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The dependence of the exciton annihilation rate on the dynamic interaction between 
excitons in molecular crystals is studied.The equation of motion for the two-particle density 
matrix of incoherent excitons is used to obtain an expression for the annihilation rate con- 
stant in one-, two-, and three-dimensional crystals. It is shown that the interaction between 
excitons may considerably affect the annihilation rate and its temperature dependence, and 
that the contribution of exciton+xciton interaction to the annihilation process depends on 
the dimensionality of the system in which the excitons move. 

B pa6o~e HCCJIenyeTCR 3aBHCHMOCTb CKOPOCTEl BKCEITOHHOfi aHHHrHJIRqHH B MO- 
JIeKyJIHpHbIX KpHCTaJIJIaX OT BeJIkl¶klWI AHEaMEIreCKOrO B3aHMOAe&CTBEIR MeXAy 
3KCHTOHaMH. Ha OCHOBe YpaBHeEEIP AJIR MaTpElIlbI IIJIOTHOCTEI HeKOrepeHTEbIX 
3KCHTOHOB (IIpbIXKOBaR MOAeJIb ABEIXeHHR), HafiAeHO BbIpaXeHkIe AJIR KOHCTLIHTbI 

B3EiHMOAe&CTBHe MeXAy BKCEITOHBMH MOXeT CyUeCTBeEHO ll3MeHEITb CHOpOCTb 
aHEEi~ElJI~~ElEi €3 ee TeMIIepaTypHyIO 3aBHCEIMOCTb , a XapaKTep IIpORBJIeHHH BKCH- 
TOH-3KCEITOHHOrO BaaEiMOAefiCTBMR B aEEklrEIJIH~HH 3aBkICHT OT pa3MepHOCTH 
CEICTBMH, B KOTOPOfi IIPOHCXOAHT ABHmeHHe BKCEITOHOB. 

CKOPOCTEI aHHHrmauuEi B OAHO-, HBYX- H TpewlepHoM KpIicTanne. I l o ~ a s a ~ o  ,  TO 

1. Introduction 
The interaction between excitons can lead to the nonradiative disappearance 

of a pair of excitons - the exciton annihilation. Numerous theoretical and 
experimental investigations have been devoted to this process, because a number 
of interesting phenomena such as the photoconductivity [l to 51, the delay 
and quenching of fluorescence [6 to 91, the weakness of the phosphorescence of 
pure molecular crystals [lo], the nonlinear quenching induced by intense excita- 
tion [ll to 131 can be explained in terms of the annihilation. 

Experimental data are generally analyzed on the basis of the well-known 
phenomenological diffusion equations (see, for example, [ 111). Such an approach 
to the problem does not enable us to determine the mechanism of annihilation 
in detail and to associate the annihilation rate constant with microscopic charac- 
teristics of exciton excitations. Much theoretical effort [ 14 to 221 to calculate 
the annihilation rate constant has neither clarified completely the role of differ- 
ent exciton parameters in the annihilation process, so the possibilities to com- 
pare the theory with numerous experimental data are still limited. In particular, 
the question of how the so-called dynamic interaction between excitons affects 
the annihilation rate is of interest. This interaction manifests itself effectively 
as an attraction or repulsion of quasi-particles and can result in biexciton for- 
mation [23]. The attempt to study this question in the case of coherent excitons 
was made previously in [24]. In the present paper the exciton motion is assumed 
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to be completely incoherent (the hopping model). This assumption is relevant 
for the narrow band exciton excitation and a strong exciton-phonon coupling. 
This kind of the triplet exciton motion was verified experimentally at a tem- 
perature above 100 K in crystalline anthracene [25]. 

2. Theory 
It is known [26, 271 that above the Debye temperature in the case of strong 

exciton-phonon interaction, the density matrix averaged over a phonon sub- 
system is diagonal in the spatial indices. We need to know only the reduced two- 
particle density matrix which describes the pairwise annihilation effect. For 
a system with uniform exciton density, the density matrix only depends on the 
vector difference of the position of two excitons, and for the quasi-particles of 
the same sort its equation of motion in steady-state conditions has the form [ 191 

-- dNR - ,Z (WR#+RNW - WR+R”R) (1 - B R ~ ,  0 )  (1 - BR, 0 )  - 
dt R‘ 

- (t-’ + W R )  N R  + P(1 - ~ R , o )  = 0 3 (1) 
where N R  gives the probability of finding a pair of excitons at the molecules 
with vector difference R ,  WR+R, is the per second probability of the vector dif- 
ference to change from R to R’. If the dynamical interaction occurs, W R + R ~  
dependson the tendency of the exciton to change the distance ( WR+R* + WR,+R). 
t-l is the doubled probability of the monomolecular decay of excitons, WR the 
bimolecular annihilation probability for excitons separated by R ,  P the creation 
rate of a pair of excitons at  the distance R. This term determines the change 
in the two-particle density matrix under the influence of an external source. 
The terms involving the d-symbol take into account that two excitons cannot 
be at  the same position simultaneously. 

From (1) one can define the average rate of disappearance of a pair of excitons 
caused by the annihilation: V = (Pz) - l  ~ w R N R .  As shown in [19] this quan- 

tity is related to the annihilation rate constant by y = voV (vo is the average 
volume per molecule of a crystal) when certain conditions are satisfied. 

R 

Using the Green’s function GR-R. satisfying - - (z WR-R,, + z-’) GR-W - z WR-W*GR~-R# = B R , R ~ ,  (2) 
R e  W’ 

equation (1) can be formally solved, 

f [ (GR-R,  - G R G R G ’ )  + ~R,o~GR@G’]  [(GR, - OR,) N R ~  + 
R‘ 

+ 2 (1 - ~ R ’ , o )  (1 - ~ R ” , o )  ( ~ W R ’ * + R ’ ~ ~ R ‘ #  - ~ W R ~ + R ~ ~ N R ~ ) ]  , (3) 
R” - - 

where ~ W R + R ,  = WR+R* - WR-R,,  W R  determines the probability of the 
change in mutual position of noninteracting excitons by the vector R and is 
equal to the doubled incoherent jump rate for an exciton hopping by this vector. 

In the case of localized excitons it is convenient to employ (3) instead of (1) 
because i?R and WR decrease with the distance at least as Rb6. Assume also 
that the dynamical interaction between excitons is short range. Then (3) can be 
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solved in the nearest-neighbour approximation. Such a solution is obtained in 
the Appendix for one-, two- and three-dimensional crystals with one molecule 
per unit cell and with the following restrictions on the parameters of the system: 

~ W R ~ R ,  = dWaSz0; when R or R' = a , (4) 

dWRs+R' = 0; R , R ' + a ,  J 
where a is the lattice vector. 

Using (Al), (A4) to (A6), one can calculate the annihilation rate constant for 
any values of the microscopic parameters which characterize the lifetime, the 
motion and the interaction of excitons. But the case when the probability of the 
exciton jump is much greater than the monomolecular decay probability (which 
is typical of molecular crystals) is of great interest. Let us find approximate 
expressions for the annihilation rate constant corresponding to W t  > 1. 

2.1 One-dimensional crystal 

Taking into account that Go 0.5 and retaining in (Al), (A7) only the 
first terms of the expansion in powers of ( W T ) - ~ / ~  we obtain 

2 a w  (1+ -) 1 

(5)  
iWZa+at 

Y =  

W 

In the absence of the interaction the annihilation constant rate is equal to 

2aw 

2.2 Two-dimensional c ~ y s t d  

Using the asymptotical expressions of the elliptic integrals in (A5), when k is 

(7) 

close to 1 (Wt > 1) we find to a first approximation 

4a2w 
V =  - 
I w W a + ~ a  

W Wza+a 
z-l In (32Wt) + -- 

Yo = 
(;)n-l In ( 3 2 W ~ )  + 1 ' 

2.3 Three-djmensimal c~ystal 

The Green's functions for a three-dimensional system have no singularities at 
(Wt)-l = 0 and near this point they can be replaced by their values for 
(Wt)-l = 0. Then the calculationof y using the numericaldata for the Green's 
46 physica (b) 73/Z 
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functions given by Koster and Slater [28] gives, with an  acccuracy to  ( W T ) - ~ / ~ ,  
~0 0.286 + 0.166WWFk -+a + 0.045W-lWZa+a 

y = 6a3w (F 0 . 8 3  + 0.17W-lWz,-+a 
6a3w 

w Yo = 
0.497- + 1 

W 
Equations (6), (€9, (10) are similar to  the corresponding results of [19] for 

noninteracting excitons. If the dynamic interaction between excitons is strong 
( W W&a, Wa+ZaWZ:+a are essentially different from unity) a considerable 
deviation from the values and the temperature dependence predicted by the 
expressions for yo is to  be expected. This is so because the attraction or repulsion 
between the excitons affects the probability that they are sufficiently close to 
interact, and, consequently, their annihilation rate. The specific conditions when 
the interaction affects essentially the annihilation are given by the relations 
between the parameters t ,  w ,  W ,  Wz,,,. Certain qualitative conclusions, how- 
ever, can be derived from ( 5 )  t o  ( lo) ,  without calculating the quantities just 
given above. 

The dependence of the annihilation rate constant on the dynamic interaction 
between excitons is most important in a three-dimensional crystal and decreases 
with decreasing dimensionality of the system in which the excitons move. The 
weakening of the annihilation dependence upon exciton-exciton interaction 
occurs due to  the decrease in the number of all possible ways of exciton separa- 
tion. This result is in close relation with the following property of the random 
walk motion (see, for example, [29] ) :  the probability that a particle returns, 
which has undergone a one- or two-dimensional motion, to the initial position 
is equal to unity; in three dimensions the probability that i t  ever returns is 
only about 0.34. 

The contribution of the interaction to  the annihilation also depends on the 
ratio between the magnitude of the annihilation probability and the exciton 
jump rate. If w W ,  the annihilation rate constant is largely determined by the 
magnitude and the sign of the exciton-exciton interaction. For w>> W (the 
annihilation is governed by exciton diffusion), the interaction effect in one or 
two dimensions will be considerable for a very large repulsion between excitons 
Wa+za > while in a three-dimensional crystal the interaction can come 
into play. For instance, if W is an  order of magnitude higher than Wea+a, then 

To illustrate the results obtained above we calculate the temperature depend- 
ence of the annihilation rate constant. I n  this connection we have to know some 
information on the quantities w , W ,  Wza,a. It can be shown [30] that in a certain 
approximation the probability Wza is 

3a3Wza+a < y o  12a3W. 

where M is the matrix element of the energy of the resonance interaction between 
nearest neighbours, E the energy of the thermal activation of the exciton jump, 
A the parameter determining the change in the energy of Coulomb interaction 
between excitons (with the lattice deformation taken into account) due to  their 
approach. For free excitons A = 0. 
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a 

Fig. 1. The temperature dependence of annihilation rate constant in a) two-dimensional 
crystal (in units a%); b) three-dimensional crystal (in units a%). Curves 1,2,3(Fig.  l a ,  b) 
correspond to w = 10” s-l, A = 0, +500 cm-l, -500 cm-l, respectively; curves 4,5,6 to 
o = lo7 s-l, A = 0, + 100 cm-l, - 100 om-’. The scale for curves 1,2,3 in Fig. 1 a is lo2 and 

for the curves 2 , 3  in Fig. 1 b is lo4 

Equation (11) was used to  calculate the temperature dependence of the an- 
nihilation rate constant for various values of the exciton-exciton interaction 
parameter A (Fig. la, b). The probability o was supposed to  be constant. This 
assumption is admissible when the density of final annihilation states is little 
varied in the interval of order of kT in the neighbourhood of the two-exciton 
state energy. To calculate y we took the values of the parameters which are typi- 
cal of triplet excitons in crystalline anthracene: w = 10l1 s-l [18, 191, M = 
= 2 cm-l, t = s [27], E = 50 cm-l, so that the following relation holds: 
w > w. 

The figures show that for the present values of A the interaction between exci- 
tons essentially changes the magnitude and the temperature behaviour of the 
annihilation rate, this change being more pronounced in three and less pro- 
nounced in two dimensions. In  a one-dimensional system the effect of the inter- 
action on the annihilation rate is negligible for the given A-values if the tem- 
perature is above 100 K. For w < W (dashed lines) the exciton-exciton inter- 
action is already appreciable a t  small values. 

3. Conclusion 
Let us summarize the main qualitative effects of dynamic interaction between 

excitons in the annihilation process: 
1. The influence of the interaction on the annihilation rate depends on the 

dimensions of systems in which excitons execute a random walk. The effect is 
smallest in one, and largest in three dimensions. 

2. The interaction effect is determined by the ratio between the annihilation 
probability and the jump rate of excitons. 

3. If the attraction or repulsion between excitons is strong an exponential 
temperature dependence of the annihilation rate constant can be observed. 
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&) - w-I 
3 -  

z(0 - w-1 
3 -  

where 

i= l ,  

NI is the number of molecules in the crystal. 
In (Al)  the equations, 

(A3) 
[a + (Wt)-l] Go - a Ga 7 W-' , 

[& + (Wt)-l] G, - 2 Ga-0, = 0 , 
a' 

following from (2) for R - R' = 0, a are used. Here a' are the values of R for 
the nearest-neighbour molecules, a = 2 , 4 , 6  for i = 1 , 2 , 3 ,  respectively. 

In  order to find N ,  we must calculate the Green's functions (A2). For one- and 
two-dimensional systems their dependence on the parameter Wt in units (2W)-1 
has the form 

Go = { [1 + (2 Wt)-1]2 - 1 )  , (A4) 



Go,o = n- lkK , 
G1,1 = (nk)-l  [ ( 2  - k') K + 2E]  , 
G2,l = (2nk')-l [(8 - 6k') K - 8 E  + nk2] , 
Gs,1 = (nk3)-1 [ (8  - 6k' - k4) K - (8 + 10k') E + h k ' ]  + 2k-1F , 
G2,2 = (nk3)-l [(8 - 8k2 + k4) K - 8(1  - k') El - 2 k ' F  , 
C4,o = (nk3)-l  [(112 + 16k2) E - (48 - 48k2 - k4) K - 

G1,o = (en)-' ( 2 K  - n) , \ 

G2,o = (nk)-l  (k'K + 4 E  - 2n)  , 

- 8n (4 + k')] - 4 k 1 F  , 
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