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The dependence of the exciton annihilation rate on the dynamic interaction between
excitons in molecular crystals is studied. The equation of motion for the two-particle density
matrix of incoherent excitons is used to obtain an expression for the annihilation rate con-
stant in one-, two-, and three-dimensional crystals. It is shown that the interaction between
excitons may considerably affect the annihilation rate and its temperature dependence, and
that the contribution of exciton—exciton interaction to the annihilation process depends on
the dimensionality of the system in which the excitons move.

B paoTte ucciaeqyerca 3aBUCHMOCTb CKOPOCTH 3KCUTOHHON aHHUIWIJIAIVHA B MO-
JIEKYJAPHBIX KPUCTANIAX OT BeJWYUEH MUHAMHYECKOTO B3AUMONEHCTBUS MEKIY
axcuTOHaMu. Ha OCHOBe ypaBHEHWH NJf MATPHUL IJIOTHOCTH HEKOTEepPEeHTHHIX
KCUTOHOB (IIPEIKKOBAasf MOJeJIb IBU:KEHNSA), HaliJleHo BEHIpa:KeHUe I KOHCTAHTHI
CKOPOCTH AaHHUTHJIAIMY B OIHO-, ABYX- M TPeXMepPHOM Kpucrajuie. IlokasaHo, 4TO
B3aUMMOJENCTBME MEKAY SKCUTOHAMU MOMKET CYILIECTBEHHO HW3MEHHTHh CHOPOCTH
AHHUTWIIALNMY ¥ ee TEMIePaTyPHYIO 3aBUCHMOCTh, 4 XapaKTep MPOABICHNA DKCH-
TOH-DKCUTOHHOTO B3aUMONEHicTBIA B AHHATWJIALMH 3aBUCUT OT Pa3MepPHOCTH
CHCTEMBI, B KOTODPOY NPOMCXOMUT JXBHKEHNE IKCHUTOHOB.

1. Introduection

The interaction between excitons can lead to the nonradiative disappearance
of a pair of excitons — the exciton annihilation. Numerous theoretical and
experimental investigations have been devoted to this process, because a number
of interesting phenomena such as the photoconductivity [1 to 5], the delay
and quenching of fluorescence [6 to 9], the weakness of the phosphorescence of
pure molecular crystals [10], the nonlinear quenching induced by intense excita-
tion [11 to 13] can be explained in terms of the annihilation.

Experimental data are generally analyzed on the basis of the well-known
phenomenological diffusion equations (see, for example, [11]). Such an approach
to the problem does not enable us to determine the mechanism of annihilation
in detail and to associate the annihilation rate constant with microscopic charac-
teristics of exciton excitations. Much theoretical effort [14 to 22] to calculate
the annihilation rate constant has neither clarified completely the role of differ-
ent exciton parameters in the annihilation process, so the possibilities to com-
pare the theory with numerous experimental data are still limited. In particular,
the question of how the so-called dynamic interaction between excitons affects
the annihilation rate is of interest. This interaction manifests itself effectively
as an attraction or repulsion of quasi-particles and can result in biexciton for-
mation [23]. The attempt to study this question in the case of coherent excitons
was made previously in {24]. In the present paper the exciton motion is assumed



700 A. 1. OxiPRO

to be completely incoherent (the hopping model). This assumption is relevant
for the narrow band exciton excitation and a strong exciton—phonon coupling.
This kind of the triplet exciton motion was verified experimentally at a tem-
perature above 100 K in crystalline anthracene [25].

2. Theory

It is known [26, 27] that above the Debye temperature in the case of strong
exciton—phonon interaction, the density matrix averaged over a phonon sub-
system is diagonal in the spatial indices. We need to know only the reduced two-
particle density matrix which describes the pairwise annihilation effect. For
a system with uniform exciton density, the density matrix only depends on the
vector difference of the position of two excitons, and for the quasi-particles of

the same sort its equation of motion in steady-state conditions has the form [19]
dn§
3t =2 WronNr — Waswle) (1 — dm,0) (1 — dm,0) —

—(T_l-f-wn)NR—}—P(l——(sR’o):O, (1)
where Ng gives the probability of finding a pair of excitons at the molecules
with vector difference R, Wg_, g is the per second probability of the vector dif-
ference to change from R to R’. If the dynamical interaction occurs, W n
dependson the tendency of the exciton to change the distance (Wgror = Wr o n).
77! is the doubled probability of the monomolecular decay of excitons, wgr the
bimolecular annihilation probability for excitons separated by R, P the creation
rate of a pair of excitons at the distance R. This term determines the change
in the two-particle density matrix under the influence of an external source.
The terms involving the §-symbol take into account that two excitons cannot
be at the same position simultaneously.

From (1) one can define the average rate of disappearance of a pair of excitons
caused by the annihilation: V = (Pt)™! JwaNga. As shown in [19] this quan-
R

tity is related to the annihilation rate constant by y = v,V (v, is the average
volume per molecule of a crystal) when certain conditions are satisfied.
Using the Green’s function Gr_g- satisfying

(%: Wr—p +77!) Gr_p —Ig Wa—r"Gr'—r = On,R' » (2)
equation (1) can be formally solved,

Ng = Pr (1 — GgrG5") + 0r,01Go" [P(x — Q) — G, Rz WaNg] +
+ ﬁ‘; [(Gr—r — OrGrG3") + Or,0t@RGo"] (W — wr) Nr +
+ EX‘ (1 — dr:,0) (1 — On,0) (6Wa o rNp» — 6Wan"Nr)] , 3)

where 6Wgron = Wrorn' — Wr_pr, Wg determines the probability of the
change in mutual position of noninteracting excitons by the vector R and is
equal to the doubled incoherent jump rate for an exciton hopping by this vector.

In the case of localized excitons it is convenient to employ (3) instead of (1)

because Wgr and wg decrease with the distance at least as R-%. Assume also
that the dynamical interaction between excitons is short range. Then (3) can be
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solved in the nearest-neighbour approximation. Such a solution is obtained in
the Appendix for one-, two- and three-dimensional crystals with one molecule
per unit cell and with the following restrictions on the parameters of the system:

e Ws R=a, w, R=a,
Wn= WR =
0, R+a, 0, R+a, @)
OWRon = 6Wsass; when RorR' =a,

6WR:=R’ = O; RJ R’ =‘= a,

where @ is the lattice vector.

Using (Al), (A4) to (A6), one can calculate the annihilation rate constant for
any values of the microscopic parameters which characterize the lifetime, the
motion and the interaction of excitons. But the case when the probability of the
exciton jump is much greater than the monomolecular decay probability (which
is typical of molecular crystals) is of great interest. Let us find approximate
expressions for the annihilation rate constant corresponding to Wz > 1.

2.1 One-dimensional erystal

Taking into account that Gy =~ 0.5 Jz/W and retaining in (Al), (A7) only the
first terms of the expansion in powers of (Wz)~1/2 we obtain

2aw (1 + —}—)

Waaoat
© yive (1+— 1I ;W; +Foone ®
w wT ‘/_W2a—>a7 Wassa

In the absence of the interaction the annihilation constant rate is equal to

y:

2aw

1+ (%) Jive o

Yo =

2.2 Two-dimensional crysial

Using the asymptotical expressions of the elliptic integrals in (A5), when £ is
close to 1 (Wr > 1) we find to a first approximation

402
'y = © i W 2 ’ (7)
-1 a—bi
W:w In (32W7) + Won
2
40w (8)

n=7o .
- —1
(W)n In 32Wz) + 1

. 2.3 Three-dimensional crysial

The Green’s functions for a three-dimensional system have no singularities at
(Wr)-t = 0 and near this point they can be replaced by their values for
(Wz)~* = 0. Then the calculation of y using the numerical data for the Green’s

45 physica (b) 78/2
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functions given by Koster and Slater [28] gives, with an acccuracy to (Wz)~1/2,

= 6a’w 20286 + 0'166WWE"1'—*“ + 0.045W-1W2,.., , Was2a V1 (9)
Y= w 0.83 + 0.1TW1Wgssq T Waana s
6adw
o= (10)
0.497
7 W +1

Equations (6), (8), (10) are similar to the corresponding results of [19] for
noninteracting excitons. If the dynamic interaction between excitons is strong
(WWasea, Was2aWzara are essentially different from unity) a considerable
deviation from the values and the temperature dependence predicted by the
expressions for y, is to be expected. This is so because the attraction or repulsion
between the excitons affects the probability that they are sufficiently close to
interact, and, consequently, their annihilation rate. The specific conditions when
the interaction affects essentially the annihilation are given by the relations
between the parameters 7,w, W, Wgeq. Certain qualitative conclusions, how-
ever, can be derived from (5) to (10), without calculating the quantities just
given above.

The dependence of the annihilation rate constant on the dynamic interaction
between excitons is most important in a three-dimensional crystal and decreases
with decreasing dimensionality of the system in which the excitons move. The
weakening of the annihilation dependence upon exciton—exciton interaction
occurs due to the decrease in the number of all possible ways of exciton separa-
tion. This result is in close relation with the following property of the random
walk motion (see, for example, [29]): the probability that a particle returns,
which has undergone a one- or two-dimensional motion, to the initial position
is equal to unity; in three dimensions the probability that it ever returns is
only about 0.34.

The contribution of the interaction to the annihilation also depends on the
ratio between the magnitude of the annihilation probability and the exciton
jump rate. If w <€ W, the annihilation rate constant is largely determined by the
magnitude and the sign of the exciton-exciton interaction. For w > W (the
annihilation is governed by exciton diffusion), the interaction effect in one or
two dimensions will be considerable for a very large repulsion between excitons
War2a >> Wagoe, while in a three-dimensional crystal the interaction can come
into play. For instance, if W is an order of magnitude higher than W,_,,, then
y = 302 Wagsa L yp = 1263W.

To illustrate the results obtained above we calculate the temperature depend-
ence of the annihilation rate constant. In this connection we have to know some
information on the quantities w, W, Wagss,. It can be shown [30] that in a certain
approximation the probability W, is
M2/ = (e + A2
Weasa = 25 |/ 15 = [_ 4cTe
where M is the matrix element of the energy of the resonance interaction between
nearest neighbours, & the energy of the thermal activation of the exciton jump,
A the parameter determining the change in the energy of Coulomb interaction
between excitons (with the lattice deformation taken into account) due to their
approach. For free excitons 4 = 0.

]’ Wa—»Za = W2a—>a(_A) ’ (11)
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Fig. 1. The temperature dependence of annihilation rate constant in a) two-dimensional

crystal (in units a®w); b) three-dimensional crystal (in units a®w). Curves 1, 2, 3(Fig. 1a, b)

correspond to w = 10 8-, 4 =0, +500 em~?, —500 cm ™!, respectively; curves 4, 5,6 to

w=10"8"1,4=0,+4100cm™!, —100 cm~. The scale for curves 1,2, 3in Fig. 1a is 10% and
for the curves 2, 3 in Fig. 1b is 10%

Equation (11) was used to calculate the temperature dependence of the an-
nihilation rate constant for various values of the exciton—exciton interaction
parameter A (Fig. 1a, b). The probability « was supposed to be constant. This
assumption is admissible when the density of final annihilation states is little
varied in the interval of order of kT in the neighbourhood of the two-exciton
state energy. To calculate y we took the values of the parameters which are typi-
cal of triplet excitons in crystalline anthracene: w = 1011 8-1 [18, 19], M =
=2cm™, v = 1038 [27], ¢ = 50 cm™1, so that the following relation holds:
o> W.

The figures show that for the present values of A the interaction between exci-
tons essentially changes the magnitude and the temperature behaviour of the
annihilation rate, this change being more pronounced in three and less pro-
nounced in two dimensions. In a one-dimensional system the effect of the inter-
action on the annihilation rate is negligible for the given A-values if the tem-
perature is above 100 K. For w <€ W (dashed lines) the exciton—exciton inter-
action is already appreciable at small values.

3. Conclusion

Let us summarize the main qualitative effects of dynamic interaction between
excitons in the annihilation process:

1. The influence of the interaction on the annihilation rate depends on the
dimensions of systems in which excitons execute a random walk. The effect is
smallest in one, and largest in three dimensions.

2. The interaction effect is determined by the ratio between the annihilation
probability and the jump rate of excitons.

3. If the attraction or repulsion between excitons is strong an exponential
temperature dependence of the annihilation rate constant can be observed.
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Appendix

To calculate the annihilation rate constant we have to find the probability
for observing two excitons at nearest-neighbour molecules N 3z—,. The order of
a set of non-uniform linear equations which determine N, depends on the dimen-
gions of the system and if the conditions (4) are valid N, is equal to 4, 12, 24
for one, two and three dimensions, respectively. But as long as the quantity P
in (3) is assumed to be independent of the coordinates, it follows from the sym-
metry of the system that Np with equal R are equal. Taking this into account
we find

QO ) B g0
N =10 ) A b 0 A
R N

where 7 = 1, 2, 3 indicates the dimension of the system,

GGyt — 1; 1=1, 0; 1=1,
QP = PriG, G5 —1; <=2, QP = Pria;1Goly — 1; 1=2,
Gh,0,0G00,0 — 1; =3, G1,1,0G0)0,0 — 1; 1 =3,

G,Go' — 1; 1=1,
QP = Pr1Ge,oGoo—1; 1=2,
Gs,0,0G50,0 — 1; =3,

(W—w) GIGEI '+‘ 6Wa—>2a (GZ _— Gl) Go_l — W’ =1 s

w-1 (W —w) G1,0G5,10+6W¢_,2,, (2G1,1 + Gg,0 — 3G,0) GO_,IO —W;i=2,

()
5 (W—w) G1,0,000,0,0+0Was2s (4G1,1,0 + G2,0,0—5G1,0,0) Gojo,0 — W;
1=3,
0; 1=1,
) = W-1126Wag 00 (Gh,0 — G1,1) Goo; 1=2,
40W 2450 (G1,0,0 — Gh,1,0) Go0,0; T =3,
OWsasa (Gy — @) Go'; i=1,
20 = W 35Wa4os (Gr,0 — Go,0)Goo; 1=2,
0Waasa (G100 — G2,0,0) Goo0; ©=3,
0; =1,
(W — @) G1,1G0% + 6Wasea [2W (Go,0 + G1,1 + 2G2,0 + Gs,1 +
e W + Go,2 —4G1,1G5% — 2G1,1G2,0G5)%) — 3G1,16G5%]; i=2,
(W — )G1,1,0G0,0,0 + 0Wos2s [2W (Go,0,0 + 5G1,1,0 + 2G2,0,0 +
+ 5G2,1,1 + Gs,1,0 + G2,2,0 — 3G1,1,0G2,0,0G0,0,0 —
— 1264,1,0G0,0,0) — BG1,1,0G5.0,0}; 1=3,
0; 1=1,
Y= -1 20W3gsa [GI,IGE,IO? W(Go,0 + 2G32,0+Gs,2—4Gi 1G0) ] —W; =2,
20W g4 [2G1,1,0G0,0,0 — W (Glo,0,0 + 4G1,1,0 + 2G2,0,0 +
|+ 4G5,1,1 + Go2,0 — 12G1,1,0G00,0)] — W; =3,
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0; =1,
oD — W1 0Wzasa[ G1,1G00 — 2W (Gh,1 + Gs,1 — 2G1,1G2,0G0))]; 1=2,
0W 44 [G1,1,005,0,0 — 2W (G1,1,0 + G2,1,1 + Gs,1,0 —
— 3G4,1,0G2,0,0G0,0,0)]; 1=3,
(W — ) GoGo* + 6Wose [W(G, + G, — 2G5G") — G,G']; i=1,
(W — o) G2,0G0 + 0Wassza [W(Go,0 + 4G1,1 + 4G5, + 2G2, 2 +
S0 — + Gy, 0 — 8Gh,1G2,0G5)0 — 4G2,0G5)) — 3Gs,0G0)0); 1=2,
5 (W — @) G2,0,0G0,0,0 + 6Was2a [W(Go,0,0 + 8G1,1,0 + 8G2,1,1 +
+ 8G3,1,0 + 4G2,2,0 + Gy,0,0 — 24G1,1,0G2,0,0G5,0,0 —
— 6G3,0,005,0,0) — 5G2,0,060,0,0; 1=3,
0; ' i=1,
- g = W1l 20Wa-sa [G2,0G0/0 — 2W (G1,1 + Gs,1 — 26G4,1G2,0G00)]; =2,
? 40W a0 [G2,0,0G00,0 — 2W (G1,1,0 + G2,1,1 + Gs,1,0 —
— 3G1,1,002,0,0G0,0,0)1; 1=3,
5Waaa [Go05" — W(G, + @, — 262G5Y)] — W; i=1,
O0W2aa [G2,0050 — W(Go,0 + 2Gz,2 + G0 — 4G5 0G5%)] —
24D = W-1 T= 2 ,
W24 [G2,0,0G0)0,0 — W(Go,0,0 + 4G2,2,0 + G100 —
— 6G3,0,0G50,0] — W; 1=3,
(A1)
where
1 co8s naq
—l—V_l%‘ 2W + 71 — 2W cosag ' i=1,
) 1 cOs mag, cos nag, .
Gr = Gm’"__z; W—|~‘r‘1—2W(cosaq1—|-cosaq2) t=2,
G, 5 cos lag, cos mag, cos nag, _3.
2 N3 wange, OW + 171 — 2W (cos ag, + cos ag, + cos aq3)
(A2)
N, is the number of molecules in the crystal.
In (A1) the equations,
[0 + (W) ]Gy — aGg = W1,
lo + (W) Ga — 3 Gaw =0, } (A3)

following from (2) for B — R’ = 0, @ are used. Here @’ are the values of R for
the nearest-neighbour molecules, o = 2,4, 6 for ¢ = 1, 2, 3, respectively.

In order to find N, we must calculate the Green’s functions (A2). For one-and
two-dimensional systems their dependence on the parameter Wz in units (2W)~1
has the form

Go = {[1 + @Wr)1P — 13712, (A4)
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the other one-dimensional Green’s functions are expressed in terms of G, by
using (2),

Go,0 =a%kK , Gio0= (2n)' (2K — ),
Cr1= (k) [(2 — k2) K + 2E], Gy = (k) (k2K + 4E — 27) ,
Gz,1 = (27k?)~1 [(8 — 6k?) K — 8E + nk?],
Gs,1 = (k31 [(8 — 6k — k%) K — (8 + 10k2) E + 47k?] 4+ 2k~1F , § (AD)
Go,2 = (k®)~1[(8 — 8k + k%) K — 8(1 — k?) E] — 2¢°1F
Gs0 = (wk3)~1 [(112 + 16k2) E — (48 — 48k2 — k*) K —

— 87 (4 + k)] — 4k1F

where K = K(k), E = E(k) are complete elliptic integrals, F = F(3, —1; 2; k?)
is the hypergeometric Gauss function, and k™1 =1 + 4W7)™L.

The Green’s functions of a three-dimensional crystal are tabulated in [28]
where G, ,», is represented as

Grm,n = f exp (—xt) L) (O)Ia() di; =3 + 2W7)7. (A6)
0

I,(t) is the Bessel function of imaginary argument. By using the table of inte-
grals (A6) of [28], as well as the relation (2) between Green’s functions with
varying R, we can obtain numerical values for all Green’s functions contained
in (AD).

The solution of the set of equations (3) for crystals for which the dynamic
interaction between excitons is negligible can be obtained from (A1) at 6Wnz.=
= 0. Taking (A3) into account we get

N = Pt [aw (Go* — 7)1 + WY W — o)]!. (A7)
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