)]. In the simplest 
approximation the noncoincidence of the vertex indices need not to be consi- 
dered. Then the Green’s function expression reduces to (l)(Go = GA) and 

Z = T  

The above approximation is equivalent to neglecting the correlation between the 
excitation wave scattering at different centers, which is justified in the limit of 
small concentrations of B molecules. 

In the nearest-neighbor approximation, which will be used in what follows, the 
self-energy operator matrix elements in the momentum representation are equal 
to 

where 

M ; f  = 1 M &  exp [zk(R- R)], a = M A B / M A  
R 

k is the wave vector. 
Note certain general consequences of the obtained relation. In the region of 

the continuous spectrum of eigenvalues of the operator H A ,  the value EL is 
complex and defines the shift and the broadening of the levels of elementary 
excitations caused by the scattering by B molecules. At the values a h 1 the 
correction to E A + M c  is small, since cS << 1. But at small a the Ek dependence on 
energy acquired a resonance character and near the resonance (E  = E ”) the 
spectrum of the disordered system greatly differs from the eigenvalues of H A  even 
at small concentrations of B molecules. In the region of energies close to 
resonance the self-energy operator and the Green’s function are approximately 
equal to 

Zkk‘ Skk‘Y(J?? - E A  -M;f)’ 

(G) = G A ( E )  -GA(E - 7-l) (20) 

= C ~ [ ~ ~ G : - ’  - A + ( E - & ~ ) ( I  

In the limit CB + 0 we have 

Hence it is seen that in the state density 

at E = E ”  and small a a spike with a half-width equal to 2.rra2pA(~”)lG:(~”)1-’ 
and a maximum proportional to the concentration of B molecules will be 
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observed. A spike in the state density corresponds to a quasi-stationary level 
which appears if the excitation energy of B molecules is within the A band. 

We now turn to the case when the levels isolated from the A band appear in the 
spectrum of the system after the molecule A is singly substituted by B. Then in the 
region of eigenvalues of H A  the state density of the disordered system is close to 
p A ( E )  [particular points of p A ( E )  may be an exception]. Outside this region 
p A ( E )  = 0 but p ( E )  will be different from zero near the energy values which 
determine the position of isolated levels. Thus, in a mixed system spectrum in the 
energy region, where C,(E) has poles an “impurity band” may appear. 

3. State Density of a Two-Component Disordered Chain in the Average T 
Matrix Approximation 

We use the expression for the self-energy operator (18) to calculate the state 
density of the exciton branch of excitations of a molecular chain. The diagonal 
matrix element of the Green’s function in the nearest-neighbor approximation 
has the form 

(23)  
1 sgn Im x 1  sgn Im x2 

1 / 2 1  

at the complex values of X I ,  xz and 

1 O(yl) sgn x1 - iO(-yl) O(y2) sgn XI+ i W - y ~ )  - 
1 

(Go) = 21MA/(b2 +4ag)’l2 1x: - 11’12 

(24)  

where 

at real values of x l ,  x2. In Eqs. (23)  and (24)  the following notations are used: 

*(b2+4ag)’ /2-b 
2a X l ( 2 )  = 

2 - A  a=CB(l-(Y)  Go d-’ 

b = 1 -2cB(1 -Ly)[cY + (1  -(Y)EG;] d-’ 

d = a + [E(  1 - a2)  - A]G$ 

E = (E  - EA)/21MAI 

h = A/21MAj 
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The behavior of the state density depending on energy is defined by the relations 
(23), (24) and specific values of the system parameters. For some of them Figure 3 
represents the calculated results. 

The curves in Figure 3(a) (a  = 0.2, & = -0.5, 0) correspond to the situation 
when in the region of excitations of A molecules there is a quasistationary level 

I -0.5 

I n U L - L . 2  1 I 1 
-1 -0.5 0 0.5 1 0 -1 -0.5 0 0.5 1 - c 

Figure 3. State density of the binary chain of A and B molecules with nondiagonal 
disorder in the average T matrix approximation (ce = 0.05): (a) Case of the in-band 
resonance (a = 0.2, 0.3). (b) Case of isolated excitation bands (a = 1.1). Curves of 
the upper half of the figure correspond to the value i= -0.5 and those of the lower 

one to 3 = 0. Trend of the state density at cE = 0.01 is shown by a dotted line. 

caused by the presence of B molecules and expressed by the spike in the state 
density. The dependencies at a = 0.3 and the same values of & show that when la1 
increases a shift occurs and the resonance spike “spreads.” The dotted line 
illustrates a proportional decrease of the spike of the state density when the 
concentration of B molecules decreases. 

From the analysis of the equation d = 0 (its graphical solution is shown in Fig. 
4), which defines the poles of the self-energy part of the Green’s function, it 
follows that at a’ < 1, as distinct from the case of the diagonal perturbation (a  = 1) 
when at any infinitely small perturbation the self-energy part has poles outside the 
A band, there is a limit value of & for systems with nondiagonal disorder defined 
by the inequality 

1 - a 2 <  1 & 1  (26) 

when this inequality is satisfied d may become zero with excitation energies 
outside the A band region. Since the inequality (26) for the parameters given in 
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Figure 4. Graphic solution of the equation defining the poles of the self-energy part 
(19): (E2- 1)1’2 = ( ~ 8 - 1 a - 2 - a - 2 + l ) 1 8 j .  Left-handand the right-handsidesof the 
equation are denoted by cp and $. Plots correspond to the case when the system 

parameters satisfy the following relations: 2 < 0, a* - 1 > 121. 

Figure 3(a) is not satisfied, the state density of a mixed system outside the A band 
is equal to zero in the average T matrix approximation. 

At a2 > 1 the equation d = 0 always has a solution outside the A band, which 
lies above it  if has an opposite sign. However, in a 
one-dimensional system the self-energy part may also have two poles situated on 
both sides of the A band if the relation 

a2-l>lil (27) 

is satisfied. 
Accordingly, in the spectrum of a mixed system, in addition to the band caused 

by the excitation of A molecules, one or two isolated bands associated with the 
excitation of B molecules may exist, which is illustrated graphically in Figure 3(b). 

= -0.5 one impurity band [inequality (27) is not satisfied] exists, 
and the singularity of the state density near the lower edge of the excitation band 
of host molecules becomes smooth. At a = 1.1, = 0 there exist two impurity 
bands arranged symmetrically with respect to the A band. The impurity band 
splitting is due to a strong resonance interaction of A and B molecules. 

is positive and below it if 

At a = 1.1, 

4. Modified Averaged T Matrix Approximation 

Multiple occupancy corrections were not included in the discussion of previous 
sections, and the self-energy operator turned out to be equal to the averaged T 
matrix of a single defect. To improve the approximation one must keep in mind 
that the terms containing two and more vertices in Fig. 2(a) with coinciding indices 
should be omitted. 

We shall take into account the excluded terms, known as multiple occupancy 
corrections, in which only adjacent vertex indices do not coincide. Such an 
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approximation was used in the theory of diagonal disordered systems in Refs. 2 
and 3, for example. For this purpose let us introduce the matrices 

Gkw = GRw - 6RR'Gt A 

XRR' =XRR -6RR'xO (28) 

YkR, = YRw -6RR'YO 

with the help of which the operator (G) may be transformed into 

(G) = GA{I+ (4 + BV)[GA + KGA + LX+ (K2 + LM)GA + (KL+LN)X+ * * .I 
+ (31 + W)[X + NX + MGA + (N2 + ML)X + (NM + MK)GA + * * . I) (29) 

/T NX 
- 

L X '  X b M G A  

one can get each successive term of Eq. (29). Therefore, we can write 

(G)  = GA + G 2 G A  

T" = (4+ BV)(q1 - -  +qzY) + (a!+ W)(AlV+ A,) 

(32) 

where 

(33) 

and qi, - Ai ( i  = 1,2)  are expressed in terms of the expansion in powers of K, L, M, N 
operators. 

Taking into account (31) we find 

(34) 
m 

i = l  f = O  

m 

i=O f=O 

Then, having performed the summation of expansions (34), (35) and noted that 
after permutation of operators K and N, L and M, ql,  q2 turn into A1, A2 
correspondingly, we get 

- -  
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Taking into account the definitions (15), (28), (30) we can write the final 
expression for the needed operator T: 

T=CB[~V+CA(YO!-~XOV+ GtV2)1 

~ { [ ( l  -Xo)2- Y , G ~ ] I - c , [ Y , G f + 2 ( 1 - X ~ ) X 1 + G ~ Y ’ ]  

(37) -c2B(G1Y1-X  I 2  )I -1  

Now one can derive an equation for the self-energy operator by substituting (37) 
into the known relation 

Thus we have for matrix elements of 

The expression derived above leads to an averaged T matrix approximation 
without multiple occupancy corrections (18) if CA is taken equal to unity. As 
compared to the latter, Eq. (39) increases the number of exact terms included in 
the self-energy part from the Green’s function expansion. These corrections are 
caused by the fact that any given site in the “average” system may be occupied 
either by A or by B molecules. Formally it is expressed in a cA-fold decrease of the 
amplitude of every virtual consecutive scattering of an excitation wave of A 
molecules by B centers. 

In \he case of the diagonal perturbation, V R W  = $ S R W  A, Eq. (39) reduces to 
the known relation [2] 

and, therefore, provides the correct atomic limit (A + 00) of the 2 operator. 
Note, that Eq. (39) does not satisfy requirements for Az3B permutation 

symmetry, which naturally arises for the Green’s function of binary system with 
random distribution of the components. 

Following Secs. 2 and 4 but substituting zero approximation GA by G”‘, which 
is the “virtual” crystal Green’s function, we obtain instead of (39) 

~ R R ’ = c A c B { ~ R R P O + ~ ~ R R [ ~ ~ - ( C A - C ~ ) ~ ~  + ( c A - c ~ )  PoGF]+ GF(v)RR’} 
x{[1 - ( C A - C S ) ~ O ] ~ - ( C A - C ~ ) ’ G F P , } - ~  (41) 

where q, which also appears in the definitions of X and % similarly to (15), is 
defined as 

2 R R ’  = $ A a R R ’  +[cB(M& -MRA~,)-cA(M& - M R A ~ ~ ) ] ( ~ - ~ R R )  (42) 
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MF = C M& exp [A(R - R’)] 
R 

(43) 

where N is a full number of molecules. 

property of A 
diagonal perturbation it reduces to 

One can see that now the definition (41) of the self-energy has the necessary 
permutation symmetry. In addition, in the limiting case of the 

which was used in Ref. 3 for the calculation of the binary chain phonon state 
density in the arbitrary range of component concentrations. 

The limiting expressions for the self-energy operator have been written to 
compare the possibilities of describing systems with the diagonal and nondiagonal 
randomness in the framework of a single-site approximation. For the first of them 
Eq. (40) and (44) give the Green’s function expansion correct up to the second and 
the third term in perturbation inclusively, and it is correct up to the first term only 
if multiple occupancy corrections are not included, i.e., when cA = 1 in (40). As to 
the nondiagonal randomness a quite different situation is realized. Multiple 
occu.pancy corrections included in the framework of the single-site approximation 
do not increase the occurrence of listed approaches and all of them are strictly 
correct only in zero approximation. The reason for such a discrepancy lies in the 
fact that the truncation procedure used above is not equivalent for the systems 
with diagonal and nondiagonal disorder, because in the latter two-vertex irre- 
ducible diagrams are already contained in the first-order perturbation theory, but 
they are ignored in single-site approximations. Thus, it is natural to expect that 
any approximation, based on the summation of diagrams involving one-vertex 
irreducible parts only (including self-consistent approaches like the coherent 
potential approximation), do not provide proper interpolation for C even for small 
but finite concentrations. 

Especially for (39) and (41) it can be easily shown that for the very small 
resonant interaction between molecules of different components and for the A less 
then the bandwidth the binary linear chain state density has spurious spikes in the 
single-site approximations used above. In the other case of a big A the equation 
defining the Green’s function poles with the self-energy part (41) in the linear 
approximation in-concentration cB and resonant interaction leads to the following 
result: 
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which defines the two excitation branches of a binary disordered system in the 
nearest-neighbor approximation. 

As one can see the B molecule excitation bandwidth dependence on 
parameters of intermolecular interaction resulting from (46) is physically mean- 
ingless. 

To avoid these difficulties it is necessary to include (even for small concen- 
trations) the corrections which arise from diagrams with two vertices. We restrict 
ourselves to a sampling summation of two-vertex diagrams which give a cor- 
rection to (39) of the following type: 

Taking it into account we get instead of (46) 

The latter together with Eq. (45) corresponds to the Broude-Rashba approach 
[20] in the theory of disordered systems. 

Thus, even two-vertex diagram corrections roughly included into considera- 
tion lead to the reasonable Green’s function interpolation formula. A more 
realistic approach requires the summation of more diagrams. But even the full 
summation of two-vertex diagrams (and what is more, of three and more vertices) 
is a very difficult problem in the case of nondiagonal disordered systems. There- 
fore, it is instrumental to find some other parameters of the excitation spectrum, to 
enable one to make an exact calculation. 

5. Moments of the State Density and Spectral Density 

Such parameters of the excitation spectrum shape of a disordered system 
which may be defined exactly in the arbitrary range of concentrations are state 
density moments 

m 

pP = EPp ( E )  dE (49) 

and spectral density moments 
m 

Mp(k) = [ EPS(k,  E )  dE 
-m 

S(k, E )  = -&I Im (kl(G)lk) 

Ik) = N-1’2 C exp (zkR)Bf;10) 
R 

where 10) is the vacuum wave function. 



570 ONIPKO 

From definitions (49), (50), and Green's function dispersion relations [21] it 
follows [5] 

CLp = N - ' S P ( H ~ )  (51) 

M,(k) = (k/(HP)lk) (52) 

To calculate these quantities it is convenient to present the disordered system 
Hamiltonian in the form 

H = ( H ) + W  (53) 

where ( H )  corresponds to the virtual crystal approximation, and configurational 
averages (5;) are calculated as 

(5;) = CACB[C;-' + (-I)"C;-'] (56)  

Using the Hamiltonian in the form (53) simplifies the moment calculation. 
From its definition it follows that ( W) = 0 and a few first moments are easily found 

CLo=1, CL1=s, 
(57) 

A 2  B 2  
CL2 = C A E  + cB8 +c ( c i h ' f t &  + c&Ei' + 2CAc&f$[*' ) 

R' 

Mo(k) = 1, 

M ~ ( ~ ) = C A ( & ~ + C A M ;  +CBML ) +cB(E'+c&F+cAML ) 

Ml(k) = E + M r ,  

(58 )  
A B  2 AS 2 

+ CACB 1 [ c A ( M ~ W  --M$:, ) 2  + cg ( M E W  -M;[, )'I 
R' 

The expressions for the third and other moments are too cumbersome and, 
therefore, are not given. 

The quantities (57) and (58) are measured experimentally and define certain 
characteristics of the excitation spectrum [ 2 2 ] .  Besides, in various papers (for 
example, Refs. 5, 9, 23) it is shown that the moment method is a very useful tool 
for investigating the disordered system% basic properties. Specifically, spectral 
density moments define the effective Hamiltonian's asymptotic behavior for large 
E :  

where 
n, = ( H 2 )  - 

n2 = ( H 3 )  - ( H ) ( H 2 )  - ( H 2 ) ( H )  + ( H ) 3  

= (W2) 

= ( W ( H ) @ )  + ( W 3 )  
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from which it follows that the asymptotic form of 5 is an operator diagonal in 
k-representation (5 = Hetr - ( H ) )  

Note, for comparison, that in the case of diagonal disordered systems the 
self-energy operator is presented by a number series up to E S [ 5 ] .  In addition all 
moments of the systems mentioned above are expressed in terms of moments of 
the components and that is impossible to be done in the case of nondiagonal 
disorder. 

The asymptotic properties of the self-energy are to be taken into account when 
an interpolation Green’s function formula is required. And the moment cal- 
culation serves as a very useful method to check the chosen approximation. 
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